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Simple Summary: Deleterious mutations in SWI/SNF chromatin remodeling genes, such as ARID1A,
are present in more than 50% of cases of ovarian clear cell carcinoma (OCCC), a histological subtype
of ovarian cancer prevalent in Asian countries. To efficiently treat OCCC, which is refractory
to conventional platinum-based chemotherapy, several therapeutic strategies based on SWI/SNF
deficiency have been proposed, including gemcitabine-based chemotherapy, synthetic lethal therapy,
and immune checkpoint blockade therapy. Implementation of these strategies would improve the
prognosis of patients with this disease.

Abstract: Ovarian clear cell carcinoma (OCCC) is a histological subtype of ovarian cancer that is more
frequent in Asian countries (~25% of ovarian cancers) than in US/European countries (less than 10%).
OCCC is refractory to conventional platinum-based chemotherapy, which is effective against high-
grade serous carcinoma (HGSC), a major histological subtype of ovarian cancer. Notably, deleterious
mutations in SWI/SNF chromatin remodeling genes, such as ARID1A, are common in OCCC but rare
in HGSC. Because this complex regulates multiple cellular processes, including transcription and
DNA repair, molecularly targeted therapies that exploit the consequences of SWI/SNF deficiency may
have clinical efficacy against OCCC. Three such strategies have been proposed to date: prioritizing
a gemcitabine-based chemotherapeutic regimen, synthetic lethal therapy targeting vulnerabilities
conferred by SWI/SNF deficiency, and immune checkpoint blockade therapy that exploits the high
mutational burden of ARID1A-deficient tumor. Thus, ARID1A deficiency has potential as a biomarker
for precision medicine of ovarian cancer.

Keywords: ovarian clear cell carcinoma; ARID1A; synthetic lethality; gemcitabine; molecular tar-
geted therapy; precision medicine

1. Introduction

Ovarian clear cell carcinoma (OCCC) is a histological subtype of ovarian cancer
that constitutes 25% of ovarian cancers in Asian countries, but less than 10% of ovarian
cancers in US and European countries [1–3]. OCCC is more refractory to conventional
platinum-based chemotherapy than other major histological types of ovarian cancer, such
as high-grade serous carcinoma (HGSC) [4]; the response rate in OCCC is 11–56%, whereas
that in HGSC is about 80% [5–7]. Because OCCC is rare in US and European countries,
OCCC cases have not been actively enrolled into clinical trials, and clinical trials specifically
targeting OCCC have been highly limited [8]. Consequently, effective treatment strategies
for OCCC (i.e., precision medicine) have not yet been established [4,9].

OCCC is characterized by genetic alterations distinct from those found in HGSC,
including frequent deficiency of genes encoding subunit proteins of the SWI/SNF chro-
matin remodeling complexes. The nucleosome, the basic unit of chromatin, is composed
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of 146 pairs of DNA bases wrapped around histone protein octamers. Nucleosomes pre-
vent the binding of transcription factors and histone modifiers in the nucleus. Chromatin
remodeling complexes regulate gene expression, DNA replication and repair, and cell divi-
sion through changes in chromatin structure. The SWI/SNF complexes, which comprise
tens of subunit proteins, obtain energy from ATP hydrolysis to cause nucleosome sliding,
exposing specific regions of DNA and allowing interaction with histone modifiers [10].
The ARID1A gene, which encodes the BAF250A/ARID1A protein, is the most frequently
mutated SWI/SNF subunit gene in OCCC, although several other subunit genes, including
SMARCA4 and ARID1B, are also mutated [11]. ARID1A mutations, most of which are
deleterious, are detected in about 50% of OCCCs, and loss of BAF250A/ARID1A protein,
which functions as a regulatory subunit of the SWI/SNF complex, is observed at a similar
frequency [12,13]. Interestingly, loss of BAF250A/ARID1A protein expression is observed
not only in homozygous but also in heterozygous mutants. A previous study reported
the post-transcriptional/translational effects of ARID1A mutation [13]. Several studies re-
ported that knockout of the ARID1A gene impairs transcriptional and DNA repair activities
within cells [14,15]; therefore, the function of the SWI/SNF complex is (at least partially)
lost in half of OCCC cases. In this review, we focus on the properties of OCCC and possible
precision medicine for this cancer from the standpoint of deficiency in SWI/SNF-mediated
chromatin remodeling.

2. Inter-Ethnic Differences in the Prevalence of OCCC

The proportion of OCCC among the four major histological types of epithelial ovarian
cancer is higher in Asia (about 25%) than in Europe and the US (less than 10%) [1–3]. The
proportions in Japan, the US, and Australia are shown in Figure 1a. The data from Japan
and the US are from the Japan Society of Obstetrics and Gynecology tumor registry database
and the Surveillance, Epidemiology, and End Results (SEER) program (2002–2015) [16],
respectively, whereas the data from Australia is from a nationwide epidemiological survey
conducted by the Australian Ovarian Cancer Study between 2001 and 2005 [17–19]. The
Japanese cohort included a higher fraction (27%) of OCCC than the US (8%) and Australian
(8%) cohorts, respectively.
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online: https://ganjoho.jp/reg_stat/statistics/stat/short_pred.html (accessed on 19 November 2020);
American Cancer Society, “Cancer Facts & Figures 2020”. Available online: https://www.cancer.org/
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cases per year in Japan, the US, and Australia. The numbers were estimated based on the projected
numbers of ovarian cancer patients and the proportions of OCCC in (a).
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greater in Japan (3.6 K) than in the US (1.7 K). This estimate indicates that not only the
proportion but also the absolute number of OCCC patients is larger in Asia (using Japan as
a representative) than in the US. The reasons for such inter-ethnic differences are unknown.
However, these calculations validate the idea that OCCC is a particularly problematic
disease in Japan and other Asian countries.

3. ARID1A and Other SWI/SNF Gene Alterations in OCCC

Multiple genes encoding subunits of the SWI/SNF complexes, including ARID1A,
SMARCA4, PBRM1, and SMARCB1, are mutated in ~20% of all cancers [20,21]. In particu-
lar, several pan-cancer genome-wide studies repeatedly identified ARID1A as one of the
top 10 most frequently mutated genes [22–24]. In particular, OCCC is frequently associated
with ARID1A mutations [12,13], while other SWI/SNF subunit genes, such as ARID1B and
SMARCA4, are also mutated in a subset of OCCC [11]. Mutation frequencies of SWI/SNF
subunit genes in the project GENIE database (v8.1), which accumulated data from gene
profiling tests performed in daily oncology practice in the US [25], are shown in Figure 2a,b.
ARID1A is the most frequently mutated SWI/SNF gene, followed by ARID1B, SMARCA4,
ARID2, and PBRM1. The mutation frequencies of these genes according to tumor type are
shown in Figure 2c–g. The distribution of mutations in genes related to SWI/SNF com-
plexes is not random; rather, such mutations are more common in certain cancer types [26].
Evidently, frequent ARID1A mutation is a genetic property of OCCC. ARID1A mutations
are detected in adjacent endometriotic lesions of OCCC, but not in distant endometriosis
in the same patient, indicating that OCCC arises from endometriosis, and that ARID1A
functions as a major tumor suppressor during development of OCCC [13,27–29].

Cancers 2021, 13, 1769 3 of 14 
 

 

Available online: https://ganjoho.jp/reg_stat/statistics/stat/short_pred.html (accessed on 19 No-
vember 2020); American Cancer Society, “Cancer Facts & Figures 2020”. Available online: 
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-fig-
ures-2020.html (accessed on 19 November 2020) and Cancer Australia, “Ovarian cancer statistics 
in Australia”. Available online: https://www.canceraustralia.gov.au/affected-cancer/cancer-
types/ovarian-cancer/ovarian-cancer-statistics-australia (accessed on 19 November 2020) (b) Esti-
mated numbers of new OCCC cases per year in Japan, the US, and Australia. The numbers were 
estimated based on the projected numbers of ovarian cancer patients and the proportions of 
OCCC in (a). 

3. ARID1A and Other SWI/SNF Gene Alterations in OCCC 
Multiple genes encoding subunits of the SWI/SNF complexes, including ARID1A, 

SMARCA4, PBRM1, and SMARCB1, are mutated in ~20% of all cancers [20,21]. In partic-
ular, several pan-cancer genome-wide studies repeatedly identified ARID1A as one of the 
top 10 most frequently mutated genes [22–24]. In particular, OCCC is frequently associ-
ated with ARID1A mutations [12,13], while other SWI/SNF subunit genes, such as ARID1B 
and SMARCA4, are also mutated in a subset of OCCC [11]. Mutation frequencies of 
SWI/SNF subunit genes in the project GENIE database (v8.1), which accumulated data 
from gene profiling tests performed in daily oncology practice in the US [25], are shown 
in Figure 2a,b. ARID1A is the most frequently mutated SWI/SNF gene, followed by 
ARID1B, SMARCA4, ARID2, and PBRM1. The mutation frequencies of these genes accord-
ing to tumor type are shown in Figure 2c–g. The distribution of mutations in genes related 
to SWI/SNF complexes is not random; rather, such mutations are more common in certain 
cancer types [26]. Evidently, frequent ARID1A mutation is a genetic property of OCCC. 
ARID1A mutations are detected in adjacent endometriotic lesions of OCCC, but not in 
distant endometriosis in the same patient, indicating that OCCC arises from endometrio-
sis, and that ARID1A functions as a major tumor suppressor during development of 
OCCC [13,27–29]. 

 

  

  

Figure 2. Cont.



Cancers 2021, 13, 1769 4 of 13Cancers 2021, 13, 1769 4 of 14 
 

 

   

 
Figure 2. Mutations in genes encoding SWI/SNF chromatin remodeling factors. Mutation frequen-
cies in OCCC (a) and other cancer types (b) in the GENIE Cohort v8.1 are shown. n: number of 
profiled samples. Top 20 cancer types according to mutation frequency of ARID1A (c), ARID1B 
(d), ARID2 (e), PBRM1 (f), and SMARCA (g) are shown. Cancer types detailed with >100 cases in 
the GENIE Cohort v8.1 are also shown. The four types of gene alteration are color-coded. 

 
 

Figure 2. Mutations in genes encoding SWI/SNF chromatin remodeling factors. Mutation frequencies
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PBRM1 (f), and SMARCA (g) are shown. Cancer types detailed with >100 cases in the GENIE Cohort
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ARID1A is also frequently mutated in uterine endometrial and endometrioid ovarian
cancers; therefore, aberrations in this gene are likely to be frequently involved in malig-
nancies of the female genital tract. In addition, SMARCA4, which is frequently mutated
in poorly differentiated non-small cell lung cancer (Figure 2g), is also mutated in a subset
(about 10%) of OCCC. SMARCA4 mutations are also extremely frequent (almost ubiqui-
tous) in small cell carcinoma of the ovary of hypercalcemic type (SCCOHT), occurring in
about 98% of such cases. Somatic and germline SMARCA4 mutations drive development of
this disease [30,31]. Therefore, deficiency of SWI/SNF chromatin remodeling contributes
to ovarian cancer development in several ways.

Figure 3a summarizes the frequencies of ARID1A mutations and loss of BAF250A/
ARID1A protein expression in OCCC in studies to date [12,13,32–37]. In particular, many
immunohistochemical studies to examine loss of BAF250A expression in OCCC tissues
have been performed [38–40]. Loss of BAF250A, reflected by lack of nuclear staining for
this protein, is observed frequently in OCCC cells. The frequency of ARID1A mutations in
OCCC is ~60% in the US, Canada, and Japan, and 40% in Australia, and the frequencies of
loss of BAF250A expression are equal to or a bit lower than the mutation frequencies. These
data indicate that a significant fraction of ARID1A mutations is associated with loss of ex-
pression of the gene product. Consistent with this, ARID1A mutations observed in OCCC in
the Project GENIE Cohort consist mostly (>90%) of truncating mutations (Figure 3b, upper)
that are dispersed throughout the coding sequence. ARID1A contains two DNA-binding
domains, the ARID domain (AT-rich interacting domain) and the C-terminal domain,
which plays a critical role in promoting transcription [41]. Most truncation mutations re-
move the C-terminal domain, whereas missense mutations affecting the glycine at position
2087 decrease the stability of the ARID1A protein [42]. This predominance of truncation
mutations and missense mutations at Gly2087 is also observed in a wide range of cancers
other than OCCC. Thus, deleterious ARID1A mutations are a common feature of OCCC
and other cancers.

The pathogenic roles of ARID1A deficiency during OCCC development were recently
elucidated. Indeed, somatic mutations in the ARID1A and PIK3CA genes are detected
in benign endometriosis [29,43]. Concordantly, a study using a mouse model demon-
strated that ARID1A deficiency, in concert with an oncogenic PIK3CA mutation, promotes
OCCC formation in vivo by enhancing inflammatory cytokine signaling [44]. In addition,
another study demonstrated that alterations in both the ARID1A and PI3-Kinase (PI3K)
pathways promote epithelial trans-differentiation and invasion [45]. The epigenetic role
of ARID1A was also revealed in a pre-OCCC model system: ARID1A prevents super-
enhancer hyperactivation, which leads to enhanced migratory properties exhibited by
pre-OCCC cells [46]. In addition, a common role shared by ARID1A and another SWI/SNF
factor, SMARCA4/BRG1, maintains the integrity of the endometrial epithelium [47]. Thus,
ARID1A and other SWI/SNF factors are likely to function epigenetically as a tumor sup-
pressor for the development of ovarian cancer.
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Figure 3. ARID1A alterations in OCCC. (a) Frequency of ARID1A mutations and loss of
BAF250A/ARID1A protein expression in OCCC in Japan, the US, Canada, and Australia. Frequen-
cies in published results [12,13,32–37] are expressed as the mean ± standard error. (b) Distribution
of ARID1A mutants on the wild-type BAF250A/ARID1A protein sequence (GENIE Cohort v8.1).
Upper and lower panels show mutations in OCCC (127 mutations) and other cancers, respectively.
Mutations are colored by the type of mutations: missense, truncating (7114 mutations: nonsense,
frameshift, and splice site mutations), or in-frame. Deleterious missense mutations at codon 2087 are
indicated by boxes.

4. Therapeutic Strategies for OCCC Based on the Phenotypes of ARID1A Deficiency

The BAF250A/ARID1A protein functions as a regulatory subunit of the SWI/SNF
complex, which regulates multiple cellular processes, including transcription and DNA
repair. Therefore, it is possible that cancer cells deficient in ARID1A or other SWI/SNF
subunits share properties that are absent from noncancerous cells, and that some of those
properties create vulnerabilities [10]. Targeting this vulnerability with anti-cancer drugs
represents a potentially effective strategy for treating OCCC. Indeed, several studies to
date have proposed such approaches, which are categorized into three groups.

4.1. Prioritizing Gemcitabine-Based Chemotherapeutic Regimens

Gemcitabine is a deoxycytidine analogue that inhibits ribonucleoside reductase, result-
ing in depletion of deoxyribonucleotide pools required for DNA synthesis. Gemcitabine is
often used in late lines of treatment for ovarian cancer after platinum-resistant recurrence;
however, retrospective studies have shown that gemcitabine is especially effective against
OCCC [48–50]. Notably in this regard, we demonstrated that knockout of ARID1A in-
creases the sensitivity of OCCC cells to gemcitabine by approximately 100-fold. Consistent
with this, ARID1A-deficient cases of OCCC exhibited significantly longer progression-free
survival after gemcitabine treatment than ARID1A-proficient cases [51]. The mechanisms
underlying this phenomenon are unknown, but it seems likely that patients with ARID1A-
deficient OCCC would benefit from treatment with gemcitabine.
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4.2. Synthetic Lethal Therapy Targeting Vulnerabilities Conferred by ARID1A Deficiency

Loss-of-function mutations in the BRCA1 and BRCA2 genes have opened the prospect
of developing new synthetic lethal therapies based on PARP inhibitors [52]. However,
these therapeutic options are limited in OCCC due to the low frequency of BRCA1/BRCA2
mutations in these cancers [53]. Consequently, a great deal of attention has been paid to
synthetic lethal therapies that target vulnerabilities conferred by ARID1A deficiency. Like
the BRCA1 and BRCA2 proteins, BAF250A/ARID1A promotes homologous recombination-
mediated repair of DNA double-strand breaks, suggesting that PARP inhibition might be
therapeutically effective [14]. Clinical trials of the PARP inhibitors olaparib and niraparib,
using ARID1A deficiency as a biomarker, are underway in ovarian and other cancers
(NCT04065269, NCT04042831, NCT03207347) (Table 1).

The SWI/SNF complex and another chromatin remodeling complex, polycomb re-
pressive complex 2 (PRC2), work antagonistically during transcription. EZH2 serves as the
catalytic subunit in the PRC2 complex and mediates gene silencing. Dysfunction of the
SWI/SNF complex due to ARID1A-deficiency leads to predominance of PRC2 activity in
cancer cells [54,55]. In line with this, the therapeutic potential of EZH2 inhibitors against
ARID1A-deficient cancers has been demonstrated [56]. The efficacy of an EZH2 inhibitor
tazemetostat [57], which has been approved by the US FDA for the treatment of epithelioid
sarcoma, is being tested against ovarian endometrial cancer, ovarian clear cell carcinoma,
and endometrial cancer in an ongoing clinical trial (NCT03348631), again using ARID1A
deficiency as a biomarker. In a Phase II clinical trial, tazemetostat exhibited an objective
response rate of 69% in follicular lymphoma with activating EZH2 mutations; severe ad-
verse events, such as thrombocytopenia, neutropenia, and anemia, were observed only in a
small subset of cases [58]. Therefore, tazemetostat is a promising drug for the treatment of
ARID1A-deficient OCCC.

In addition, several other genes, including ATR, HDAC2, BRD2, and HDAC6, have
synthetic lethal relationships with ARID1A [59–62]. Inhibitors of the products of these genes
have already been approved for several non-ovarian cancers. For instance, multiple HDAC
inhibitors have been approved by the FDA for cutaneous/peripheral T-cell lymphoma
and multiple myeloma [63,64]. Among them, vorinostat, romidepsin, and belinostat have
been investigated in clinical trials for epithelial ovarian cancer (Table 2). Trials of the
vorinostat treatment combined with cytotoxic drugs were discontinued due to severe
hematologic toxicity and gastrointestinal toxicity [65,66]. In a Phase II trial of recurrent
platinum-refractory ovarian cancer, single treatment with vorinostat did not yield an
evident response, although the drug was well tolerated [67]. Belinostat was also well
tolerated in a combination regimen with paclitaxel and carboplatin [68]. The therapeutic
efficacy of HDAC inhibitors against OCCC with ARID1A deficiency should be investigated
in the future.

We recently reported that ARID1A deficiency is associated with reduced metabolism of
the antioxidant glutathione (GSH) [15]; consistent with this, ARID1A-deficient OCCC cells
are sensitive to GSH inhibitors such as the investigational drugs APR-246 and buthionine
sulfoximine (BSO). APR-246 was originally developed as a reactivator of mutant TP53 pro-
tein and is currently in Phase Ib/II clinical trials for hematological tumors (NCT04214860,
NCT03931291) [69]. BSO was previously examined in a Phase I trial for melanoma and neu-
roblastoma (NCT00002730, NCT00005835), but it is not involved in any active clinical trials
at the moment. Clinical trials of these inhibitors for OCCC would be worth undertaking.



Cancers 2021, 13, 1769 8 of 13

Table 1. ARID1A-target therapy.

Theraputic Targets Drug
Clinical Trial Biomarker

Development Grade
ARID1A Mutation BAF250A Loss

Conventional chemothrapy
Ribonucleoside reductase Gemcitabine - - A
Synthetic lethal therapy

GSH APR-246 - - D
GCLC Buthionine sulfoximine (BSO) - D

Induced ROS accumulation Elesclomol - - D

EZH2

GSK2816126 - - D
Tazemetostat NCT03348631 NCT03348631 B,C

CPI-1205 - - D
SHR2554 - - D

HDAC2 Vorinostat (SAHA) - - B
HDAC6 Ricolinostat - - D
ARID1B - - - -

BRD2 I-BET-762 - - D

PARP
Olaparib NCT04042831 NCT04065269 A, C
Niraparib NCT03207347 - A, C

ATR Berzosertib - - D

YES1 Dasatinib NCT02059265,
NCT04284202 NCT02059265 C

Immunotherapy

PD-1
Nivolumab - - B

Pembrolizumab NCT04611139 - B

A: FDA-approved for ovarian cancer, B: FDA-approved for other cancer, C: Clinical trial underway for ovarian cancer using ARID1A as a
biomarker, D: Clinical trials underway for ovarian cancer or other cancer without using ARID1A as a biomarker. Information on the clinical
trials can be obtained at https://www.clinicaltrials.gov/ (accessed on 19 November 2020).

Table 2. Clinical trials of FDA approved HDAC inhibitors in ovarian cancer.

Theraputic
Targets Drug Clinical

Phase
Combination

Regimens Cancer Type ClinicalTrials.gov
Identifier

Recruitment
Status

HDAC

Volinostat

I/II Pac, Carbo Recurrent EOC NCT00772798 Unknown

I/II Pac, Carbo Stage III/IV EOC NCT00976183 Terminated
(toxicities)

Ib/II Gem, Carbo Platinum-sensitive recurrent EOC NCT00910000 Terminated
(toxicities)

II - Recurrent EOC NCT00132067 Completed
I - Advanced ST and HM NCT00045006 Completed

Romidepsin II - Recurrent EOC NCT00091195 Terminated

Belinostat

I/Ib Ribociclib Metastatic TNBC and recurrent EOC NCT04315233 Recruiting
II Pac, Carbo Recurrent EOC and BC NCT00421889 Completed
II - Recurrent EOC and BLM NCT00301756 Completed
II Carbo Recurrent EOC NCT00993616 Completed
I - Advanced ST NCT00413075 Completed
I 5-FU Advanced ST NCT00413322 Completed

EOC: Epitherial ovarian cancer, BLM: Borderline ovarian tumor, ST:Solid tumors, HM: Hematologic malignancies; TNBC: Triple negative
breast cancer, BC: Bladder cancer; Pac: Paclitaxel, Carbo: Carboplatin, Gem: Gemcitabine, 5-FU: 5-Fluoruracil.

4.3. Immune Checkpoint Blockade Therapy Exploiting the High Mutational Burden of
ARID1A-Deficient Tumors

Tumors with the deficient mismatch repair (dMMR) phenotype respond well to im-
mune checkpoint blockade therapy, as these tumors express many neo-antigens associated
with high mutational burden [70]. BAF250A/ARID1A protein interacts with the MMR
protein MSH2 and promotes MMR. Therefore, ARID1A deficiency might be an indicator
of the dMMR phenotype, which is linked to the efficacy of immune checkpoint blockade
therapy. The dMMR phenotype is observed in 3–14% of OCCC cases [71–75], whereas the
relationship between ARID1A deficiency and dMMR is unclear. The number of OCCC
patients enrolled in previous clinical trials of immune checkpoint inhibitors is very limited;

https://www.clinicaltrials.gov/
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therefore, the efficacy of therapeutic agents against OCCC remains unclear [76–78]. No-
tably, a clinical trial of the immune checkpoint inhibitor pembrolizumab, using ARID1A
deficiency as a biomarker, is currently underway (NCT0461139); therefore, the proof of
concept (POC) will be clarified in vivo in the near future.

5. Future Directions

At present, precision medicine for OCCC using SWI/SNF chromatin remodeling
deficiency has not been implemented in daily oncology. Table 1 shows the status of FDA
approval and clinical trials for drugs that could be effective against ARID1A-deficient
OCCC. Several drugs, such as olaparib, niraparib, tazemetostat, and pembrolizumab, are
being tested for their efficacy in clinical trials using ARID1A deficiency as a biomarker.
Therefore, the POC obtained in preclinical studies should be validated in vivo in the near
future. Other drugs, such as eleclomol, a ROS inducer (NCT00888615) [79], and berzosertib,
an ATR inhibitor (NCT02627443), are being tested for efficacy in clinical trials that are
enrolling ovarian cancer patients irrespective of ARID1A status. Analysis of the association
between clinical response and ARID1A deficiency among studied cases might help to
obtain further POC.

The list of target molecules proposed for cancer therapy is expanding day by day.
Therefore, it is quite important to consider how discoveries made in preclinical models
are translated to clinical trials designed to test whether modulating the activity of specific
targets leads to a clinical response [80]. In particular, with respect to OCCC (which is a rare
cancer), application of treatment modalities that are either established or are being tested on
other major types of cancer would be a way forward. In fact, therapeutic strategies using
PI3K-AKT inhibitors combined with HAT and BET (bromodomain and extra-terminal
domain) inhibitors are considered strong candidates [81,82].

On the other hand, however, to understand specific/preferential properties of OCCC
conferred by gene alterations is also quite important; sensitivity to GSH inhibitors conferred
by ARID1A deficiency is much higher in OCCC than other types of cancers, such as gastric
cancer [15,83], indicating that biological effects of gene alterations commonly observed
in a variety of cancers are, in fact, largely different by cancer types. Therefore, preclinical
studies focusing OCCC should also be intensively performed to establish truly feasible and
efficient precision medicine of this disease. For this purpose, sharing data and materials of
OCCC, which are unfortunately much less than those of many other common cancers, are
highly inevitable. To facilitate preclinical studies OCCC, we dare to introduce here that
human OCCC cell lines available for research are summarized in a report [84] and their
pan-genome/transcriptome profiles are published [85,86]. In addition, patient-derived
xenograft models of OCCC, which will give us accurate and specific insights of this disease,
are available [87]. We hope that novel concepts of precision OCCC medicine will be
produced here and will surely improve the present miserable situation of this disease in
the near future.
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