
Frontiers in Immunology | www.frontiersin.

Edited by:
Valentin Jaumouillé,
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Phagocytes, which include neutrophils, monocytes, macrophages, and dendritic cells,
protect the body by removing foreign particles, bacteria, and dead or dying cells.
Phagocytic integrins are greatly involved in the recognition of and adhesion to specific
antigens on cells and pathogens during phagocytosis as well as the recruitment of
immune cells. b2 integrins, including aLb2, aMb2, aXb2, and aDb2, are the major
integrins presented on the phagocyte surface. The activation of b2 integrins is essential to
the recruitment and phagocytic function of these phagocytes and is critical for the
regulation of inflammation and immune defense. However, aberrant activation of b2
integrins aggravates auto-immune diseases, such as psoriasis, arthritis, and multiple
sclerosis, and facilitates tumor metastasis, making them double-edged swords as
candidates for therapeutic intervention. Therefore, precise regulation of phagocyte
activities by targeting b2 integrins should promote their host defense functions with
minimal side effects on other cells. Here, we reviewed advances in the regulatory
mechanisms underlying b2 integrin inside-out signaling, as well as the roles of b2
integrin activation in phagocyte functions.
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INTRODUCTION

Phagocytosis is the mechanism by which microorganisms are engulfed and killed, and it is the main
process by which immune cells disassemble pathogens to present antigens. This is important for the
innate immune response and initiating adaptive immune responses. Phagocytosis is a special form
of cell endocytosis, whereby cells ingest solid particles through vesicles, including microbial
pathogens (1–3). While most cells are capable of phagocytosis, the professional phagocytes of the
immune system, such as macrophages, monocytes, neutrophils, and dendritic cells, excel in this
process (4). During phagocytic uptake, phagocytes use receptors to interact with particles and
mediate signals that encapsulate the particle within the membrane, leading to complete engulfment
(5, 6). Particle recognition and uptake are conducted by a receptor ligation zipper-like process that
involves several types of receptors, such as integrins, Fcg receptors (FcgRs), and scavenger receptors
(1, 7).
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Integrins are essential cell-surface adhesion molecules that are
widely expressed on cell membranes. As cell adhesion receptors,
integrins transduce intracellular and bidirectional intercellular
signals (8, 9), and are crucial for immune system functions (10,
11). In recent years, great progress has been made in elucidating
integrin signal transduction mechanisms in phagocytes. b2
integrins, such as complement receptor 3 (CR3, also known as
integrin aMb2, CD11b/CD18, macrophage-1 antigen, or Mac-1)
and complement receptor 4 (CR4, also known as integrin aXb2,
CD11c/CD18, or p150/95), are highly expressed in phagocytes
and are important for phagocytosis. This review focuses on the
role of b2 integrin activation and signaling during both adhesion
and phagocytosis. We highlight the inside-out signaling basis of
b2 integrin function during adhesion and phagocytosis and
propose that b2 integrin-mediated phagocytosis is a great
model to understand functional regulation of integrins.
b2 INTEGRINS EXPRESSED
BY PHAGOCYTES

b2 integrins play a major role in regulating phagocyte adhesion and
migration to inflamed organs and other immunological processes,
such as phagocytosis (12, 13) (Table 1). In mammals, professional
phagocytes express complement receptors, some of which are b2
integrins, such as CR3 and CR4, which are critical for anti-pathogen
defense and inflammation regulation. Phagocytes like monocytes
and macrophages express all four b2 integrin family members: CR3,
CR4, aLb2 (also known as CD11a/CD18, lymphocyte function-
associated antigen 1, or LFA-1), and aDb2 (CD11d/CD18) (23).
The activation of b2 integrins is involved in multiple functions of
phagocytes, such as cell adhesion, locomotion, exocytosis, and
phagocytosis (14, 24–26). The central role of b2 integrins in
immunity is highlighted by the fact that patients with leukocyte
adhesion deficiency type I (LAD-I) syndrome, who lack b2 integrin
expression, are particularly prone to bacterial infections (27). LAD-
III (leukocyte adhesion deficiency type III) patients have mutations
in kindlin-3 (an integrin binding protein) and show a deficiency in
integrin b2 activation, leading to an adhesion defect of phagocytes
Frontiers in Immunology | www.frontiersin.org 2
similar to LAD-I (28). These patients end up suffering from
recurrent life-threatening infections (29). Overaggressive b2
integrin activation leads to excessive inflammation and associated
tissue damage (30).

Integrin aLb2 is critical for the adhesion of blood phagocytes
(such as neutrophils and monocytes) to the vascular endothelium
(31–35), as well as intravascular patrolling of monocytes (36, 37)
and transendothelial migration of neutrophils (38, 39). Integrin
aMb2 is involved in cell adhesion, cell migration, phagocytosis, and
degranulation of phagocytes (14, 24–26, 37, 40). Integrin aMb2
recognizes various structurally and functionally different ligands,
including extracellular matrix (ECM)-associated ligands that are
released from damaged cells during inflammatory responses, such
as intercellular adhesion molecule 1 (ICAM-1), glycoprotein Ib-IX,
and junctional adhesion molecule 3 (JAM-3) (41–45). Both aMb2
and aXb2 can bind to complement component iC3b and are
crucial for RhoA-dependent phagocytosis in phagocytes (46–48).
The differences between these two integrins have been studied in
aM and aX knockout mice (Table 1). aMb2 plays a major role in
recruitment of polymorphonuclear neutrophil (PMN) to bacterial
and fungal pathogens. aXb2 plays a central role in monocyte- and
macrophage-mediated inflammatory functions, as shown by aXb2
deficiency that abrogated the recruitment of monocytes and
macrophages to sites of inflammation or infection and reduced
the ability of these cells to kill/phagocytose pathogens (17). Integrin
aDb2 is rarely expressed on peripheral blood phagocytes but is
significantly up-regulated on macrophages during inflammation
(e.g., atherosclerosis) (19). Integrin aDb2 and aMb2 show some
similarities in many functions and share some ligands, such as
ICAM-1, ICAM-2, ICAM-4, fibrinogen, collagen, iC3b, heparin,
GPIba, Thy-1, and plasminogen (49, 50). Recently, it was shown
that b2 integrins are required for both monocyte and
hematopoietic functions, and lower b2 integrin expression is
associated with more severe schistosomiasis in mice (51).

b2 integrins are important for the fusion of human (52) but
not mouse (53) macrophages; Macrophage fusion happens
during chronic infection of persistent pathogens or encounters
with nondegradable foreign objects, and results in the formation
of multinucleated giant cells. Human monocyte-derived
TABLE 1 | Distribution of b2 integrins and phenotypes of engineered gene knockout mice.

Distribution Phenotypes of knockout mice

aLb2 All leukocytes but predominates on
lymphocytes

Defective adhesion and migration of neutrophils, monocytes, and macrophages; impaired neutrophil
chemotaxis; a defect in TNF-a-induced neutrophil and monocyte extravasation from blood vessels; a
defect in the induction of peripheral immune responses; reduced NK cytotoxicity.

(14–16)

aMb2 Abundant on myeloid cells, monocytes/
macrophages, neutrophils, NK cells,
fibrocytes, mast cells, B cells, CD8+ T
cells, and CD4+ gd T cells

Defective recruitment of neutrophils and mast cells to bacterial and fungal pathogens; a defect in
neutrophil binding to fibrinogen and degranulation; impaired mast cell development and innate immunity;
a defect in macrophage egression from the peritoneal cavity.

(14, 15)

aXb2 Abundant on myeloid dendritic cells,
monocytes/macrophages; expressed on
human NK cells and lymphocyte
subpopulations

Defect in intraperitoneal recruitment and adhesive functions of monocytes and macrophages and their
ability to kill/phagocytose pathogens.

(17, 18)

aDb2 Abundant on myeloid cells,
macrophages, neutrophils, and
monocytes; highly expressed on human
NK cells, B cells, and gdT cells

Defective macrophage retention and reduced neutrophil accumulation in the atherosclerotic lesions;
defective accumulation of mononuclear cells and neutrophils in the peritoneal cavities of mice infected by
S. typhimurium; reduced lung macrophages and increased blood neutrophils in mice with cecal ligation
and puncture sepsis or LPS-induced endotoxemia.

(19–22)
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macrophage fusion was decreased ~66% upon treatment with b2
integrin-blocking antibody (52). In mouse studies, thioglycollate-
elicited peritoneal macrophages from Mac-1 knockout mice
showed a significant ~50% decrease in fusion compared to
those from wild-type controls (53). However, thioglycollate-
elicited peritoneal macrophages from wild-type mice treated
with b2 integrin-blocking antibody showed a slight (~35%) but
non-significant decrease of fusion compared to those without
antibody treatment (53).
INTEGRIN ACTIVATION BY
INSIDE-OUT SIGNALING

Both integrin a and b subunits have long ectodomains with a
headpiece and tailpiece, a transmembrane domain (TMD), and a
flexible cytoplasmic tail (54–59) (Figure 1A). b2 integrins form
at least three conformational states (58, 61–66): inactive (bent
ectodomain with closed headpiece, bent-closed), intermediate
Frontiers in Immunology | www.frontiersin.org 3
(extended ectodomain with closed headpiece, extended-closed),
and active state (extended ectodomain with open headpiece,
extended-closed extended-open). The conformational change in
the extracellular domains enables rapid modulation of cell
adhesion and migration (58, 67, 68). The extended-open
conformation in a5b1 exhibits a 4,000 to 6,000‐fold increase in
ligand-binding affinity over the bent-closed and extended-closed
conformations (69). On human peripheral T lymphocytes or
K562 cells, most of the integrin aLb2 are inactive. After
stimulation, aLb2 integrins on T lymphocytes are activated
and show an ICAM-1 binding KD of ~26 µM (~1.5-3-fold
affinity increase, phorbol 12-myristate 13-acetate or stromal
cell-derived factor 1 stimulation) or ~460 nM (~87-174-fold
affinity increase, manganese stimulation) (65). These results
indicated that only a small amount of aLb2 integrins were
activated upon leukocyte activation.

Recently, a bent-open (bent ectodomain with open
headpiece) conformation was described for b2 integrins
(70, 71). By introducing aX N920C and b2 V674C mutations
A B

C

FIGURE 1 | Inside-out pathway of integrin b2 activation. (A) Structure model of integrin b2. Subdomains and headpiece/tailpiece portions labeled. (B) In resting b2
integrin (middle), the beta subunit (blue) crosses the membrane at a 25° angle, whereas the a subunit (pink) crosses vertically (0 degrees). Upon exposure to IL-8
(left), talin-1 binds to the beta subunit and forces the transmembrane angle to be >25°. This change is transmitted to the extracellular domain through the stiff
transmembrane domain (TMD), resulting in extended b2 integrin with an open headpiece. If the b2 TMD is mutated (b2 L697P, right), talin-1 will still bind the
intracellular domain and align the beginning of the TMD to an angle >25°, but the kink prevents this from being transmitted to the extracellular domain. The integrin
stays bent, but the headpiece opens (60). Talin head domain (THD). (C) Key signaling events that occur downstream of chemokine and lead to integrin activation.
Inactive integrins exist in a bent conformation, and the a and b cytoplasmic tails are held in close proximity by a salt bridge between residues found in the
membrane-proximal region of the tail. Activation of a variety of signaling pathways results in the recruitment of GTP-bound Rap1 and activated talin to the integrin,
leading to tail separation. The conformational change in the cytoplasmic region is transmitted through the integrin transmembrane domains that result in structural
changes in the extracellular region, leading to an open conformation that can bind ligand with high affinity. Part of this signaling pathway is shown here. a) The Rap1/
RIAM/talin-1 axis. Rap1-GTP binds to RIAM, which leads to RIAM binding to talin-1 and recruiting of talin-1 to integrin b tails, consequently activating the integrin.
b) The direct association of Rap1 and talin-1. Rap1-GTP binds to talin-1 through talin-F0 and F1 domains, recruiting talin-1 to interact with integrin b tails and
activation of integrin.
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to form a disulfide, a structure of the bent aXb2 with an internal
ligand-bound headpiece has been shown (72). The internal
ligand has residues on the aI domain that can bind to the bI-
like domain during activation. The binding of internal ligands is
correlated to the headpiece opening in the transition from
extended-closed to extended-open structure (73). The bent
internal ligand-bound structure was considered a bent-open
conformation of aXb2 in this study by reviewing the structure
detail of aI metal-ion-dependent adhesion site (72). There is no
direct ligand-binding result of this bent internal ligand-bound
integrin aXb2. However, other mutations were introduced that
are functionally relevant to the internal ligand. After Mn2+

treatment, the aX K313I, F315E, and I317H mutations exhibited
increased monoclonal antibody 24 (mAb24) binding, which
indicates headpiece opening, but unchanged KIM127 antibody
binding, which indicates extension. A previous electron
microscopy study showed that mAb24 exclusively binds to
extended but not bent aXb2 integrins (61). This can be
explained by the different methods of expressing aXb2 integrin
protein in these two studies: Chen et al. fused aX (1-1084) and b2
(1-677) ectodomains, respectively, to a C-terminal 54-residue
pepetide, which contains an acidic coiled-coil region and a
cysteine for disulfide bond formation; Sen et al. introduced a
disulfide bond by aX N920C and b2 V674C mutations. The
difference in disulfide bond position might result in these different
conformations. Thus, knowing whether bent-open b2 integrins
exist on physiologically relevant cells is important.

The mAb24 and KIM127 antibodies combined with total
internal reflection fluorescence microscopy or super-resolution
stochastic optical reconstruction microscopy indicates the
existence of the bent-open b2 integrins on primary human
neutrophils (70, 71). It has been shown that b2 integrins with
this conformation can bind ligands (ICAM-1, ICAM-2, ICAM-3,
or Fcg receptor IIA) expressed on the same neutrophils in cis and
auto-inhibit neutrophil adhesion and aggregation (70, 71, 74).
The cis interaction between FcgRIIA and the aI domain of bent
aMb2 (74) reduces the binding of FcgRIIA to IgG and inhibits
FcgRIIA-mediated neutrophil recruitment under flow, which
indicates a new anti-inflammatory function for sialylation in
immune responses and benefits for auto-immune disease. Thus,
cis interactions may more broadly serve as an important
regulatory mechanism for calibrating both the activity of the
integrin and, in turn, the heterologous receptor(s) with which it
interacts. However, details of this activation mechanism need
further investigation.

Intracellular proteins bind to integrin a or b subunits, lead to
the separation of integrin cytoplasmic tails, and stabilize the
extended-open conformation (50, 75). This can be initiated by
signaling from other receptors (inside-out signaling) or ligand-
binding of integrins themselves (outside-in signaling) (76). One
model of integrin inside-out signaling suggests that talin (a major
cytoskeletal protein; see below) binds to the b subunit
cytoplasmic tail and disrupts the stabilization of the inner
membrane association of a and b TMDs. This alters the
membrane-crossing angle of b TMD, thereby disrupting the
outer membrane association of a and b TMDs, which is
Frontiers in Immunology | www.frontiersin.org 4
important for aIIbb3 integrin activation (77). Studies showed
that these transmitting conformation changes across the cell
membrane are also important for both b7 (78) and b2 integrins
(60). Blocking TMD topology transmission by introducing a
TMD kink (L697P mutation) impairs chemokine-induced cell
adhesion and b2 integrin extension, but not chemokine-induced
b2 integrin high‐affinity confirmation and manganese-induced
cell spreading (60). As expected, talin-1 knockout cells showed a
dramatic defect in chemokine-induced b2 integrin extension and
high‐affinity confirmation as well as manganese-induced cell
spreading (Figure 1B). These results indicate that talin-1
interaction with the cytoplasmic tail of b2 subunits may be
involved in two signaling pathways: one includes the TMD
topology transmission and b2 integrin extension, the other is
irrelevant to the TMD topology transmission and regulates b2
integrin high‐affinity confirmation.
ADAPTOR PROTEINS/REGULATORS
OF INTEGRIN ACTIVATION

Integrin inside-out signaling is regulated by intracellular signaling
cascades initiated from several receptors (79). In phagocytes, these
receptors are mostly G-protein-coupled receptors (GPCRs) for
chemokines (such as interleukin 8, monocyte chemoattractant
protein-1, stromal cell-derived factor 1), cytokines (such as tumor
necrosis factor a), and inflammatory factors (such as N-
formylmethionyl-leucyl-phenylalanine and leukotriene B4). The
canonical inside-out signaling pathway of integrin activation (50)
involves the dissociation of guanine nucleotide-binding protein, the
activation of Rho GTPases and phospholipases, the elevation of
intracellular calcium and diacylglycerol, the activation of Ras-related
protein 1 guanine nucleotide exchange factors (Rap1-GEFs) or
protein kinase C, and the activation of Ras-related protein 1
(Rap-1, from GDP-bound form to GTP-bound form). Rap1-GTP
can bind with Rap1-GTP-interacting-adaptor molecule (RIAM, also
known as Amyloid Beta Precursor Protein Binding Family B
Member 1 Interacting Protein, APBB1IP) and recruit talin-1 to
the plasma membrane to interact with the b2 cytoplasmic tail
(Figure 1C). Kindlin-3 is also involved in this process (80).

Rap1 is a small GTPase that functions as the hub in integrin
inside-out signaling (81, 82). Rap1-dependent aMb2 activation
is critical for complement-mediated phagocytosis of red blood
cells (83). Rap1 continuously circulates between inactivated
(GDP-bound) and activated (GTP-bound) forms. It is activated
by Rap1-GEFs from the GDP-bound form to the GTP-bound
form downstream of GPCR signaling, resulting in b2 integrin
activation (81, 82). Calcium and diacylglycerol regulated guanine
nucleotide exchange factor I (CalDAG−GEFI) (84, 85),
RapGEF1, RapGEF3, and RapGEF6 (79) have been identified
as Rap1-GEFs that can activate Rap-1 and integrins. Activated
Rap-1 then goes through a conformational change, allowing both
recruitment and binding to its effectors.

Talin-1 is an adaptor protein linking b2 integrins to the
cytoskeleton. Talin-1 has a head domain and a rod domain. The
talin-1 head domain (THD) is a FERM (band 4.1, ezrin, radixin,
March 2021 | Volume 12 | Article 633639
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and moesin) domain with four subdomains: F0, F1, F2, and F3.
Structural studies revealed that the F3 subdomain binds to the
cytoplasmic tail of b2 integrins, leading to integrin conformational
change, the critical final step of integrin activation (86–90). There
are two F3 subdomain binding sites in the cytoplasmic tail of b2
integrins (88): the membrane-distal binding site is the membrane-
proximal NPXY motif of the b2 tail, which contains two NPXY
motifs; The membrane-proximal binding site might be Y713 and
F716 in b2 (corresponding to F727 and F730 in b3). Talin-1
W359A and L325R mutations cause a deficiency in binding to
these two sites, respectively, and affect b2 integrin activation and
neutrophil adhesion (91). The rod domain has 13 subdomains
(R1-R13), including a dimerization domain and binding sites for
integrin, F-actin, vinculin, and RIAM (87, 92).

In the phagocytosis of red blood cells by macrophages, talin-1 is
recruited to the phagocytic cups and is essential for red blood cell
capturing and phagocytosis during aMb2-dependent uptake.
Mutation of the membrane-proximal NPXY motif of the b2 tail
prevents the recruitment of talin-1 to phagocytic cups as well as red
blood cell phagocytosis (93). The mechanism of talin-1 activation
remains unclear. A study showed that phosphatidylinositol-4-
phosphate 5-kinase type 1 g (PIP5K1g) interacts with THD via a
short amino acid sequence present in its 28 amino acid tail (94, 95).
This interaction increases the activity of PIP5K1g (95).
Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) is the product
of PIP5K1g and strengthens the binding of talin-1 to integrins
(96). Additionally, the RIAM-talin-1 interaction is considered
important for the activation and integrin tail recruitment of talin-
1 (97) (Figure 1C). In a study using the fibroblast-like COS-7 cell
line, Rap1 was found co-immunoprecipitated with talin-1 and
regulated the recruitment of talin-1 to phagocytic cups.
Disrupting the interaction between talin-1 and the b2 tail also
inhibits the recruitment of Rap1 to phagocytic cups. Thus, Rap1 and
talin-1 influence each other’s recruitment to phagocytic cups (98).
Recently, a direct interaction binding site of Rap1 was found in F0
and F1 subdomains of THD (99). Synergistic interaction between
these two domains and an F1 lipid-interacting helix facilitates talin-
1 recognition and activation of integrins (100). This pathway could
be relevant to rapid immune cell responses. Blocking direct binding
between Rap1 and talin-1 inhibits neutrophil adhesion and
phagocytosis but not macrophage adhesion and spreading
(101, 102).

The connection between the Rap proteins and talin-1 is not
fully investigated. One model suggests that activated Rap1 can
recruit RIAM, which relays Rap1 signaling to talin-1 and targets
talin-1 to the integrin (80); RIAM is another critical intracellular
protein for integrin activation. RIAM recruits talin-1 to the
cytoplasmic membrane and facilitates the binding of talin-1
and the integrin b chain (80). Deletion of RIAM results in b2
integrin inactivation, which disables b2-mediated cell migration
and adhesion (103). Loss of RIAM in leukocytes prevents
antigen-dependent autoimmunity by disrupting cell-cell
conjugation between effector T-cells and dendritic cells (104).
Recent work shows that RIAM is necessary for leukocyte integrin
activation in conventional T cells. Surprisingly, it is dispensable
for integrin activation in regulatory T cells, which is because
Frontiers in Immunology | www.frontiersin.org 5
lamellipodin (Lpd), a RIAM paralogue (105), compensates for
RIAM deficiency (106). Lpd also contains talin binding sites and
can drive integrin activation in a Rap1- and talin-dependent
manner (97, 107). Interestingly, RIAM was also shown to
associate with kindlin-3, even before it bound to talin-1 (108).
However, whether RIAM directly interacts with kindlin-3
is unknown.

The cytoplasmic tail of b2 integrins interacts with both talin-1
and kindlin-3 (109), both important for phagocyte function. As
mentioned above, talin-1 is critical for b2 integrin activation,
thus essential for phagocyte adhesion and trafficking (91, 110,
111). Kindlin-3 binds to the membrane-distal NPXY motif of the
b2 tail and is also vital for b2 integrin activation (112), especially
the headpiece-open conformation and phagocyte adhesion (111,
113, 114). The migration and phagocytosis of macrophages are
regulated by the kindlin-3 association with the cytoskeleton
(115). In contrast to other known kindlin binding partners,
interactions between kindlin-3 and paxillin negatively regulate
integrin-dependent functions of myeloid cells and limit myeloid
cell motility and phagocytosis (115). However, talin-1 and
kindlin-3 play distinct roles. Talin-1 is essential for both
integrin extension and headpiece-open conformation, which
mediates cell slow-rolling and firm adhesion. In contrast,
kindlin-3 is necessary for headpiece-open activation, which
mediates firm cell adhesion (90, 111, 116). However, although
both talin-1 and kindlin-3 are essential for integrin inside-out
signaling, it is unclear whether they bind sequentially or
simultaneously. The signaling pathway guiding kindlin-3 to
integrins requires further investigation.

Additionally, many other direct or indirect integrin-tail-
binding proteins, such as vinculin, filamin A, paxillin, coronin
1A, or Dok1 might be important for integrin activation
regulation (76, 79, 106). Filamin A is a cytoskeletal protein
that occupies the same site as talin; therefore, it negatively
regulates integrin activation by blocking talin-1 binding to b
integrin tails (117–119). The kindlin binding protein, migfilin,
binds to filamin A. It is possible that kindlin-3 binding to migfilin
releases filamin A from this binding site, leaving it free for talin
(119). Thus, the shuttling on and off of filamin A from integrins
may have the ability of kindlins to coactivate integrins. Several
other FERM domain-containing proteins block integrin
activation, such as docking protein 1 (Dok1) (120) and
integrin cytoplasmic domain associated protein 1 (ICAP1),
which compete for talin binding, thus blocking integrin
activation (121). The talin rod domain includes actin and
vinculin binding sites. It binds to the actin cytoskeleton both
directly and indirectly through vinculin (122). An alternative
mechanism of the Rap1/RIAM/talin1 axis was reported in
lymphocytes, in which WASP family verprolin homologous 2
(WAVE2) recruited vinculin to the immunological synapse,
thereby recruiting talin-1 (123). Paxillin binding to the a4
cytoplasmic tail benefits cell migration but reduces cell
spreading. Phosphorylation of the integrin a4 subunit releases
paxillin and the GTPase ARF6 from the membrane, leading to
the accumulation of active Rac at the leading edge (124). It is
worth studying these integrin-binding proteins in phagocytes to
March 2021 | Volume 12 | Article 633639
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identify their roles in integrin activation and particle engulfment
during phagocytosis.
INTEGRIN MODULATION DURING
PHAGOCYTOSIS

Phagocytosis is a multi-step process. Firstly, particles are
recognized and adhered to the surface of phagocytes, followed
by the formation of a phagocytic cup (125), internalization, and
formation of an intracellular-membrane-enclosed organelle – a
phagosome (126, 127). The phagocytic cup and particle
internalization is dependent on the dynamic rearrangement of
F-actin, which is controlled by the Rho GTPase family (46, 128),
in all forms of phagocytosis (125–127). Distinct Rho GTPases
regulate several types of phagocytosis. In FcgR-dependent
phagocytosis, activation of Rac1, Rac2, Cdc42, and RhoG is
thought to play important roles in forming local pseudopods
and membrane ruffles during particle engulfment (129, 130).
Dectin-1-dependent phagocytosis involves activation of Rac1
and Cdc42, but not RhoA (131). In the FcgR and dectin-1
mediated “zipper model” mechanism of internalization, the F-
actin first forms a bona fide phagocytic cup, then matures to first
completely surround the bound particles and eventually fuse to
complete phagocytosis (132).

aMb2 integrin (CR3)-dependent phagocytosis exhibit distinct
characteristic. The activation of aMb2 prior to challenge with
particles is required for aMb2-mediated phagocytosis. The
engulfment process in aMb2-dependent phagocytosis is initiated
by surface-tethering of particles, that then induces an invagination
in the phagocyte plasma membrane into which the particle sinks,
drawn by F-actin cytoskeletal forces (133). Obvious membrane
ruffles were shown during aMb2-mediated phagocytosis after
integrin activation (134). These membrane ruffles differ from the
membrane extensions of the zipper mechanism: They extend only
from one side across the bound phagocytic particle, whereas the
membrane tightly surrounds the entire surface of the particle in
FcR-dependent zipper phagocytosis. Different from FcR-
dependent phagocytosis, aMb2-dependent phagocytosis requires
activation of RhoA, Vav, and RhoG, but not Rac1 or Cdc42 (135,
136). However, this opinion is still controversial. Recent studies
have shown that the formation of protrusions during particle
engulfment is triggered by aMb2-dependent phagocytosis (134,
137). A genetic ablation study demonstrated that Rac1 and Rac2
double-knockout macrophages are defective in both FcgR and
aMb2-mediated phagocytosis (138). This suggests that these two
types of phagocytosis share common elements. Moreover, small
GTPase Rap1 activation, mediated by a variety of growth factor
receptors or other factors, plays an important role in aMb2
activation and phagocytic uptake (83).

As mentioned above, talin-1 and kindlin-3 bind to the
integrin b cytoplasmic tail, which activates integrins (139).
Talin-1 bridges integrin with the actin cytoskeleton, stabilizes
integrin activation, and transmits forces (140, 141). In the
phagocytosis of red blood cells by macrophages, talin-1 is
recruited to the phagocytic cups by a talin-based “molecular
Frontiers in Immunology | www.frontiersin.org 6
clutch” (142) and is essential for red blood cell capturing and
phagocytosis during aMb2-dependent uptake. Mutation of the
membrane-proximal NPXY motif of the b2 tail prevents the
recruitment of talin-1 to phagocytic cups as well as red blood cell
phagocytosis (93). A recent study reported that b2 integrins
could be coupled to actin and drive phagocytosis by a
mechanosensitive molecular clutch that is mediated by talin,
vinculin, and Arp2/3 (143). Thus, talin and vinculin promote
phagosome formation by coupling actin to aMb2 to drive
phagocytosis. Previous studies have shown talin is transiently
recruited to different types of particles during phagocytosis;
however, talin is essential for aMb2-mediated but not FcgR-
mediated phagocytosis (93, 98). Kindlins are another family of
integrin intracellular binding proteins that mediate integrin
activation by inside-out signaling. A recent study found that
kindlin-3 directly interacts with paxillin and leupaxin through its
F0 domain in the macrophage-like RAW 264.7 cell line;
inhibition of kindlin-3 and paxillin/leupaxin interactions
promoted cell motility and augmented phagocytosis (115).
Another recent work reported that kindlin-3 was essential for
patrolling function and cancer particle uptake of nonclassical
monocytes during tumor metastasis to the lung (144).

RIAM has been shown to play an important role in
complement-dependent phagocytosis (145). Suppressing RIAM
expression in neutrophil-like HL-60 cells, monocyte-like THP-1
cells, or human monocyte-derived macrophages inhibits the
recruitment of talin-1 to phagocytic cups, the activation of
integrin aMb2, and complement-dependent phagocytosis
(145). In RIAM knockout mice, macrophages and neutrophils
show deficiencies in cell adhesion, aMb2-mediated
phagocytosis, and reactive oxygen species production (103).
Recently, VASP was reported to work together with RIAM as a
module regulating b2 integrin-dependent phagocytosis (146).
VASP (vasodilator-stimulated phosphoprotein) is the binding
partner of RIAM. This study showed that RIAM-deficient HL-60
cells presented impaired particle internalization and altered
integrin downstream signaling during complement-dependent
phagocytosis. Similarly, VASP deficiency completely blocked
phagocytosis, while VASP overexpression increased the
random movement of phagocytic particles at the cell surface,
with reduced internalization. These results suggest that RIAM
regulates aMb2 activation and the cytoskeleton via its
interaction with VASP.
DISCUSSION

Integrins are well-established mediators of cell adhesion and
migration, yet underlying mechanisms and signaling pathways
continue to be revealed (147). Further investigation is required
into the role of integrins in mediating multiple phagocytic process
in physiological and pathological conditions and whether integrin
activation signaling pathways during cell movement and
trafficking are also involved in particle engulfment.

Critical gaps remain in our knowledge of phagocytic integrin
signaling. Several alternative mechanisms regulate talin-1
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recruitment, but their contributions and significance are obscure.
The Rap1-talin-1 interaction is evolutionarily conserved and may
contribute to short-term adhesions (148), whereas the Rap1-RIAM-
talin-1 axis may have longer and faster recruitment of effector
proteins. Phagocytosis occurs in various cell types and is mediated
by many integrin types. Several phagocytosis studies have shown
that integrins need adaptor proteins or co-receptors to exert full
functionality. All integrins have a common characteristic of
signaling via Rho GTPases to modulate actin cytoskeleton
dynamics. During integrin-dependent uptake, signaling involves
either RhoA (for aMb2-mediated phagocytosis) or Rac1/Cdc42
activity. This suggests that the particle engulfment in integrin-
dependent phagocytosis may share similar actin-regulating
pathways with general Fc-receptor-dependent phagocytosis modes.

Studies on b2 integrins indicate that integrin-mediated
phagocytosis is an extension capacity of integrin-mediated cell
adhesion. Besides b2 integrins, other integrins may also be
involved in phagocytosis, including those in non-leukocytes.
Integrins bind to ECM components, such as fibrinogen (ligand
of integrinaIIbb3,aVb3, and others), fibronectin (ligand ofa5b1,
a8b1, aVb1, aVb3, aIIbb3, and others), vitronectin (ligand of
avb1, avb3, avb5, avb6, avb8, and others), or collagen (ligand of
integrin a1b1, a2b1, a10b1, and a11b1). However, it is not clear
which integrins are involved in phagocytosis. Those integrins
known to induce actin remodeling might support particle
uptake but need to be further evaluated. As far as we know,
integrins aVb3 and aVb5 are involved in apoptotic-cell (AC)
uptake (149). RGD (arginine-glycine-aspartate) peptides severely
inhibit AC uptake of human macrophages (150). The remodeling
of collagen is essential to the progression of a number of diseases
and depends on the degradation and phagocytosis process, in
which the uptake of collagen fibrils is mediated by a2b1
integrin (151).

An improved understanding of phagocytosis is important since it
is involved in bacterial clearance, antigen presentation, inflammation
resolution, and progression of chronic inflammatory or auto-
immune diseases. b2 integrins are clearly important in
phagocytosis, although their general role is just emerging.
Investigating the detailed molecular mechanism of integrin
functions in the complex phagocytotic process is a fascinating
challenge. b2 integrins are a valuable clinical target (152). However,
side effects of b2 integrin-targeting drugs include immune deficiency
Frontiers in Immunology | www.frontiersin.org 7
and infections. This may be due to the important roles that b2
integrins play in regulating the function of all kinds of immune cells,
and theymay exert contrary functions in a cell type-specificmanner.
For example,b2 integrins could limitTcell activationwhenexpressed
on antigen-presenting cells (153), but be necessary for T cell
activation when expressed on T cells (154); infiltration of b2 T cells
prevents tumor progression in early tumor development (155), but
b2 integrins increase tumormigration and angiogenesis (156). Thus,
insight into how the function of b2 integrins can be inhibited in a cell
type-specific manner can avoid potential mechanism-based
toxicities. This might be achieved by targeting specific integrin
conformations or signaling pathways, such as if only the Rap1/
talin-1 interaction pathway regulates integrin activation in platelets,
the Rap1/RIAM/talin-1 axismight be dominant in lymphocytes. It is
worth understanding the regulatory mechanism of b2 integrin
activation in phagocytes and other cell types, since this difference
canbe therapeutically exploited in auto-immunediseases and cancer.
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