
nutrients

Article

Vitamin D Status, Muscle Strength and Physical
Performance Decline in Very Old Adults:
A Prospective Study

Antoneta Granic 1,2,3, Tom R. Hill 4,5, Karen Davies 1,2,3, Carol Jagger 3,6, Ashley Adamson 3,4,6,
Mario Siervo 3,4,7, Thomas B. L. Kirkwood 3,8, John C. Mathers 3,4,7 and Avan A. Sayer 1,2,3,*

1 Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
antoneta.granic@newcastle.ac.uk (A.G.); karen.davies@newcastle.ac.uk (K.D.)

2 NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle upon Tyne NHS
Foundation Trust, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK

3 Newcastle University Institute for Ageing, Newcastle upon Tyne NE4 5PL, UK;
carol.jagger@newcastle.ac.uk (C.J.); ashley.adamson@newcastle.ac.uk (A.A.);
mario.siervo@newcastle.ac.uk (M.S.); tom.kirkwood@newcastle.ac.uk (T.B.L.K.);
john.mathers@newcastle.ac.uk (J.C.M.)

4 Human Nutrition Research Centre, Newcastle University, Campus for Ageing and Vitality,
Newcastle upon Tyne NE4 5PL, UK; tom.hill@newcastle.ac.uk

5 School of Agriculture, Food and Rural Development, Kings Road, Newcastle University,
Newcastle upon Tyne NE1 7RU, UK

6 Institute for Health and Society, Newcastle University, Baddiley-Clark Building,
Newcastle upon Tyne NE2 4AX, UK

7 Institute of Cellular Medicine, Newcastle University, William Leech Building,
Newcastle upon Tyne NE2 4HH, UK

8 Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place,
Newcastle upon Tyne NE2 4HH, UK

* Correspondence: avan.sayer@newcastle.ac.uk; Tel.: +44-0191-208-1210

Received: 8 March 2017; Accepted: 11 April 2017; Published: 13 April 2017

Abstract: Mixed reports exist about the role of 25-hydroxyvitamin D (25(OH)D) in muscle ageing and
there are few prospective studies involving the very old (aged ≥ 85) who are at highest risk of low
25(OH)D, loss of muscle mass and strength, and physical performance decline. In the Newcastle 85+
Study (n = 845), we aimed to determine the association between 25(OH)D season-specific quartiles
(hereafter SQ1–SQ4), grip strength (GS) and physical performance decline (Timed Up-and-Go Test,
TUG) over 5 years using mixed models. In the time-only models with linear and quadratic slopes,
SQ1 and SQ4 of 25(OH)D were associated with weaker GS initially in men (SQ1: β (SE) = −2.56 (0.96);
SQ4: −2.16 (1.06)) and women (SQ1: −1.10 (0.52); SQ4: −1.28 (0.50)) (all p ≤ 0.04). In the fully adjusted
models, only men in SQ1 had a significant annual decline in GS of 1.41 kg which accelerated over time
(−0.40 (0.1)), (both p ≤ 0.003) compared with those in combined middle quartiles. Only women in
SQ1 and SQ4 of 25(OH)D had worse TUG times initially, but the rate of TUG decline was not affected.
Low baseline 25(OH)D may contribute to muscle strength decline in the very old and particularly
in men.

Keywords: 25(OH)D; muscle strength; physical performance; grip strength; Timed Up-and-Go Test;
very old adults

1. Introduction

A number of recent epidemiological studies have indicated a role of serum 25-hydroxyvitamin D
(25(OH)D) in the aetiology of health outcomes of older adults beyond skeletal health [1], including
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cognitive impairment [2,3], cancers, cardiovascular diseases [4,5], mortality [6], muscle weakness,
gait disturbances and falls [7,8]. Identifying factors such as serum 25(OH)D [9] which may help to
maintain or improve muscle strength, function, and physical performance into an advanced age in
order to preserve independence, is potentially of considerable public health importance.

Several lines of evidence have been suggested to support the involvement of 25(OH)D in
skeletal muscle strength and function [7–9]. Firstly, clinical signs of severe 25(OH)D deficiency
(<25 nmol/L) [10] have been linked to myopathy, muscle pain and impaired gait, with amelioration by
vitamin D supplementation [9]. Secondly, several studies have localised vitamin D receptor (VDR)
in human muscle cell lines, myoblasts [11], and adult skeletal muscle [12,13], although opposing
views have been published [14]. Thirdly, functional in vitro studies, have provided insights into
the direct biological role of the active form of 25(OH)D, 1,25(OH2)D in regulation of genes and
signalling pathways affecting calcium homeostasis, proliferation and differentiation of muscle cells [9],
and positive correlation between 25(OH)D3 and expression of 24 muscle genes at the mRNA level [13].
Fourthly, despite conflicting findings across individual intervention studies, results of the latest
meta-analyses of randomized controlled trials (RCT) of vitamin D supplementation have showed
a small but significant improvement in muscle strength and function in older adults who had
25(OH)D concentrations below 30 nmol/L [15] or 50 nmol/L [16], and a reduced risk of falls in
those with 25(OH)D < 25 nmol/L at baseline after vitamin D and calcium co-administration [17].
Supplementation with calcifediol (20 µg over 6 months) improved appendicular lean mass, physical
performance (Short Physical Performance Battery), 4-m gait speed, and reduced mean number of falls
in post-menopausal women (aged 68 years) who were diagnosed with osteoporosis or had 25(OH)D
concentration <75 nmol/L [18]. Lastly, results from observational studies [3,19], although inconsistent,
have suggested that a 25(OH)D concentration of <50 nmol/L exerts a negative effect on various
measures of muscle strength and function and physical performance in older adults aged ≥60.

However, there remains a debate. The latest report from the Scientific Advisory Committee on
Nutrition (SACN, 2016) defined the threshold of 25 nmol/L of 25(OH)D as the “population protective”
level for musculoskeletal health in the UK population, including older adults [20]. The US Institute
of Medicine (IOM, 2011) did not support 25(OH)D concentrations >50 nmol/L (i.e., above deficiency
threshold) as beneficial for non-skeletal health outcomes [21], recommending that further research
was needed. In addition, there is emerging evidence of a non-linear (U- or J-shaped) relationship with
risks at both low and high 25(OH)D for some outcomes [4,6,21]. Indeed, we have recently observed a
U-shaped association between low and high 25(OH)D concentration and cognitive impairment, poor
attention [22] and mortality [23] in very old participants in the Newcastle 85+ Study.

A survey of prospective studies that have examined the role of 25(OH)D in muscle strength
and physical performance in older adults (e.g., [24–29]) showed that the studies differed with respect
to participants’ characteristics, baseline 25(OH)D concentration, measures used to assess muscle
strength and function, and baseline levels of these measures. Only a few have included the very old
(aged ≥ 85) [24,26,27,29], despite this being the age group at greatest risk of muscle mass and strength
loss [30,31], functional decline [32], and, perhaps, low 25(OH)D status [33].

Therefore, the aim of this study was to investigate the association between 25(OH)D concentration
and muscle strength (grip strength, GS) and physical performance (Timed Up-and-Go Test, TUG) in
very old adults over 5 years and to test the hypothesis that these may be non-linear relationships.

2. Materials and Methods

2.1. Participants

Participants were members of the Newcastle 85+ Study, a longitudinal study of health trajectories
and outcomes of a cohort born in 1921 and recruited through general practices (GP) in Newcastle
and North Tyneside, UK. The study protocol, approvals, cohort characteristics and retention have
been described previously [34–36]. Both multidimensional health assessments and GP medical
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records data were available for 845 participants at baseline (2006/07). Fasting blood samples for
biomarkers analysis, including 25(OH)D were collected between June 2006 and September 2007 for
719 to 778 individuals (depending on the assay), and delivered within 1 h to the clinical biochemistry
laboratory, Royal Victoria Infirmary, Newcastle, UK for processing [37]. Participants were followed up
at 1.5 (wave 2), 3 (wave 3) and 5 years (wave 4). Of 845 participants, 754 (89.2%) had both 25(OH)D and
GS, and 717 (84.9%) had both 25(OH)D and TUG data at baseline (wave 1). The study was approved by
the Newcastle & North Tyneside Local Research Ethics Committee 1 [34], and conducted in accordance
with the Declaration of Helsinki. Details of the study protocols and questionnaires can be found at
http://research.ncl.ac.uk/85plus/. All participants provided their signed informed consent prior to
study commencement or the consent was obtained from their consultee (usually a relative) if they
lacked the capacity to consent.

2.2. Serum 25(OH)D

Total serum 25(OH)D concentration was measured by DiaSorin Radioimmune Assay (RIA) kit
using 25OHD-specific antibodies and 125I-labelled 25(OH)D as a tracer (see Supplementary Materials
for details). To account for seasonal variations in UVB exposure and vitamin D skin production [38],
25(OH)D was categorised into season-specific quartiles (hereafter SQ1–SQ4; see Supplementary
Materials for cut-offs). Specifically, for the lowest season-specific 25(OH)D quartile (SQ1), 25(OH)D
concentration ranged from 5–28 nmol/L in summer (June–August), 8–30 nmol/L in autumn
(September–November), 6–22 nmol/L in winter (December–February), 5–17 nmol/L in spring
(March–May). For the highest season-specific 25(OH)D quartile (SQ4), 25(OH)D concentration ranged
from ≥69 nmol/L in summer, ≥62 nmol/L in autumn, ≥60 nmol/L in winter, and ≥47 nmol/L in
spring [22,23]. Medium quartiles (SQ2 and SQ3) were combined and served as a referent. Pre-defined
25(OH)D cut-offs [5,10] were used in the sensitivity analysis to define severely deficient (<25 nmol/L)
and sufficient (≥75 nmol/L) [10] group (combined middle categories served as a referent). The mean
time between blood sampling and GS and TUG assessment was about 1 week (8.5 days).

2.3. Grip Strength

GS [39] was measured using a hand-held dynamometer (Takei A5401 digital 0–100 kg × 0.1 kd LCD).
In a standing position and with the elbows at approximately 180◦ angle, participants were instructed
to squeeze the dynamometer as hard as possible alternating between the hands. Two measurements
(in kg) for each hand were obtained and the mean of four measurements for each participant (M, SD)
was calculated [40] and used in the analysis.

2.4. Timed Up-and-Go Test

Physical performance was assessed by the TUG test [41]. The time needed to get up from a chair
(seat height 46 cm from the floor), walk in straight line for 3 m to and back from a marker placed on
the floor, and sit back on the chair was recorded in seconds (s) with a stopwatch. Each participant
performed the test only once and the use of walking aids (e.g., cane, walking frame, and wheeled
walker) was documented at each wave.

2.5. Potential Confounders

We considered the following confounders previously established in this cohort [42] and commonly
reported in the literature in association with muscle strength and physical performance in older
adults [43–47]. Socio-demographic factor included sex (binary).

Anthropometric factors were: (1) height (continuous) calculated from sex-specific demi-span
formula to the nearest cm [35]; (2) fat-free mass (FFM; continuous (kg)) estimated from inbuilt precision
equation of the Tanita-305 body fat bioimpedance instrument, Tanita Corp., Tokyo, Japan) [31];
(3) BMI (ordered) calculated as kg weight/m2 height and categorized as <18.5 (underweight)/>18.5 <
25 (normal)/>25 < 30 (overweight)/30 (obese); and (4) waist-hip ratio (continuous). Health-related
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factors were: (1) self-rated health compared to others of the same age (ordinal) categorized as excellent
or very good/good/fair or poor; (2) number of chronic diseases (continuous), from the following
list: arthritis (e.g., generalized osteoarthritis, rheumatoid osteoarthritis, etc.), hypertension, cardiac
disease (e.g., heart failure, angina, myocardial infarction, coronary angioplasty, etc.), respiratory disease
(e.g., bronchiectasis, pulmonary fibrosis, asthma, etc.), cerebrovascular disease (e.g., stroke, transient
ischaemic attack, etc.), diabetes (Type 1, Type 2, and unspecified), cancer (any cancer diagnosis
in the past 5 years excluding non-melanoma skin cancer) [22,35]; (3) renal impairment (yes/no)
diagnosis determined by the Chronic Kidney Disease Epidemiology Collaboration guidelines [35];
(4) cognitive impairment (yes/no) for scoring <15 points on Standardized Mini-Mental State
Examination (SMMSE) [35,46]; (5) having difficulty performing GS test due to arthritis (arthritis
in one hand, both, one or more joints) (yes/no); (6) use of walking aids during TUG test (included
cane, walking frame, and wheeled walker) (yes/no); and (7) retention (completing the study or not
over 5 years to account for loss to follow-up due to death and withdrawal) (yes/no) [42].

Lifestyle factors were: (1) physical activity (ordinal) categorized as low/moderate/high
(score 0–1/score 2–6/score 7–18, respectively), established through a purpose-designed questionnaire
and derived from the frequency and intensity of physical activity per week [47].

25(OH)D status-related variables were: (1) season of blood draw (categorical): June–August
(summer)/September–November (autumn)/December–February (winter)/March–May (spring) [35];
(2) taking vitamin D-containing supplements categorized as: yes, at least one/no but taking
others/not taking any vitamin supplements (“taking others” included non-prescribed multivitamins,
multivitamins with minerals, and other combination of vitamins except for vitamin D); (3) taking
prescribed vitamin D medication (yes/no; “yes” included prescription vitamin D, calcium with vitamin
D, bisphosphonate with calcium and vitamin D and others) [22,23].

2.6. Effect Modifier

We observed that trajectories of GS [42] and TUG differed by sex and that the intake of vitamin D
supplements and prescribed medication was an important determinant of 25(OH)D concentration [31],
and modifier of cognitive status [22] and longevity [23] in this cohort. Thus we conducted separate
analyses in participants not taking vitamin D supplements and medication (hereafter “restricted
cohort”, n = 678, of which 97.05% (n = 658) had complete GS and 25(OH)D, and 86.23% (n = 605) TUG
and 25(OH)D data at baseline).

2.7. Statistical Analysis

We used linear mixed models to examine the association between 25(OH)D sex-specific quartiles
and initial level and rate of change in GS and TUG over 5 years in all participants, in men and women
separately, and in the restricted cohort. GS data were normally distributed, and TUG measurements
were log10 transformed to correct for positive skew (log10 s). Time was scaled in years (continuous),
and both linear and non-linear (quadratic; acceleration or deceleration in the rate of change) effects of
time on GS and TUG trajectories were tested. All growth curve models included a random intercept
and linear slope.

Model 1 contained a linear trend of time (Time) and season-specific 25(OH)D quartiles. Model 2
was additionally adjusted for quadratic time (Time2), and interaction terms (Time ×25(OH)D,
and Time2 × 25(OH)D) to test for non-linear trends and the rate of change by 25(OH)D groups
over 5 years, respectively. Model 3 was further adjusted for sex, anthropometry (height and FFM,
centred to sex-specific mean), health-related factors (cognitive impairment, total number of chronic
diseases, and self-rated health), physical activity, and sex × Time interaction to test for sex differences
in the rate of change in GS and TUG. TUG Model 3 was additionally adjusted for the use of walking
aids at baseline and follow-up. Negative (positive) β estimates represent weaker (stronger) GS
compared with the referent group. Increasing β estimates of TUG (log10 transformed) indicate
worse/slower performance.
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Sensitivity Analysis

We compared participants with a complete GS, TUG and assigned 25(OH)D group data at baseline
with those lost to follow-up (withdrawal or death) 5 years later by Mann-Whitney U tests for ordered
and non-normally distributed continuous data, and by χ2 tests for categorical data.

To keep linear mixed models parsimonious, we included a set of common and previously
established predictors of GS [42–45] and TUG [44,45] in the saturated model (Model 3), and additionally
adjusted for the following in sensitivity analyses: renal impairment, BMI, waist-hip ratio, having
difficulty performing GS test due to arthritis in hands, and retention (completing the study or not over
5 years). All mixed models were repeated with pre-defined 25(OH)D categories (lowest 25(OH)D:
<25 nmol/L; highest: ≥75 nmol/L; combined middle categories served as a referent), and Model 2
was additionally adjusted for the season of blood draw. All analyses were conducted using IBM SPSS
(V2.1; IBM Corporation, Armonk, NY, USA), with α = 0.05 (two-tailed).

3. Results

Participants’ characteristics by season-specific quartiles of 25(OH)D have been described
previously [22,23], and are summarised in Table S1. Briefly, those in the highest 25(OH)D group were
more likely to be women, to take vitamin D medication, to have an increased risk of prevalent cognitive
impairment [22] and 6-year mortality [23], compared with those in the middle 25(OH)D group.
Untransformed GS and TUG measurements by season-specific 25(OH)D quartiles and pre-defined
25(OH)D categories at baseline and follow-up in all participants, in men and women separately are
presented in Table 1, and Table S2, respectively.

Table 1. Grip strength and Timed Up-and-Go test measurements by season-specific 25(OH)D quartiles
over 5 years †.

Measure/Time of Assessment ‡ n SQ1 25(OH)D SQ2 + SQ3 25(OH)D SQ4 25(OH)D

Lowest Middle Highest

Grip strength, kg (SD)
All participants

Baseline 754 16.83 (6.80) 19.20 (8.13) 15.92 (7.29)
1.5-year follow-up 582 16.35 (7.73) 18.26 (7.86) 15.21 (7.63)
3-year follow-up 434 16.26 (7.16) 17.26 (7.46) 15.26 (6.92)
5-year follow-up 286 13.66 (6.15) 15.64 (7.38) 14.58 (6.83)

Men
Baseline 301 23.12 (5.43) 25.44 (7.14) 23.67 (6.65)

1.5-year follow-up 224 23.43 (6.80) 24.39 (7.12) 23.01 (7.72)
3-year follow-up 163 22.79 (6.24) 23.05 (6.85) 22.91 (7.35)
5-year follow-up 104 17.41 (7.57) 22.01 (6.48) 22.32 (6.77)

Women
Baseline 453 12.92 (4.10) 13.97 (4.33) 12.68 (4.61)

1.5-year follow-up 358 12.29 (4.72) 13.38 (4.13) 12.21 (5.05)
3-year follow-up 271 12.63 (4.63) 12.96 (4.34) 12.45 (4.08)
5-year follow-up 182 12.63 (4.63) 11.39 (4.21) 11.76 (4.21)

Timed Up-and-Go Test, s (SD)
All participants

Baseline 717 20.93 (17.39) 16.75 (13.32) 19.76 (13.72)
1.5-year follow-up 529 22.48 (14.53) 20.06 (15.53) 22.14 (14.51)
3-year follow-up 389 24.99 (25.67) 19.70 (14.08) 22.08 (20.26)
5-year follow-up 266 24.37 (16.44) 19.88 (10.55) 19.71 (11.56)
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Table 1. Cont.

Measure/Time of Assessment ‡ n SQ1 25(OH)D SQ2 + SQ3 25(OH)D SQ4 25(OH)D

Lowest Middle Highest

Men
Baseline 287 18.99 (19.00) 15.06 (11.65) 15.76 (8.83)

1.5-year follow-up 210 22.23 (16.97) 18.47 (13.78) 16.57 (6.86)
3-year follow-up 149 22.50 (20.78) 16.91 (8.23) 22.58 (32.58)
5-year follow-up 94 19.71 (11.04) 17.92 (9.77) 15.83 (6.43)

Women
Baseline 430 22.15 (18.78) 18.14 (14.43) 21.54 (15.10)

1.5-year follow-up 319 22.63 (12.95) 21.33 (16.74) 24.56 (16.24)
3-year follow-up 240 26.37 (28.13) 21.74 (16.87) 21.86 (11.71)
5-year follow-up 172 26.15 (17.91) 21.14 (10.89) 21.41 (12.89)

† Season-specific quartiles of 25(OH)D (SQ1–SQ4) [24,25] (see Supplementary Materials for cut-offs). The middle
SQ2 and SQ3 were combined to form three season-specific 25(OH)D groups: lowest (SQ1), middle (SQ2 + SQ3),
and highest (SQ4). ‡ Untransformed data.

3.1. Season-Specific 25(OH)D and GS Decline

In the model with time (linear and quadratic), 25(OH)D and their interaction (Model 2, Table 2),
we observed a U-shaped relationship between baseline GS and 25(OH)D groups in all participants,
and for men and women separately. Specifically, both the lowest and highest season-specific 25(OH)D
quartiles were associated with weaker GS in men (SQ1: β (SE) = −2.56 (0.96), p = 0.008; SQ4:
−2.16 (1.06), p = 0.04) and women (SQ1: −1.10 (0.52), p = 0.04; SQ4: −1.28 (0.50), p = 0.01) compared
with those in the middle quartiles. Only SQ1 was associated with a faster rate of GS decline in men,
but not in women (Figure 1). Additionally, men in SQ1 experienced an accelerated GS decline of
−0.44 kg annually over the 5-year follow-up (p < 0.001) (Model 2). In the restricted cohort, only SQ1
was associated with significantly weaker baseline GS and GS decline over time. After adjustments for
key covariates (Model 3, Table 2, Figure 1), being in SQ1 was associated with GS decline of 1.41 kg
(p = 0.003) per year which accelerated over time (−0.40 (0.1), p < 0.001) in men, but not in women.
All participants in SQ1, as well as SQ1 participants who were also unsupplemented (restricted cohort),
experienced accelerated GS decline over the follow-up period compared with participants belonging
to combined middle quartiles (Figure 1).

Table 2. β estimates of grip strength by season-specific 25(OH)D quartiles over 5 years.

Outcome Effects/Variable Model 1 Model 2 Model 3

β (SE) † p β (SE) † p β (SE) † p
All participants

GS (kg) Intercept 19.10 (0.38) <0.001 19.14 (0.39) <0.001 10.16 (0.75) <0.001
25(OH)D quartiles

Lowest (SQ1) −2.24 (0.65) 0.001 −2.48 (0.69) <0.001 −0.31 (0.45) 0.49
Middle (ref) (SQ2 + SQ3) 0 0 0

Highest (SQ4) −3.06 (0.65) <0.001 −3.37 (0.69) <0.001 −0.39 (0.45) 0.39
GS decline ‡ Time −0.80 (0.04) <0.001 −0.74 (0.14) <0.001 −0.56 (0.14) <0.001

Time2 −0.02 (0.03) 0.43 −0.02 (0.03) 0.5
Rate of decline Slope §

25(OH)D ×Time
Lowest × Time 0.56 (0.26) 0.03 0.42 (0.26) 0.1

Middle × Time (ref) 0 0
Highest × Time 0.17 (0.25) 0.51 0.09 (0.26) 0.73

25(OH)D × Time2

Lowest × Time2 −0.13 (0.05) 0.02 −0.11 (0.05) 0.03
Middle × Time2 0 0
Highest × Time2 −0.001 (0.51) 0.99 −0.01 (0.05) 0.85
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Table 2. Cont.

Outcome Effects/Variable Model 1 Model 2 Model 3

Men
GS (kg) Intercept 25.48 (0.51) <0.001 25.50 (0.51) <0.001 19.5 (1.46) <0.001

25(OH)D quartiles
Lowest (SQ1) −2.02 (0.93) 0.03 −2.56 (0.96) 0.008 −0.25 (0.89) 0.78

Middle (ref) (SQ2 + SQ3) 0 0 0
Highest (SQ4) −2.12 (1.03) 0.04 −2.16 (1.06) 0.04 −0.89 (0.96) 0.35

GS decline ‡ Time −1.10 (0.08) <0.001 −1.18 (0.24) <0.001 −1.28 (0.23) <0.001
Time2 0.02 (0.05) 0.64 0.04 (0.05) 0.4

Rate of decline Slope §

25(OH)D × Time
Lowest × Time 1.71 (0.46) <0.001 1.41 (0.47) 0.003

Middle × Time (ref) 0 0
Highest × Time 0.02 (0.51) 0.03 −0.12 (0.52) 0.82

25(OH)D × Time2

Lowest × Time2 −0.44 (0.09) <0.001 −0.40 (0.1) <0.001
Middle × Time2 0 0
Highest × Time2 0.01 (0.11) 0.91 0.03 (0.1) 0.77

Women
GS (kg) Intercept 13.94 (0.29) <0.001 13.88 (0.31) <0.001 11.30 (0.75) <0.001

25(OH)D quartiles
Lowest (SQ1) −1.08 (0.48) 0.03 −1.10 (0.52) 0.04 −0.26 (0.48) 0.59

Middle (ref) (SQ2 + SQ3) 0 0 0
Highest (SQ4) −1.14 (0.46) 0.01 −1.28 (0.50) 0.01 −0.24 (0.45) 0.60

GS decline ‡ Time −0.59 (0.05) <0.001 −0.33 (0.16) 0.05 −0.40 (0.17) 0.02
Time2 −0.07 (0.03) 0.04 −0.06 (0.03) 0.07

Rate of decline Slope §

25(OH)D × Time
Lowest × Time −0.17 (0.30) 0.56 −0.15 (0.30) 0.62
Middle × Time 0 0
Highest × Time 0.05 (0.28) 0.85 0.08 (0.28) 0.79

25(OH)D × Time2

Lowest × Time2 0.06 (0.06) 0.35 0.06 (0.06) 0.37
Middle × Time2 0 0
Highest × Time2 0.01 (0.06) 0.83 −0.001 (0.06) 0.98

Restricted cohort
GS (kg) Intercept 19.6 (0.41) <0.001 19.6 (0.43) <0.001 10.23 (0.85) <0.001

25(OH)D quartiles
Lowest (SQ1) −2.76 (0.68) <0.001 −2.95 (0.72) <0.001 −0.35 (0.48) 0.47

Middle (ref) (SQ2 + SQ3) 0 0 0
Highest (SQ4) −1.08 (0.88) 0.22 −1.25 (0.93) 0.18 −0.35 (0.59) 0.55

GS decline ‡ Time −0.75 (0.15) <0.001 −0.54 (0.15) 0.001
Time2 −0.02 (0.03) 0.5 −0.02 (0.03) 0.52

Rate of decline Slope §

25(OH)D × Time
Lowest × Time 0.52 (0.27) 0.05 0.36 (0.27) 0.19

Middle × Time (ref) 0 0
Highest × Time 0.07 (0.33) 0.84 0.04 (0.33) 0.91

25(OH)D × Time2

Lowest × Time2 −0.12 (0.05) 0.02 −0.11 (0.05) 0.05
Middle × Time2 0 0
Highest × Time2 0.003 (0.06) 0.96 0.002 (0.06) 0.97

† β-coefficients (SE) are estimates of fixed effects with longitudinal GS data to evaluate population averages in GS.
Fixed effects of covariates estimated initial level and trajectory differences in GS as a function of the covariate in
the model. ‡ The main effect of time (Time and Time2) tested linear and non-linear (quadratic) change in GS over
5 years. § Interaction terms tested whether GS slopes varied by the covariate over 5 years. Model 1 includes a linear
trend of time and season-specific 25(OH)D quartiles. Model 2 is additionally adjusted for quadratic trend of time
and interaction terms (Time × 25(OH)D quartiles, Time2 × 25(OH)D quartiles). Model 3 is further adjusted for sex,
anthropometry (height and FFM), health-related variables (cognitive impairment, disease count, self-rated health),
physical activity, and interaction term (sex × Time) (except in men and women).
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Figure 1. Estimated 5-year trajectories of grip strength (GS) by season-specific 25(OH)D quartiles in the
Newcastle 85+ Study. In the model adjusted for key confounders (Model 3), participants in the lowest
25(OH)D quartile (SQ1, black solid line) had accelerated GS decline (a), whilst men in SQ1 (b) but not
women (c) experienced a significant GS decline (1.41 kg/year) which accelerated over 5 years.
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3.2. Season-Specific 25(OH)D and Decline in TUG

In the model with time (linear and quadratic), 25(OH)D and their interaction (Model 2, Table 3),
a U-shaped association between baseline TUG and the lowest and highest season-specific 25(OH)D
quartiles was observed in all participants and in women. The U-shaped relationship remained in
women after adjustment for anthropometry, health-related variables and use of walking aids (SQ1:
0.04 (0.02), p = 0.04; SQ4: 0.04 (0.02), p = 0.03) (Model 3). However, the interaction terms between
25(OH)D quartiles and time were not significant indicating that the rate of decline in TUG did not
differ by 25(OH)D group membership over 5 years in all participants, men and women (Figure 2).
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Figure 2. Estimated 5-year trajectories of Timed Up-and-Go test (TUG) by season-specific 25(OH)D
quartiles in the Newcastle 85+ Study. In the model adjusted for key confounders (Model 3), no
difference in the rate of decline in TUG over 5 years was observed in all participants (a), men (b) and
women (c) across season-specific 25(OH)D quartiles (SQ1–SQ4). However, we observed a significant
U-shaped association between baseline TUG and SQ1 (black solid line) and SQ4 (gray solid line) in all
participants and in women compared with combined middle quartiles (SQ2 + SQ3) (dashed black line).
Higher β estimates for TUG (log10 s) indicate worse (slower) performance (y-axes).

Table 3. β Estimates of Timed Up-and-Go test by season-specific 25(OH)D quartiles over 5 years.

Outcome Effects/Variable Model 1 Model 2 Model 3

β (SE) † p β (SE) † p β (SE) † p
All participants
TUG (log10 s) Intercept 1.17 (0.01) 1.16 (0.01) <0.001 1.56 (0.03) <0.001

25(OH)D quartiles
Lowest (SQ1) 0.09 (0.02) <0.001 0.08 (0.02) <0.001 0.02 (0.02) 0.23

Middle (ref) (SQ2 + SQ3) 0 0 0
Highest (SQ4) 0.06 (0.02) 0.005 0.07 (0.02) 0.003 0.02 (0.02) 0.17

TUG decline ‡ Time 0.03 (0.002) <0.001 0.06 (0.006) <0.001 0.06 (0.01) <0.001
Time2 −0.01 ((0.001) <0.001 −0.01 (0.001) <0.001

Rate of decline Slopes §

25(OH)D × Time
Lowest × Time 0.01 (0.01) 0.58 0.01 (0.01) 0.51

Middle × Time (ref) 0 0
Highest × Time −0.005 (0.01) 0.65 −0.01 (0.01) 0.63

25(OH)D × Time2

Lowest × Time2 −0.0001
(0.002) 0.97 −0.001 (0.002) 0.62

Middle × Time2 0 0
Highest × Time2 −0.001 (0.002) 0.71 −0.001 (0.002) 0.77

Men
TUG (log10 s) Intercept 1.13 (0.02) <0.001 1.12 (0.02) <0.001 1.57 (0.04) <0.001

25(OH)D quartiles
Lowest (SQ1) 0.09 (0.03) 0.002 0.09 (0.03) 0.006 −0.01 (0.03) 0.69

Middle (ref) (SQ2 + SQ3) 0 0 0
Highest (SQ4) 0.03 (0.03) 0.78 0.03 (0.03) 0.42 −0.01 (0.03) 0.68

TUG decline ‡ Time 0.04 (0.003) <0.001 0.06 (0.01) <0.001 0.06 (0.01) <0.001
Time2 −0.01 (0.001) 0.001 −0.01 (0.001) <0.001
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Table 3. Cont.

Outcome Effects/Variable Model 1 Model 2 Model 3

Rate of decline Slopes §

25(OH)D × Time
Lowest × Time 0.02 (0.02) 0.22 −0.003 (0.004) 0.41

Middle × Time (ref) 0 0
Highest × Time 0.001 (0.002) 0.96 −0.003 (0.004) 0.47

25(OH)D × Time2

Lowest × Time2 −0.002 (0.004) 0.61 −0.01 (0.001) 0.41
Middle × Time2 0 0
Highest × Time2 −0.002 (0.004) 0.57 −0.003 (0.004) 0.47

Women
TUG (log10 s) Intercept 1.21 (0.02) <0.001 1.19 (0.02) <0.001 1.51 (0.03) <0.001

25(OH)D quartiles
Lowest (SQ1) 0.07 (0.03) 0.007 0.07 (0.03) 0.01 0.04 (0.02) 0.04

Middle (ref) (SQ2 + SQ3) 0 0 0
Highest (SQ4) 0.06 (0.03) 0.03 0.07 (0.03) 0.02 0.04 (0.02) 0.03

TUG decline ‡ Time 0.03 (0.003) <0.001 0.06 (0.01) <0.001 0.06 (0.01) <0.001
Time2 0.006 (0.002) <0.001 −0.01 (0.002) <0.001

Rate of decline Slope §

25(OH)D × Time
Lowest × Time −0.003 (0.02) 0.86 −0.004 (0.02) 0.8
Middle × Time 0 0
Highest × Time −0.01 (0.01) 0.59 −0.01 (0.01) 0.45

25(OH)D × Time2

Lowest × Time2 0.001 (0.003) 0.7 0.00001 (0.003) 0.99
Middle × Time2 0 0

Highest × Time2 −0.0004
(0.003) 0.9 0.0001 (0.003) 0.97

Restricted cohort
TUG (log10 s) Intercept 1.16 (0.01) <0.001 1.15 (0.01) <0.001 1.55 (0.03) <0.001

25(OH)D quartile
Lowest (SQ1) 0.10 (0.02) <0.001 0.10 (0.02) <0.001 0.03 (0.02) 0.07

Middle (ref) (SQ2 + SQ3) 0 0 0
Highest (SQ4) -0.02 (0.02) 0.50 −0.02 (0.03) 0.56 −0.01 (0.02) 0.71

TUG decline ‡ Time 0.03 (0.002) <0.001 0.06 (0.01) <0.001 0.06 (0.01) <0.001
Time2 −0.01 (0.001) <0.001 −0.01 (0.001) <0.001

Rate of decline Slope §

25(OH)D × Time
Lowest × Time 0.006 (0.01) 0.61 0.01 (0.01) 0.52

Middle × Time (ref) 0 0
Highest × Time 0.007 (0.01) 0.61 0.002 (0.01) 0.85

25(OH)D × Time2

Lowest × Time2 0.0001 (0.002) 0.98 −0.001 (0.002) 0.61
Middle × Time2 0 0
Highest × Time2 −0.003 (0.003) 0.26 −0.002 (0.003) 0.44

† β-coefficients (SE) are estimates of fixed effects with longitudinal log10 transformed TUG data to evaluate
population averages in TUG time. Fixed effects of covariates estimated initial level and trajectory differences in TUG
as a function of the covariate in the model. ‡ The main effect of time (Time and Time2) tested linear and non-linear
(quadratic) change in TUG over 5 years. § Interaction terms tested whether TUG slopes varied by the covariate over
5 years. Model 1 includes a linear trend of time and season-specific 25(OH)D quartiles. Model 2 is additionally
adjusted for quadratic trend of time and interaction terms (Time × 25(OH)D quartiles, Time2 × 25(OH)D quartiles).
Model 3 is further adjusted for sex, anthropometry (height and FFM), health-related variables (cognitive impairment,
disease count, self-rated health), physical activity, use of walking aids during TUG testing (time-varying covariate)
and interaction term (sex × Time).

3.3. Results for Sensitivity Analysis

Compared to participants with complete data on both season-specific 25(OH)D and GS 5 years
later (n = 286), those lost to follow-up (n = 468 (62.07%)) were more likely to be women (p = 0.04),
to be cognitively impaired (p = 0.001) and depressed (p = 0.02), and less physically active (p = 0.02) at
baseline. Similarly, compared to participants with complete data on 25(OH)D group and TUG 5 years
later (n = 266), those lost to follow-up (n = 451 (62.9%)) were more likely to be cognitively impaired
(p = 0.001), depressed (p = 0.02), and to be less physically active (p = 0.02) at baseline (data not shown).
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3.3.1. Pre-Defined 25OHD Categories and GS Decline

Overall, the association between GS and 25(OH)D obtained from the saturated models (Model 3,
Supplemental Table S3) using pre-defined 25(OH)D categories (<25 nmol/L (lowest), 25–74 nmol/L
(middle), and ≥75 nmol/L (highest)) were similar to those obtained with season-specific 25(OH)D
quartiles. Briefly, the rate of decline in GS did not vary by 25(OH)D in all participants or women. Men
in the lowest 25(OH)D category experienced GS decline of 1.23 kg per year (p = 0.01) which accelerated
(−0.42 (0.10), p < 0.001) over time. Participants in the lowest category who were unsupplemented
also experienced accelerated GS decline of −0.11 kg over the follow-up compared with participants
belonging to the middle 25(OH)D category.

3.3.2. Pre-Defined 25(OH)D Categories and Decline in TUG

Similarities and differences were observed in the results from Model 2 and 3 (Supplemental
Table S4) for decline in TUG using pre-defined 25(OH)D categories compared with those using
season-specific 25(OH)D quartiles (Table 3). In the models with time and 25(OH)D (Model 2), U-shaped
relationships were confirmed in all participants and in women. However, in the fully adjusted model
(Model 3) only the highest 25(OH)D category was associated with baseline TUG in women. Unlike
the results from the main analysis (Model 3, Table 3), the rate of decline in TUG was affected by the
membership of in the lowest (<25 nmol/L) 25(OH)D group in all participants and for those in the
restricted cohort. In addition, a small U-shaped relationship between 25(OH)D categories and the
rate of decline in TUG was observed in men. Compared with men in the middle 25(OH)D category
(25–75 nmol/L), those in the lowest (<25 nmol/L) and the highest categories (≥75 nmol/L) had worse
(slower) TUG performance with a slight deceleration over 5 years.

4. Discussion

The role of serum 25(OH)D in muscle strength and physical performance decline in older adults
(aged ≥ 65) has been investigated intensively but has yielded inconclusive results [24–29,48,49]. To our
knowledge, this is the first cohort study to test for non-linear relationships between 25(OH)D (defined
by season-specific quartiles) and decline in GS and TUG in the very old (aged ≥ 85) living in the UK.
We found a U-shaped association between 25(OH)D and GS at baseline in both men and women, and
a significant association with GS decline in men in the lowest (SQ1) compared with combined middle
25(OH)D quartiles (SQ2 + SQ3) after adjustment for key covariates. Men in SQ1 experienced a loss of
1.41 kg/year and accelerated decline of −0.43 kg throughout the 5-year follow-up. Women (but not
men) in the lowest and highest 25(OH)D season-specific quartile had worse (slower) overall TUG at
baseline but not over time.

Prospective studies investigating the change in muscle performance with ageing in relation to
serum 25(OH)D have been inconclusive [3]. Most have hypothesised a protective effect of higher
25(OH)D concentrations (≥50 or ≥75 nmol/L) for muscle health and functioning. Several have
reported an increased risk of decline in participants with low vitamin D status (defined as either < 30
or < 50 nmol/L or lowest data-driven quartile) [24–27], whilst others have found no risk [49,50], or
no association with the faster rate of decline in functioning measures over time [28,29]. Comparisons
of our results with the findings from these studies are limited due to differences in serum 25(OH)D
cut-offs, the specific muscle strength and physical performance tests used, length of follow-up, selection
of confounders, and the small number of the very old included in the studies. We are aware of only
one study of adults aged ≥80 from Belgium that found no association between 25(OH)D concentration
and several measures of muscle performance in cross-sectional analyses, but interpretation of these
findings may be complicated by the high prevalence of severe vitamin D deficiency (<25 nmol/L) in
this cohort, especially in winter [48]. Because of pronounced seasonal variations in 25(OH)D in our
study (51% had concentrations <30 nmol/L in spring, and 23% in autumn) [33], we used season-specific
quartiles—a preferred method to adjust for the cyclical nature of 25(OH)D [38]. We also repeated the



Nutrients 2017, 9, 379 13 of 19

analysis for GS using pre-defined cut-offs [5,10], and did not find greater benefits for muscle strength
in participants with 25(OH)D ≥75nmo/L.

In the UK, recently recommended 25(OH)D cut-offs both for overall and musculoskeletal health
are much lower [20] than those proposed by the IOM [21] and the Endocrine Society guidelines [5,10]
(25 vs. 50 vs. 75 nmol/L, respectively). The IOM also highlighted the emergence of evidence of a
non-linear relationship between 25(OH)D and several extraskeletal outcomes [21], which we have
reported for global cognition, attention [22], and mortality [23] in the very old. Greater benefits for
cognition and longevity in this cohort were observed at concentrations between 40–60 nmol/L [22,23].
However, there remains a debate whether the U-shaped relationship between 25(OH)D and health
outcomes could be biologically meaningful because the mechanisms for the apparent adverse effect
of higher vitamin D status have been poorly understood or may reflect unmeasured confounding
(e.g., hypovitaminosis D-related disease onset masked by supplementation) [51]. Future studies in
this age group are needed to determine the thresholds for 25(OH)D concentration for different clinical
and functional outcomes, and whether maintaining 25(OH)D between 40 to 60 nmol/L plays a role in
healthy ageing in the very old [52].

Despite the differences in hypotheses, definitions of exposure (25(OH)D cut-offs), and outcome
measures for muscle strength and function, there are certain parallels between the results found in
our and other studies that included significant proportion the very old [26–29]. In a sub-group of 979
older adults (aged 65–88 years) from the Longitudinal Aging Study Amsterdam (LASA), those with
25(OH)D < 25 nmol/L had higher risk of decline in physical performance over 3 years, whilst those
in the intermediate group (50–75 nmol/L) did not experience greater rates of decline compared with
participants with 25(OH)D > 75 nmol/L [26]. Also, varying 25(OH)D thresholds across different health
outcomes, gender, and age groups (55–85 years) have been found in LASA participants, which were
lower in women and the oldest old (≥75 years) [52]. Using data from the Health, Aging, and Body
Composition Study of over 2600 older adults aged 71–80, Houston et al. (2012) proposed thresholds
and best performance concentrations of 25(OH)D for physical function and strength at 70–80 nmol/L
and 55–70 nmol/L, respectively [28]. Although participants with 25(OH)D < 50 nmol/L had worse
physical performance at baseline and at 2- and 4-years follow-up compared with those in sufficient
group (≥75 nmol/L), no association was found for GS, and no association with a faster rate of decline
in either measure. Taken together, the results suggest detrimental effects of low serum 25(OH)D
(<25 nmol/L) and no change (decline) or favourable outcomes for muscle strength and physical
performance at both intermediate (>50 nmol/L) and higher (>75 nmol/L) concentrations. In the
very old (aged ≥ 85), we observed faster GS decline in SQ1 (the lowest value range: 17–30 nmol/L),
especially in men, and no beneficial effect in SQ4 (the highest value range: ≥47 to >69 nmol/L).
Also, men in both the severely deficient (<25 nmol/L) and sufficient (≥75 nmol/L) groups had worse
(slower) performance in TUG over 5 years with a slight deceleration, possibly explained by the selective
mortality of less healthy men. Women in both SQ1 and SQ4 and those with 25(OH)D ≥ 75nmol/L
had worse initial TUG times, but no differences over time. Therefore, keeping 25(OH)D above the
25–30 nmol/L minimum may reduce muscle strength decline, whereas values >50 nmol/L may not
confer additional benefits for muscle heath and musculoskeletal function in the very old.

Lower baseline 25(OH)D was more relevant for muscle strength decline in men than in women
after adjustment for a range of confounders, including physical activity, disease burden, renal
impairment and retention (in sensitivity analysis; data not shown). Greater vitamin D supplementation
explained the higher (mean) 25(OH)D concentration in women than in men (47.07 vs. 42.88 nmol/L,
respectively), and no sex differences were observed in the restricted cohort. We have previously
described sex-specific trajectories and baseline determinants of GS decline over 5 years in the very
old [42]. Steeper slopes of GS decline in men compared with women could be explained partially
by multi-morbidity [35,46] (a significant predictor of weaker GS in women), body composition [31]
(fat mass was higher in women despite lower body weight), and survival. We have also reported
shorter survival in women in both low and high 25(OH)D groups [23]. In addition, as in all studies of
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very old individuals, women’s longer life expectancy spent with more diseases and disabilities [46],
and selective mortality in men (survival of healthier men), may have resulted in a biased sample, and a
lack of power to detect associations in women.

The intake of vitamin D supplements and medication was an important determinant of 25(OH)D
status in this cohort [22,23,33], especially in women, and was mainly related to diagnosis of
osteoporosis [35]. However, similar acceleration in the rate of GS decline was observed in all
participants and in those who were not supplemented with vitamin D, suggesting that supplementation
did not attenuate the findings and that other sources of vitamin D (diet and sun exposure) may be
more relevant for musculoskeletal health. Although recent meta-analyses of RCT have reported
small improvements in muscle strength and function in deficient older adults (25(OH)D < 30
or 50 nmol/L) [15,16], larger scale studies [18] are needed to determine appropriate sources and
thresholds, of 25(OH)D to maintain good musculoskeletal function in advanced adulthood.

Strengths and Limitations

The results of our study should be interpreted with caution. The study is observational and does
not imply causality between low 25(OH)D and worse muscle strength/physical performance. Older
adults with poor physical function at baseline may have had lower 25(OH)D for reasons which were
not included in the mixed models (e.g., frailty, sun exposure or polypharmacy). Therefore, the findings
may be confounded by unmeasured or uncontrolled factors increasing the chance of Type I error.
For example, we did not control for other 25(OH)D-related hormones (e.g., parathyroid hormone,
PTH) and measures of bone health (e.g., bone mineral density), which have been implicated in the
increased risk of sarcopenia (i.e., progressive loss of muscle mass and strength) [53], and higher GS
and lean mass in older adults [54], respectively. On the other hand, adding more confounders to the
fully adjusted model may have resulted in non-significant (bias) result and reduced power to detect
significant associations, given the fact that each season-specific 25(OH)D quartile had, on average,
194 participants. Although we adjusted for fat-free mass in the analyses, the variable was estimated
using the Tanita-305 bioimpedance instrument, and dual-energy X-ray absorptiometry (DXA) or
magnetic resonance imaging would be a preferable method to reduce the risk of overestimation of lean
and underestimation of fat mass [55].

There were several potential limitations related to the characterization of vitamin D status which
may have increased the risk of mis-classification of exposure. Specifically, since 25(OH)D status prior
to baseline was unknown, we could not adjust for long-standing vitamin D deficiency (which may
have been corrected by supplementation prior to study commencement). Also, dosage and duration of
vitamin D supplementation and potential interactions with other medication were unknown. Whilst
we used a well-established method to account for the cyclic nature of 25(OH)D concentration across
the year [38], a single measure may mis-classify status for individuals throughout the year. Because
25(OH)D status was established only at baseline (2006/07) for each participant, the significance of
25(OH)D fluctuation (from winter to summer months and over the follow-up) for muscle function
could not be explored. Our choice of 25(OH)D assay (DiaSorin) has been reported to overestimate
25(OH)D deficiency (<30 nmol/L) [56] compared with some other methods (i.e., liquid chromatography
tandem-mass spectrometry, LC-MS/MS), particularly in older women [57]. However, this is unlikely
to have affected ranking of vitamin D status within sexes. Therefore, the nature and shape of the
relationship between 25(OD)D and functional outcomes that we have observed are likely to be robust,
albeit that their location on the 25(OH)D continuum may need to be confirmed by alternative 25(OH)D
quantification (e.g., LC-MS/MS). The exact sun exposure (duration, use of sunscreen and protective
clothing) in this cohort was unknown, and we used physical activity as a proxy. Whilst recognizing its
limitations, there is a good evidence that greater physical activity is associated with higher vitamin D
status [58]. In summary, all the above factors may have contributed to overestimation of low 25(OH)D
in the very old, and, consequently, affected estimation of the precise 25(OH)D concentration ranges
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where there are association with GS and TUG. Carefully designed RCTs with similar population of the
very old and longitudinal follow-up would be needed to test the 25(OH)D-muscle function hypothesis.

Further limitations of the study include its limited generalisability to the white population aged
≥85 living at similar latitudes (55◦ N). In studies of this kind, loss to follow-up due to high mortality
among the very old, and the presence of more robust survivors in the sample, is unavoidable limitation.
We observed that participants remaining in the study were healthier (less cognitive impairment,
depression and fewer chronic diseases), but had similar 25(OH)D levels compared with participants
lost to follow-up [23]. In addition, the relatively small β estimates for TUG may not represent clinically
relevant changes in this function.

Our study also had a number of strengths including its prospective design using a single birth
cohort (homogenous age); a broad representativeness of the general population in England and Wales;
stratified analyses by sex and exposure (including estimates of vitamin D supplementation); use of
season-specific 25(OH)D cut-off values to adjust for the cyclic nature of 25(OH)D [38], and adjustment
for previously established determinants of muscle strength decline [42] in the multilevel analyses.

5. Conclusions

We have found that the lowest 25(OH)D season-specific quartile was associated with a faster
rate of muscle strength (GS) decline in men (aged ≥ 85), and acceleration of the decline over 5 years
in all participants as well as those not supplemented with vitamin D. The rate of decline in physical
performance (TUG) did not differ across the vitamin D quartiles. Serum 25(OH)D may be an important
predictor of multiple health outcomes, including musculoskeletal health in the very old. These results
need to be corroborated in other prospective studies of this age group to aid definitive trials of 25(OH)D
for musculoskeletal health in later life.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/9/4/379/s1,
Supplementary Methods: Serum 25(OH)D assay, Season-specific serum 25(OH)D quartiles cut-offs, Table S1:
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Timed Up-and-Go test measurements by pre-defined 25(OH)D categories over 5 years, Table S3: β estimates of
grip strength by pre-defined 25(OH)D categories over 5 years, Table S4: β estimates of Timed Up-and-Go test by
pre-defined 25(OH)D categories over 5 years.
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