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Abstract: Community detection has been extensively studied in the past decades largely because of the fact that community exists in
various networks such as technological, social and biological networks. Most of the available algorithms, however, only focus on the
properties of the vertices, ignoring the roles of the edges. To explore the roles of the edges in the networks for community discovery,
the authors introduce the novel edge centrality based on its antitriangle property. To investigate how the edge centrality characterises
the community structure, they develop an approach based on the edge antitriangle centrality with the isolated vertex handling strategy
(EACH) for community detection. EACH first calculates the edge antitriangle centrality scores for all the edges of a given network and
removes the edge with the highest score per iteration until the scores of the remaining edges are all zero. Furthermore, EACH is
characterised by being free of the parameters and independent of any additional measures to determine the community structure.
To demonstrate the effectiveness of EACH, they compare it with the state-of-the art algorithms on both the synthetic networks
and the real world networks. The experimental results show that EACH is more accurate and has lower complexity in terms of
community discovery and especially it can gain quite inherent and consistent communities with a maximal diameter of four jumps.
1 Introduction

The graph or the network is a powerful tool to characterise the
complex relations between a set of instances by taking each
instance as a vertex and the interaction between a pair of
vertices as an edge. Many complex systems can be
modelled and analysed as complex networks such as
technological networks [1], social networks [2, 3] and
biological networks [4, 5] and so on. It has been proved
that many real world networks reveal the structures of the
modules or the communities that are subgraphs with more
edges connecting the vertices of the same group and
comparatively fewer links joining the outside vertices. The
Modules or the communities reflect the topological relations
between the elements of the underlying system and the
functional entities. For example, the genes belonging to the
same group are prone to reveal a homogeneous biological
function; the people in the same social group have the same
or similar background or hobbies. Thus, accurately
extracting communities has considerable merits in practice
because it allows us to infer the special and the hidden
relations among the vertices.
However, designing an efficient algorithm for identifying

the communities in complex networks is still highly
non-trivial for many reasons. Even though it is non-trivial,
there are several algorithms available. The most popular
algorithms maximising the modularity function [6, 7] are
criticised for the serious resolution limit problem [8]. The
proposed modularity density function solves the resolution
limit problem very well [9], however it still is an additional
measure to determine the community structure. The methods
based on non-negative matrix factorisation (NMF) [10, 11]
and spectral clustering (SC) [12, 13] possess matrix theory
supports, but they both depend on a set of parameters.
Among these parameters, the number of the expected
communities is most important since its determination has
direct effectiveness on the results for the real world networks.
For more other algorithms for community detection the
reader can refer to the literature [14]. Among the algorithms,
the centrality algorithms can make use of both the vertex and
the edge information. Centrality can be thought of as an
important measure to weigh the vertices or the edges in the
complex networks. The more important a vertex or an edge
is, the larger the centrality is. The essence of these
approaches is to discriminate the different roles of the
vertices or the edges. For the sake of convenience, the edges
connecting various communities are outer links and the inner
links are for the same community.
As one of the most famous centralities, edge betweenness

[5, 15] is meant to compute the shortest paths between all
the pairs of the vertices in a network, and defined as the
number of the shortest paths between all the pairs of the
vertices through the given edge. However, the GN [5, 15]
algorithm based on the edge betweenness is criticised for
two reasons: (i) computing the shortest paths between a pair
of vertices is expensive; and (ii) the edge betweenness is
sensitive to the perturbation of the networks. Furthermore,
an edge clustering coefficient [16] is proposed, which is
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defined as the ratio of the number of the triangles to which a
given edge belongs divided by the number of the triangles
that might potentially include it. The edge clustering
coefficient can decrease the complexity dramatically by
sacrificing the accuracy. There are also several other
centralities, including information centrality [17], closeness
centrality [18], k-path centrality [19] and so on.
However, none of them canmake a good balance between the

complexity and the accuracy. This is the major motivation of
this paper. We introduce a novel local edge centrality called
edge antitriangle centrality for community detection. EACH
can be used for large networks since it is just based on the
local edge antitriangle centrality. It is characterised by being
free of the parameters and independent of any prior measures
to determine the community structure. To completely
investigate the performance of the proposed centrality, we
execute it in comparisons from different aspects: (i) we show
the correlation between the edge antitriangle centrality and the
edge betweenness, and the anticorrelation between the edge
antitriangle centrality and the edge clustering coefficient; (ii)
we compare the edge betweenness, the edge clustering
coefficient as well as the proposed centrality on the accuracy
of characterising the roles of the edges; and (3) we compare
the edge antitriangle centrality with the isolated vertex
handling strategy (EACH) with the algorithm Girvan and
Newman proposed (GN), the algorithm based on the edge
clustering coefficient (ECCA) [16], NMF, SC, the algorithm
Clauset, Newman and Moore proposed (CNM) [6] and the
alogorithm based on spectral maximising modularity density
SpeMD [20] on both the synthetic and the real world networks.
The paper is organised as follows: Section 2 introduces the

edge antitriangle centrality, Section 3 presents the details of
the EACH algorithm, Section 4 shows the experimental results
and the conclusions and discussions are proposed in Section 5.

2 Edge antitriangle centrality

Prior to defining the edge antitriangle centrality, we introduce
some terminologies that are used in the forthcoming sections.
Fig. 1 Examples of P4, the potential P4, the triangle and the antitriang

a P4 a−b−c−d
b Potential P4 a−b−c−d
c Triangle Δabc
d Antitriangle property of P4
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The first is P4 [21], the second the potential P4 and the third
the triangle. A simple path consisting of four vertices and
three consecutive edges is defined as P4 shown in Fig. 1a
and most importantly there is no circle among the four
vertices, whereas as shown in Fig. 1b the potential P4 is not
necessarily simple, in other words, the potential P4 also
consists of four vertices and three consecutive edges but
there may be circles among the four vertices. What we need
to emphasise finally is that the potential P4 shown in
Fig. 1b is not unique and it is just an example of the
potential P4. According to their definitions, P4 must be the
potential P4, not vice-versa. A triangle as shown in Fig. 1c
consists of three vertices and three consecutive edges,
therefore it is the simplest and most basic circle in the
complex networks.
The edge antitriangle centrality is defined as the ratio of the

number of P4 to which a given edge belongs divided by the
number of the potential P4 that might include it. The
definition is proposed based on the fact that the inner links
belong to the more potential P4 but fewer P4, whereas the
outer links belong to the fewer potential P4 but more P4.
The denser the edges are, the more circles they belong to.
The Intracommunity edges are denser than the
intercommunity ones in the complex networks and then
there are more triangles including the inner links than the
outer links since the triangle is the simplest circle. An edge,
for example, eij, has more opportunities to be included by
the triangles which means it tends to be included by fewer
P4 under the certain degrees of its vertices i and j. Hence,
we can regard P4 with the property of the antitriangle as
shown in Fig. 1d. Thus, there are more P4 including the
outer links than the inner links. There are more potential P4

including the inner links than the outer links since a triangle
is a potential P4 according to their definitions. Intuitively,
we have the fact that the inner links belong to the more
potential P4 but fewer P4, whereas the outer links belong to
the fewer potential P4 but more P4.
The edge antitriangle centrality can be used for

discriminating the outer links from the inner links for
le property of P4
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Fig. 2 Typical example for computing �Cij
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community detection. According to the definition of the edge
antitriangle centrality, it can be used to measure the edges to
the extent that they can be the inner links and to the extent that
they can be the outer links since the larger score an edge has,
the more likely it is an outer link, and the lower score an edge
has, the more likely it is an inner link.
The antitriangle centrality contains two elements: the

number of P4 and the number of the potential P4. Given an
edge eij, the centrality is

Cij =
PNij

PPNij
(1)

where PNij is the number of P4 and PPNij is the number of the
potential P4. To get rid of the degeneracy, we slightly modify
the centrality as

�Cij =
PNij

PPNij + 1
(2)

To facilitate calculation, we denote the three consecutive
edges of the potential P4 as the left, the central and the
right edge, respectively. Correspondingly, we consider
the three cases within which a given edge occupies the left,
the central and the right position of the potential P4,
respectively, when we calculate PPNij and PNij.
Let us consider the left, the central and the right case

successively and let PPN l
ij, PPN

c
ij and PPN r

ij, respectively,
be the number of the potential P4 with eij as its left, central
and right edge in sequence. Similarly, the counterparts for
P4 are denoted by PN l

ij, PN
c
ij and PN r

ij, respectively. PPN
l
ij,

PPN c
ij and PPN r

ij can be defined, respectively, as

PPN l
ij =

∑
n=1,2,..., NS(j)| |.

kln − 1
( )

, ln [ NS(j) (3)

PPN c
ij = (ki − 1)× (kj − 1) (4)

PPN r
ij =

∑
n=1,2,..., NS(i)| |

kln − 1
( )

, ln [ NS(i) (5)

where NS( j) is the direct neighbourhood of j minus i, NS(i) is
the direct neighbourhood of i minus j, ln is an arbitrary vertex
of NS( j) or NS(i) and kln denotes the degree of ln. The essence
of the calculations of PN l

ij, PN
c
ij and PN r

ij is to distinguish P4

from the potential P4, respectively.
Intuitively, we have

PPNij = PPN l
ij + PPN c

ij + PPN r
ij (6)

PNij = PN l
ij + PN c

ij + PN r
ij (7)

Fig. 2 is a typical example for computing the centrality.
As shown in Fig. 2, we have PPNij = 24 according to (6),
PNij = 10 according to (7) and �Cij = 2/5 according to (2),
respectively.

3 EACH for community detection

3.1 EACH and complexity analysis

Without loss of generality, we only consider the connected,
the undirected and the unweighted networks, denoted by
118
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G = (V, E) where V is the set containing all the vertices of
the graph G and E is the set containing all the edges.
EACH keeps on removing the edge with the highest edge
antitriangle centrality score per iteration until the scores of
the remaining edges are all zero. The pseudocode of EACH
is described as follows:

Input: G = (V, E)
Output: the result communities
Calculate the antitriangle centrality score for each

available edge
While the highest score ≠ 0 do
Remove the edge with the highest score
Recalculate the scores of those edges affected by the

removal
End
Implement the isolated vertex handling strategy
Output the vertices inside the non-trivial components as

those of the result communities

Let us now analyse the complexity of EACH. First, we
focus on the space complexity. The network G = (V, E)
with the |V| =N vertices and the |E| =M edges can be stored
as an M × 2 matrix. The edge antitriangle centrality of the
M edges can be stored as an M × 1 matrix. Hence, the total
space complexity of EACH is O(M ).
Second, the time computational complexity of the edge

antitriangle centrality of eij, is

O kikj +
∑

n=1,2,..., NS(i)| |
kln +

∑
n=1,2,..., NS(j)| |

kln

⎛
⎝

⎞
⎠

then O(�k
2
) for simplicity, where �k is the average degree of the

network G. At the first step of EACH, we calculate the scores
of the M edges and hence the cost is O(�k

2
M ). Then, we

calculate the scores of those edges affected per iteration for
T times since T is the maximum number of the iterations
and hence the cost is O(�k

4
T ). Hence, the whole time

complexity of EACH is O(�k
2
M + �k

4
T ) the complexity of

the isolated vertex handling strategy can be neglected since
there are few isolated vertices in general. On the sparse
networks with a very low average degree, EACH is more
efficient than others. The space and the time complexities
of the other state-of-the art algorithms are listed in Table 1,
where K is the number of the communities and T1 is the
iteration number for searching the parameter for the
complexity of the SC, where d is the depth of the hierarchy.
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Table 1 Space and time complexities of the algorithms used
in the experiments

Algorithm Space complexity Time complexity

GN O(M ) O(M2N)
EACH O(M ) O(�k

2
M + �k

4
T )

ECCA O(M ) O(�k
3
M)

NMF O(N2) O(TKN2)
SC O(N2) O(MKT +NK2T +K3T +NK2K2T1)
CNM O(N2) O(MdlogN )
SpeMD O(N2) O(TN2)

Table 2 Details of the networks used in the experiments

Network Number of
the vertices

Number of
the edges

Real number of the
communities

SN 1000 7787 32
ZKCN 34 78 2
PBN 1490 16 715 2
GRN 1989 9175 —
BDN 62 159 2
FN 115 613 12

www.ietdl.org
3.2 Details of EACH

EACH keeps on removing until the edge antitriangle
centrality scores of the remaining edges are all zero and it
may lead to the isolated vertices. What we want to
emphasise is that EACH does not need to fix the prior
number of the expected communities just because it keeps
on removing until the edge antitriangle centrality scores of
the available edges are all zero. In fact, the edge antitriangle
centrality scores of the available edges are all zero is an
additional measure to decide the community structure. In
other words, the edge antitriangle centrality possesses the
decision role during the edge removing process. For this
reason, it does not need to fix the prior number of the
expected communities for EACH. To solve the isolated
vertices, we handle them by taking advantage of a very
simple isolated vertex handling strategy.
Let Nv be the direct neighbourhood of the arbitrary isolated

vertex v and VNC be the set containing all the vertices of the
non-trivial component NC. Then, we define the ratio (|Nv ∩
VNC|/|VNC|) as the measure to [22] quantify the closeness
between v and NC, where |Nv ∩ VNC| is the number of the
vertices in the NC connected with v and |VNC| is the
number of the vertices in the NC. If the closeness between
v and NC is larger than that between v and the other
non-trivial components, we select the NC as the candidate
component of v.
In addition, we solely recalculate the edge antitriangle

centrality scores of the few edges in each iteration. For
instance, after removing eij we just need to recalculate the
scores of the edges whose at least one endpoint is
belonging to the vertex set Ni ∪ Nj.
4 Experiments and analyses

We choose some widely used algorithms including GN,
ECCA, NMF, SC, CMN and SpeMD to make comparisons
with EACH. The reason why the GN and the ECCA are
selected is because they are edge centrality-based
algorithms. The NMF and the SC are based on the matrix
theory and the CNM and the SpeMD are based on
optimising the additional measures to obtain the expected
communities. To completely compare the proposed
centrality, we have three types of experiments: first we
investigate the relations among the edge betweenness, the
edge clustering coefficient and the proposed centrality; then,
we compare the three centralities on the accuracy of
characterising the roles of the edges; finally, the
comparisons are based on community discovery. For
convenience, we first list the details of the networks used in
the experiments in Table 2 such as the LFR synthetic
networks (SNs) [23], the Zachary karate club network
(ZKCN) [24], the political blog network (PBN) [25] and
IET Syst. Biol., 2014, Vol. 8, Iss. 3, pp. 116–125
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the gene regulatory network (GRN) [26], the bottlenose
dolphins network (BDN) [27] and the football network
(FN) [5, 28], respectively. The parameters of the LFR
synthetic network are: average degree �k = 15, mixing
parameter mu = 0.5, minimum for the community sizes
minc = 20 and the maximum for the community sizes
maxc = 50. Here, we set mu = 0.5 because its median is 0.5.
In fact, except mu, the other parameters are all the defaults
of an example inside the original code (http://www.santo.
fortunato.googlepages.com/inthe press2).
To quantify the accuracy of the algorithms on community

discovery, we adopt three widely used criteria: the
normalised mutual information denoted as NMI [29],
the modularity function denoted as Q value [15] and the
partition density denoted as the D value [30], respectively.
Given two partitions p1 and p2 of a network, let A be the

confusion matrix whose element Aij is the number of the
vertices inside the community i of the partition p1 that are
also inside the community j of the partition p2.The NMI
value I(p1, p2) is defined as

I (p1, p2) =
−2

∑np1
i=1

∑np2
j=1 Aij log (AijN/Ai·A·j)∑np1

i=1 Ai· log (Ai·/N )+∑np2
j=1 A·j log (A·j/N )

where np1
(np2

) is the number of the communities in the
partition p1(p2), Ai·(A·j) is the sum of the elements of A in
row i (column j), and N is the number of the vertices. A
larger value of NMI represents a greater similarity between
p1 and p2.
The modularity [15] is defined as

Q =
∑K
i=1

li
M

− di
M

( )2
( )

where K is the number of the communities, li is the total
number of the edges joining the vertices inside the
community i, M is the total number of the edges in the
network and di is the sum of the degrees of all the vertices
inside the community i.
A partition density is used to measure the community

structure from the point of view of the edge partitions and
does not reveal the resolution limit. For a network with M
edges, {p1, …, pK} is a partition of the edges into K
communities. Community pc has mc = |pc| edges and
nc = |<eij[pc

{i, j}| vertices. Then, we have

D = 2

M

∑
c

mc
mc − (nc − 1)

(nc − 2)(nc − 1)

Obviously, the higher D value a partition has, the stronger
community structure it possesses.
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Table 6 Results of the GN, the EAC, the EACH, the ECCA_Q,
the ECCA_D, the NMF, the SC, the CNM and the SpeMD on the
GRN

Algorithm D Q RR NOC

GN 0.0962 0.7604 100.00% 71
EAC 0.1868 0.5676 37.42% 714
EACH 0.1285 0.7024 37.42% 72
ECCA_Q 0.0854 0.5536 100.00% 68
ECCA_D 0.1197 0.4510 100.00% 232
NMF 0.0298 0.0667 — 71
SC — — — —
CNM 0.0616 0.7279 — 25
SpeMD 0.1629 0.7033 — 69

www.ietdl.org

Testing the networks for community detection consists of

ten LFR networks and four practical networks. Here, the
GN and the CNM are based on the tool NodeXL (http://
www.nodexl.codeplex.com/). The ECCA is implemented by
us, the NMF and the SC are based on the R packages
NMFN [31] and clusterSim [32], respectively. SpeMD is
based on the original code. For the sake of convenience,
ECCA_Q indicates the ECCA based on the Q value and
ECCA_D indicates the ECCA based on the D value as
additional measures, respectively. EAC indicates the same
algorithm as EACH but with no last step of EACH, that is,
within the EAC there is no isolated vertex handling
strategy. The parameters of the LFR networks are set the
same as the synthetic network listed in Table 2 except the
mixing parameter there and the mixing parameters here of
the ten networks from 0.1 to 1.0 with a step of 0.1. As
described in Tables 3–6, we list the D value, the Q value,
the NMI, the edge removal ratio (RR) and the number of
the obtained communities (NOC), where there is no NMI in
Table 6.
Table 3 Results of the GN, the EAC, the EACH, the ECCA_Q,
the ECCA_D, the NMF, the SC, the CNM and the SpeMD on the
ZKCN

Algorithm D Q I RR NOC

GN 0.1656 0.4013 0.5798 100.00% 5
EAC 0.1292 0.3311 0.8048 24.36% 5
EACH 0.1319 0.3715 1.0000 24.36% 2
ECCA_Q 0.1406 0.3245 0.6819 100.00% 5
ECCA_D 0.1435 0.3038 0.5846 100.00% 7
NMF 0.1319 0.3715 1.0000 — 2
SC 0.1319 0.3715 1.0000 — 2
CNM 0.1318 0.3807 0.6925 — 3
SpeMD 0.1319 0.3715 1.0000 — 2

Table 4 Results of the GN, the EAC, the EACH, the ECCA_Q,
the ECCA_D, the NMF, the SC, the CNM and the SpeMD on the
BDN

Algorithm D Q I RR NOC

GN 0.1465 0.5194 0.5542 100.00% 5
EAC 0.1945 0.3552 0.3423 54.09% 28
EACH 0.1113 0.4852 0.4434 54.09% 4
ECCA_Q 0.1109 0.3952 0.2354 100.00% 6
ECCA_D 0.1802 0.3694 0.3711 100.00% 14
NMF 0.0947 0.3848 0.8141 — 2
SC 0.0146 0 0.0015 — 2
CNM 0.1261 0.5146 0.5749 — 4
SpeMD 0.0947 0.3848 0.8141 — 2

Table 5 Results of the GN, the EAC, the EACH, the ECCA_Q,
the ECCA_D, the NMF, the SC, the CNM and the SpeMD on the
FN

Algorithm D Q I RR NOC

GN 0.3778 0.5950 0.8305 100.00% 8
EAC 0.4172 0.4551 0.8632 50.16% 30
EACH 0.4805 0.5908 0.9113 50.16% 11
ECCA_Q 0.5150 0.6010 0.9065 100.00% 11
ECCA_D 0.5466 0.5805 0.9111 100.00% 13
NMF 0.3940 0.5168 0.8674 — 12
SC 0.4281 0.5516 0.8703 — 12
CNM 0.2728 0.5577 0.7696 — 6
SpeMD 0.5361 0.5959 0.9832 — 12
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4.1 Relations with the edge betweenness and the
edge clustering coefficient

To explore the relations between the edge antitriangle
centrality and the edge betweenness and the edge clustering
coefficient, we calculate the correlation coefficients and the
corresponding P-values on the synthetic and the real world
networks, respectively, as described in Table 7.
As shown in Fig. 3a, we plot the scatters of the edge

antitriangle centrality and the logarithm of the edge
betweenness on the SN, a typical artificial network. The two
centralities are positively correlated because the Pearson
correlation coefficient is 0.6795 and their two type
corresponding P-values are all zero. This means that the
edges with higher edge antitriangle centrality scores tend to
have higher edge betweenness. As shown in Fig. 4a, we plot
the scatters of the edge antitriangle centrality and the edge
clustering coefficient on the same network. Obviously, an
anticorrelation between these two centralities for the Pearson
correlation coefficient is −0.8794 and their two types
corresponding P-values are also zero. Then, the edges with
higher edge antitriangle centrality scores tend to have lower
edge clustering coefficient scores.
Following on, Figs. 3b and 4b show their relations on the

ZKCN, a typical small social network. Figs. 3c and 4c
show them on the PBN, a typical medium social network.
Figs. 3d and 4d show them on the GRN, a typical
biological network. In fact, Fig. 3 reveals the correlations
and Fig. 4 reveals the anticorrelation.
The correlation between the edge antitriangle centrality and

the edge betweenness, the anticorrelation between the edge
antitriangle centrality and the edge clustering coefficient are
inherent on various networks. Thus, the edge antitriangle
centrality can be possible for community detection such as
edge betweenness and edge clustering coefficient.

4.2 Accuracy on characterising the roles of the
edges

Here, in order to compare the three centralities on the
accuracy of characterising the roles of the edges, we use
two important quantities, respectively. The first one is the
fraction of the vertices contained in the giant component,
denoted by RGC [33]. A sudden decline of the RGC is
observed if the network disintegrates after the deletion of a
certain fraction of the edges. Another quantity is the so
called normalised susceptibility [33], defined as

S̃ =
∑

s,smax

nss
2

N
(8)
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Table 7 Pearson correlation coefficients and the corresponding P-values

Network PCCAB P-valueAB (one-tailed) P-valueAB (two-tailed) PCCAE P-valueAE (one-tailed) P-valueAE (two-tailed)

SN 0.6795 0 0 −0.8794 0 0
ZKCN 0.5245 4.100 × 10−7 8.300 × 10−7 −0.3777 3.2588 × 10−4 6.5176 × 10−4

PBN 0.3504 0 0 −0.4362 0 0
GRN 0.5536 0 0 −0.3473 0 0

Fig. 3 Scatters plots for the edge antitriangle centrality and the logarithm for the edge betweenness, where the red lines are their
corresponding curves to fit them

a On the SN
b On the ZKCN
c On the PBN
d On the GRN

www.ietdl.org
where ns is the number of the components with size s, N is the
size of the whole network and the sum runs over all the
components except the largest one. When S̃ is a function of
the fraction of the removed edges f, usually, an obvious
peak can be observed that corresponds to the precise point
at which the network disintegrates [33, 34]. We compare
the three centralities on those networks used in Section 4.1.
As shown in Fig. 5, we compare the three centralities from

the point of view of the RGC. As shown in Fig. 5, the edge
antitriangle centrality reveals the comparative accuracy
compared with the edge betweenness. However, as shown in
Fig. 5, the edge antitriangle centrality reveals more accuracy
than the edge clustering coefficient on the four typical
networks. As shown in Fig. 6, we compare them from the
point of view of the normalised susceptibility. The results also
demonstrate that the edge antitriangle centrality reveals the
comparative accuracy compared with the edge betweenness
which has more accuracy than the edge clustering coefficient.

4.3 Community detection results

For the length limit, the analyses of the synthetic
networks and the social networks are arranged in the
IET Syst. Biol., 2014, Vol. 8, Iss. 3, pp. 116–125
doi: 10.1049/iet-syb.2013.0039 This is an open access art
Supplementary Materials. Here, we show the main results
of the GRN.

4.3.1 Gene regulatory network: Through the GRN from
the literature [26], we get rid of the genes with no official
name and neglect all the directions. A vertex indicates a
gene and an edge indicates a regulatory relation between
the two genes. As described in Table 6, the D value and the
Q value of EACH are 0.1285 and 0.7024, respectively. The
D value of EACH is higher than that of the GN, the Q
value is close to that of the GN. The edge RR is just
37.42% much less than that of the GN. The isolated vertex
handing strategy improves the Q value from 0.5676 to
0.7024 and the number of the communities (the modules in
the biological networks) from 714 to 72 closest to the
number obtained by the GN. As shown in Fig. 7, the largest
module of the results obtained by EACH, GN, EAC and
SpeMD, respectively, is the same one including 353 genes.
We make an analysis of these 353 genes by the web tool
Gene Trail Express [35]. Fortunately, among these 353
genes there are 352 ones belonging to the subcategory
olfactory transduction and the corresponding P-value is
0. The 352 genes are green as shown in Fig. 7 and only the
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Fig. 4 Scatters plots for the edge antitriangle centrality and the edge clustering coefficient, with the same details as Fig. 3

a On the SN
b On the ZKCN
c On the PBN
d On the GRN

Fig. 5 Comparison from the point of view of the RGC, where the edge antitriangle centrality is denoted by EA, the edge clustering coefficient
is denoted by EC and the edge betweenness is denoted by EB

a On the SN
b On the ZKCN
c On the PBN
d On the GRN
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Fig. 6 Comparison from the point of view of S̃, with the same details as Fig. 5

a On the SN
b On the ZKCN
c On the PBN
d On the GRN

Fig. 7 Largest module obtained by EACH, GN, EAC and SpeMD consisting of 353 genes
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Fig. 8 One of the particular modules obtained by EACH consisting of 27 genes and revealing a significant biological function

www.ietdl.org
gene OR1D4 is not a member of the subcategory olfactory
transduction. As shown in Fig. s3 (supplementary
materials), the largest module of the results obtained by the
ECCA_D consists of 410 genes. However, there are only
352 genes (green ones) among these 410 ones belonging to
the subcategory olfactory transduction. Obviously, the
remaining 58 genes (pink ones) and the 352 genes belong
to different modules, but regretfully, the pink ones are not
extracted from the largest module by the ECCA_D. As
shown in Fig. s4, the largest module of the results obtained
by the ECCA_Q consists of 932 genes. However, there are
only 352 genes (green ones) among these 932 ones
belonging to the subcategory olfactory transduction.
Obviously, the remaining 580 genes (pink ones) and the
352 genes belong to different modules, but regretfully, the
pink ones are not extracted from the largest module by
the ECCA_Q. In addition, intuitively, there are obvious
module structures inside the 580 genes but the ECCA_Q
cannot detect them further. As for the NMF, especially, we
set the prior number of the expected modules as 71 the
same as that obtained by the GN, then the largest module
of the results obtained by the NMF consists of 123 genes.
However, there are no regulatory relations among these
genes. The largest module of the results obtained by the
CNM consists of 516 genes, however there is no significant
biological function among them. Here, as for the SC we
also set the prior number of the expected modules as 71
Since the SC runs over 180 h on this network but does not
output any results, we stop the R package.
From the point of view of the whole results, the GN obtains

71 modules and there are 12 modules only including one
gene. The EAC obtains 714 modules and there are too
many modules only including one gene. The EACH obtains
72 modules, the ECCA_Q obtains 68 modules, the
ECCA_D obtains 232 modules, the SpeMD obtains 69
modules and the CNM obtains 25 modules, respectively.
By comparing the results obtained by EACH with those of
the other algorithms, we can take advantage of the
neighborhood affinity score to decide one module when
matching the other modules [36]. Among the 72 modules
obtained by EACH, there are 53 modules matching and 19
ones not matching those of the GRN, there are 41 ones
matching and 31 ones not matching those of the ECCA_Q,
there are 64 modules matching and 8 ones not matching
124
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those of the ECCA_D, there are 27 modules matching and
45 ones not matching those of the NMF and the CNM and
there are 59 modules matching and 13 ones not matching
those of the SpeMD, respectively. Then, these common
modules reveal the robustness of EACH and the particular
ones reveal its novelty. What we want to emphasise is that
there are two modules obtained by EACH, which do not
match any module obtained by the other algorithms in this
paper. One module consists of 115 genes and reveals no
significant biological function, whereas the other module
consists of 27 genes, further among the genes of this
module there are 17 ones belonging to the subcategory Wnt
signalling pathway and the P-value is 9.0 × 10−22, as shown
in Fig. 8. Hence, in general, EACH can obtain more
meaningful and more compact communities in this network.

4.3.2 Advantages of EACH: We can find several
advantages of EACH very intuitively by systematic
comparisons. Firstly, the performance of the isolated vertex
handing strategy within EACH is significant. Secondly,
EACH is more accurate than those that do not depend on
the prior number of the communities on most networks.
Thirdly, unlike the NMF, the SC and the SpeMD, EACH is
free of parameters. What we want to emphasise here is that
it does not need to fix the prior number of the expected
communities and the number can be fixed automatically
during the edge removing process. Fourthly, unlike the
ECCA, EACH does not depend on any additional measures
to decide the community structure and what is more
important, it can obtain inherent and consistent
communities. Fifthly, the complexity of EACH is
significantly lower than others. Finally, the communities
obtained by EACH are more compact than others and the
diameters of the communities are four jumps at most. Thus,
EACH is more appropriate for the networks with compact
community structures.

5 Conclusions and discussions

In this paper, we propose a novel local edge antitriangle
centrality and further propose our approach (EACH) based
on this centrality for community detection. EACH is
characterised by being free of any parameters including the
prior number of the expected communities and independent
ommons Attribution
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of any additional measures to decide the community structure.
We demonstrate that the novel local edge antitriangle
centrality is appropriate for community detection as the
edge betweenness and the edge clustering coefficient and
we follow up on testing EACH and the other state-of the-art
algorithms on several synthetic and practical networks, the
experimental results show that EACH is more efficient and
accurate and especially can gain quite inherent and
consistent communities with a maximal diameter of four
jumps. Thus, EACH is more appropriate for the networks
possessing compact community structures inside themselves.
Although EACH owns outstanding properties, there are

still some problems requiring further investigation. Firstly,
the isolated vertex handling strategy used in this paper
reduces the performance of EACH on the LFR networks
when the mixing parameter mu≥ 0.6. As for the LFR
networks, there are more isolated vertices left as mu
increases, while the isolated vertices handling strategy used
in this paper cannot handle these isolated vertices very
effectively. Therefore seeking a better isolated vertex
handling strategy deserves further research. Secondly, the
edge antitriangle centrality is designed for the undirected
and the unweighted networks. Next we want to extend this
centrality for the directed and the weighted networks.
Finally, although the edge antitriangle centrality is
developed for community detection, we can seek other
usages.
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