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Abstract: There are many applications controlled by the brain signals to bridge the gap in the
digital divide between the disabled and the non-disabled people. The deployment of novel assistive
technologies using brain-computer interface (BCI) will go a long way toward achieving this lofty
goal, especially after the successes demonstrated by these technologies in the daily life of people with
severe disabilities. This paper contributes in this direction by proposing an integrated framework
to control the operating system functionalities using Electroencephalography signals. Different
signal processing algorithms were applied to remove artifacts, extract features, and classify trials.
The proposed approach includes different classification algorithms dedicated to detecting the P300
responses efficiently. The predicted commands passed through a socket to the API system, permitting
the control of the operating system functionalities. The proposed system outperformed those obtained
by the winners of the BCI competition and reached an accuracy average of 94.5% according to the
offline approach. The framework was evaluated according to the online process and achieved an
excellent accuracy attaining 97% for some users but not less than 90% for others. The suggested
framework enhances the information accessibility for people with severe disabilities and helps
them perform their daily tasks efficiently. It permits the interaction between the user and personal
computers through the brain signals without any muscular efforts.

Keywords: brain-computer interface; brain-controlled operating system; EEG signals processing;
P300

1. Introduction

In the last decade, assistive technologies were developed to help people with severe
disabilities accomplish their daily tasks, like operating system control. Different sources
of information are applied to control the personal computer using, for example, the eye-
tracking devices [1] and cost-effect brain-computer interface (BCI) [2]. The eye-trackers
devices consist of infrared LEDs and one or more infrared cameras capturing the reflection
of the infrared light off of the user’s eyes and an image processing algorithms applied to
determine where the user is looking on a screen. The main difficulty of using such devices
as an access technology is the so-called Midas touch problem because gaze direction is not
always related to the focus of the attention, causing users to select a command against their
will [1]. Brain-computer interface (BCI) is an alternative applied to control the personal
computer by people with severe disabilities. It presents a channel between the human
brain and the computer [3]. BCI measures brain activities and classifies specific patterns
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associated with specific tasks. The mental strategy determines the patterns users should
produce to be interpretable by the BCI system. One of the mental strategies is attention,
which is greatly important in learning and memorizing. It is a partly cognitive process that
starts to operate when environmental stimuli are perceived [4]. Numerous methods have
been developed to examine attention, such as the Test of Variables of Attention (TOVA),
which has good external validity as it is widely used as a gold standard to detect attention.
TOVA is a computerized performance test (CPT) with a monotonous hybrid Go/NoGo
target-classification task design [5]. TOVA and CPT test-based methods are not applicable
in real-time attention examination [4].

The electroencephalography (EEG)-based attention examination method ensures con-
tinuous examination in time, and continuous information can be gained about the actual
mental state of the test subject. The second mental strategy requires external stimuli that
can be visual, auditory, or somatosensory. Visual Evoked Potentials (VEPs) are a potential
generated in the occipital region representing the EEG response to visual stimuli elicited by
a series of flashes to the user’s eyes [6–8]. The exhibition of the eyes to an external stimulus
generates an evoked potential at the brain’s cortical area, such as P300 and steady-state
evoked potential (SVEP). The difference between P300 and VEP is that in P300, the user
looks at a neutral position on the screen and focuses on the target stimuli, making P300
the only factor that discriminates target items from non-target items. While in VEP, the
user directs the eye gaze to the target item, which influences a large part of the visual
cortex, and the non-target influences a minor part. VEPs can be categorized according to
waveform patterns into transient VEPs or Steady-state VEPs [9,10]. The scope of this study
is the control of the BCI system using the evoked potential signals related to the P300 wave.
P300 responses are positive deflections in EEG signals that happen in the brain activity 300
milliseconds after external visual stimuli occur [11]. The generated response can be detected
by analyzing the brain activity in the electrodes covering the brain’s Parietal lobe. The P300
BCIs are characterized by the highest accuracy obtained during the detection of the evoked
potentials, the classifier’s low computation resources, which permits a fast response and a
shorter calibration that can be used if the obtained precision is not critical [12].

The frequent digital technology use, including web-based media, has a significant
positive and negative impact on brain function and behavior. Various BCI apps may benefit
brain health. For example, functional imaging scans show that internet-naive older adults
who learn to search online significantly increase brain neural activity during simulated
internet searches. However, the adverse effects of different web-based media include height-
ened attention-deficit symptoms, impaired emotional and social intelligence, impaired brain
development, and disrupted sleep [13]. All these effects have a direct impact on the brain
waves and should be taken on consideration after a while, six months, from using the BCI
to control operating system functionalities. The acquired brain signals are always accompa-
nied by artifacts related to physiological activities such as muscle or eye movements and
non-physiological ones like the electrode’s placement, or the recording environment [14,15].
So, noise suppression should be applied to keep the valuable information.

BCI systems were validated according to the online and offline approaches. The
EEG signals were recorded and immediately translated at the end of each recorded trial
regarding the online approach. The offline approach was widely used in the literature
because it used the existing benchmarks available on the Internet, such as the datasets
provided by the BCI competition or PhysioNet. The two approaches are different in their
implementation, and it should be noted that the performance obtained according to the
offline approach decreased significantly compared to the online [16].

Many BCI-spellers were developed in the last few decades. An in-depth review of
these systems was published in [3]. Our state-of-the-art evaluation showed that most BCI-
spellers were created using the visual evoked potential called P300. The most important
problems and challenging facing the P300-speller system [17]:
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1. Crowding effect:t his problem arises when a target object is surrounded by similar
objects, making determining the target difficult for the user. Inaccurate character
distribution could cause such a problem.

2. Adjacency problem: this problem arises near the target, when the non-target flash and
attract the user to produce the P300. It can be reduced by increasing the gap between
the matrix elements and reducing the matrix size.

3. Fatigue: users feel tired when concentrating for a long time. It can be solved by
increasing the communication rate for typing a good design of the visual paradigms.

Moreover, several paradigms were proposed to develop P300-spellers, including the
Row/Column paradigm (RCP), the Single Character paradigm (SCP), the Checker Board
paradigm (CBP), and the Region-Based paradigm (RBP). Table 1 present a comparison
between the different P300 paradigms. This study adopted the RCP for P300 BCI-spellers.
RC P300 speller was introduced by Farwell and Donchin, who developed a protocol
whereby a subject is presented with a 6X6 character matrix. The rows and columns are
randomly flashed with a predefined period and an inter-stimulus interval. Each row
and column of the matrix is intensified according to a random sequence to spell a single
character. The subject is asked to focus on the character he wants to spell. The P300
evoked potential appears in the EEG signal as a response to the intensification of a row or a
column containing the desired character. By assessing the amplitude of the P300 response
after each flash, the target cell is determined as the intersection of a row and a column
that elicit the most significant P300. Extensive progress was made in developing other
attractive applications, such as transmitting digits over the Internet [18], navigating the
virtual world [19], virtual keyboard [20], controlling the robot via Internet [21], controlling
an electric Car [22], phone keypad [23], and 2-D cursor [24]. These studies suggested a
P300 BCI system allowing severely motor-disabled people to submit system commands to
the operating system for execution.

Table 1. P300 paradigms Comparison.

RCP SCP CBP RBP

Accuracy Medium Low Very high High

Adjacency problem X X × ×

Crowding Effect X X X ×

Double flash X × × ×

The proposed method helps disabled people to use their personal computers by
providing a complete control of computers through the command-line interface (CLI),
which allows the user to submit many operations to the processing unit. The system
includes:

• The signal amplifier devices permit the validation of the application according to the
online approach.

• The signal processing system allows the analysis of the P300 signals and translates
them to commands.

• The command-line interface performs the appropriate actions on the personal computer.

The rest of this paper is organized as follows. Section 2 presents the methodology and
describes the EEG signal acquisition, the signal processing chain, and the different features
of the application. Section 3 presents the experimental results. Section 4 discusses the
obtained results, the evaluation criteria of EBCI systems, and the possible future research
directions on embedded BCI systems. Finally, Section 4 provides concluding remarks.

2. Materials and Methods

The proposed brain-controlled O.S. command-line interface lets the user interact with
his computer. The user can submit command-line statements for execution to manage
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the different aspects of the underlying operating system (file system, processes, system
configuration, etc.). A Graphical User Interface (GUI) was implemented to enhance the user
experience and the usability of the application. Moreover, the proposed application enables
the user to run and benefit from the many programs installed on the user’s machine, such
as the M.S. Office suite of applications. Upon starting one application, the user’s brain
activity signals are translated into computer-mouse events or keyboard strikes.

2.1. System Architecture

Figure 1 presents the general structure of the proposed system. It consists of various
components that were implemented using a different programming language, such as Java
and C++. The architecture comprises two subsystems: command-line interface and data
acquisition system. The latter receives the brain signals from the user’s scalp in analog
form and converts them to digital format to be used by the application. Moreover, the
command-line interface is an editor allowing command conversion to specific services.

Figure 1. System architecture.

2.1.1. Brain Controlled O.S. Command-Line Interface Architecture

The proposed O.S. Command-Line Interface architecture is composed of the following
components as depicted in Figure 1:

• Graphical User Interface: It shows that the user has submitted commands, which are
predicted by the P300-speller and displays the result and the status of such commands.

• Keyboard Controller: It enables users to enter text and messages using a virtual
keyboard. This component is enriched by an auto-complete component that minimizes
typing characters by the user.

• Mouse Controller: It enables the user to control the mouse movements by translating
P300-Speller mouse commands to mouse movement services, including moving the
mouse up, down, left, and right.
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• Lexical Analyzer: It is responsible for parsing the commands entered by the user. It
breaks the different commands entered by the user in the form of sentences into a
series of tokens (lexemes). The generated tokens will be sent to the syntax analyzer.

• Syntax Analyzer: It parses a stream of tokens generated by the lexical analyzer and
verifies whether the provided stream is grammatically correct or not. If so, the cor-
responding action of the Command-Line API is called. Otherwise, an error message
is displayed.

• Command Line API: The main interface includes all the functions that the application
provides, such as file system commands and O.S. commands.

• Files Library: It enables the interaction with the file system of the O.S. It allows
benefiting from functionalities, such as files and directories management functions,
e.g., creating, deleting, renaming, moving, and copying files.

• Disks Library: It is responsible for enabling disk driver activities provided by the
system, such as Scan disks, erasing disks, organizing disks, and showing information
about disk storage.

• System Library: It enables the interaction with the operating system to manage date
and time, set the system configuration, and display the system history.

• Process API: It enables the interaction with the O.S. processes manager. It allows
for controlling, managing, and monitoring active and background processes. It per-
mits submitting statements to run/terminate a process, list running processes, and
manage paths.

2.1.2. Graphical User Interface

Figure 2 presents a print screen of the main Graphical User Interface (GUI), which
comprises three parts:

• A P300-Speller command matrix: The bottom of Figure 2 represents the different
symbols/commands or characters that the user may enter. This command matrix
enables the typing of character strings and activates the mouse controller.

• An input area: It shows the characters entered by the user using the P300-Speller main
command/symbol matrix.

• A feedback area: This area shows the results of the commands submitted by the user
and the system error messages.

Figure 2. Main GUI.

2.1.3. Auto-Complete Functionality

The auto-complete is a feature that we developed to decrease the system latency by
increasing the system throughput. This feature allows the user to type a command with
a minimal effort. It is linked to the input area of the GUI. Figure 3 presents a sample
of the auto-complete of a user’s command. It suggests a list of available commands or
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file/directory or process or path names based on the few characters already entered by the
user. The auto-complete feature has many advantages, such as:

• It speeds up the interaction between the user and the computer by reducing the
number of characters to be typed to enter a command.

• It helps the user by suggesting a list of available commands or file/directory/process/
pathnames. As shown in Figure 3, the user may rename and move a file from its
location by typing a few characters.

Figure 3. Sample of the auto-complete of a user’s command.

2.1.4. Moving the Mouse on the User’s Screen

Accessing the computer programs installed on the user’s machine, such as the M.S.
Office suite of applications, was one of the main goals of the developed tool. The user’s
brain activity signals will be translated into computer-mouse events, or keyboard strikes
upon starting any of these applications. These features required developing a fast way to
move on the user’s screen. We divided the screen into five areas, as depicted in Figure 4.
A. Recursively, the division process will continue until the regions become very small. In
such a case, as shown in Figure 5, a new command matrix appears, allowing the system to
generate mouse events based on the desire of the user to move the mouse 5-pixels up, down,
left, or right. The method may also create events corresponding to the left or right button
of the mouse. Thus, the user may open files on the desktop of the computer. Moreover, this
menu allows running and selecting an action from the menu of any application installed
on the user’s computer.

Figure 4. Dividing the user’s screen. (A) Successive division of the user’s screen into small areas.
(B) Division the user’s screen into 5 areas.
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Figure 5. Controlling the mouse movement when no more divisions are possible.

2.1.5. Structure of a Command-line Interface

Command-line Interface (CLI) is an interactive way to perform specific tasks between
the user and the computer (hardware or software). A text-only interface allows typing
the command and submitting it by pressing the “Enter” key. The command line usually
returns the output in a text form on the same screen. The outcome may be the answer to a
question or the result of an operation. Generally, CLI considers syntax and semantics at the
same time. The syntax is a grammar that defines a set of rules to be respected during the
call of commands. For the semantics, it establishes the order of operations to be executed.
The general structure for typing a command is as follows:

• [instruction][way][destination f iles]
• [instruction][way][destination f iles][destination f iles]
• [instruction][way]|[instruction][way] > [destination f iles]

[instruction] means the job wants to execute it like: copy, delete, rename. [way] means
“how to do this”. Usually, this command provides an option like delete recursively and
show in sorted form. [files] it is the source and destination of the operations. [symbol]
is a special symbol to do a specific job like (>) to move the output to a file, (|) to link
two commands together to use the output of the first command as an input to the second
command. A simple command line will display a command prompt which the user will
write; then, the result will be in a text form or an error message based on the syntax error
or permission. We notify that some CLIs allow users to change the working directory. In
contrast, others protect the resources or directories and allow them only in privilege mode
or with permission from the owner of these folders like kernel operation and password files.

2.1.6. Class Diagram

Figure 6 presents the class diagram of the proposed application. It is composed of the
following classes:
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Figure 6. Class diagram of the proposed system.

• EventListener: it is responsible for listening to a specific port to receive the command
from BCI2000. Then, the command is printed at GUI.

• CommandRuner: it allows binding objects of different classes and analyzing its
methods and parameters. Then, it locks up to the appropriate object and invokes the
appropriate method based on what the user typed.

• GUI: it is the user interface for the system in which the inputs and outputs are printed
for the user.

• AutoCompleterManger: it is responsible for listening to the text field and determining
which auto-completer should activate according to what the user typed. The auto-
completer feature is composed of these classes:
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1. AutoCompleter is responsible for initializing the listener and the actions listener.
2. FileAutoCompleter extends from the AutoCompleter class. It shows the available

files and directories of the file system that start with the current path typed by
the user.

3. CommandAutoCompleter extends from the AutoCompleter class. It shows the
available commands that start with the current input.

• GUIEventHandler: It has functions that accept any characters and then insert them
into the text area.

• MouseEventHandler: It has a function that accepts mouse events, segments the GUI to
different regions, and moves the mouse cursor to this region. The GUI segmentation
will continue until we reach an appropriate size.

• KeyboardController: It has an adapter that will receive keyboard commands and
convert them to keyboard events for other applications such as notepad.

• Lexer: it is responsible for accepting a command and converting it to tokens.
• Parser: is responsible for analyzing the commands, which are made of a sequence of to-

kens, to determine their grammatical structure by respecting a given formal grammar.
• Path: it has functions that deal with the file system path. The parser class uses it.
• CmdAPI: it is an abstract layer above the APIs. It called the appropriate method of

the APIs.
• Disk_Cmd_Lib: it has functions that deal with Disks operations.
• File_Cmd_Lib: it has functions that deal with the operations of files and directories.
• Process_Cmd_Lib: it has functions that deal with the process’s operations.
• Sys_Cmd_Lib: it has functions that deal with the functions of the system.

After the system startup, it shows a matrix for the user to type a command. Then,
the amplifier generates signals for each character the user chooses from the matrix. These
signals are handled by the BCI2000 and converted to valid commands. After that, the
application receives each character from the BCI2000, and after the command is complete, it
passes it to the parser to compile it and ensure it has the correct syntax. Then, according to
the command, the parser is called the CmdAPI, an abstract layer of the APIs, and CmdAPI
invokes the appropriate function from the APIs. Finally, the operating system performs the
action, and the result will be returned and printed at GUI.

2.2. Signal Processing Methodology

The classification problem addressed in this study is complex and handled in two
phases. The first phase is a 2-class classification problem-solving to predict if a signal, called
a post-stimulus signal, corresponds to a P300 response or not. The second one deals with
a multi-class classification problem since it aims to predict a symbol/command from a
command matrix.

2.2.1. Terminology and Annotations

Let’s consider M an n × m matrix of symbols (commands); n and m are the numbers of
rows and columns of the matrix M. M is called a command matrix.

M =



C11 · · · C1j · · · C1m
... �

... �
...

· · · · · ·
... �

... �
...

Cn1 · · · Cnj · · · Cnm

 (1)

Every row and column of the matrix M was assigned a unique identifier denoted rcid
(row/column identifier). The following matrix shows the rcids of rows and columns of the
matrix M. An intensification is the process of brightening (intensifying the luminosity of)
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all symbols of a given row or column of M. The previous matrix shows the intensifications
of the 3rd column and of the 2nd row of a matrix of symbols respectively.



1 ⇓ � j ⇓ � m ⇓
m + 1⇒ C11 · · · C1j · · · C1m

�
... �

... �
...

m + i⇒ · · · · · ·
�

... �
... �

...
m + n⇒ · · · · · ·

 (2)

A sequence of intensifications S of the matrix M is an ordered collection of rows and
columns of M intensifications. During a series of intensifications S, each of the rows and
columns of the matrix M is intensified once. Hence, a sequence of intensifications S is
composed of (n + m) distinct intensifications < I1, I2, . . . , In+m > each of them corresponds
to an intensification of a row or a column of the matrix M. Every intensification has
two attributes:

• rank: It corresponds to the rank (first, second, third, etc.) of the intensification in a
sequence S.

• rcid: It is the identifier of the row/column of M which was intensified.

Figure 7 presents the order of intensifications of rows and columns of the matrix
M during a sequence of intensifications S. A single sequence of intensifications S elicits
(n + m) post-stimulus signals denoted ζ(S). ζ(S) corresponds to the following ordered
collection of a post-stimulus:

ζ(S) =< ζ(I1), ζ(I2), · · · , ζ(In+m) > where |ζ(S)| = (n + m) (3)

Figure 7. Intensifications of rows or columns of a matrix of symbols.

For the selection σ of a single symbol (command) cij of M, a sequence of intensifications
S is repeated α times.

σ =
α⋃

i=1

Si (4)

where Si is the ith repetition of the sequence S. Thus, the selection σ of a single command
elicits a set of post-stimulus signals denoted ζ(σ):

ζ(σ) =
α⋃

i=1

ζ(Si) =
α⋃

i=1

< ζ(Ii1), ζ(Ii1), · · · , ζ(Ii(n+m)) > (5)

Iij is the jth intensification that occurs during the ith repetition of the sequence Si and ζ(σ)
is composed of α(n + m) post-stimulus signals as depicted in the following equation:
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|ζ(σ)| =
α

∑
i=1
|ζ(Si)| =

α

∑
i=1

(n + m) = α(n + m) (6)

2.2.2. Settings

Let’s consider a training data set D comprising post-stimulus signals corresponding
to the selection of β symbols (commands) cij of M.

D =
β⋃

i=1

ζ(σi) =
β⋃

i=1

α⋃
j=1

ζ(Sij) (7)

where Sij is the jth repetition of the sequence S that occurs during the ith selection. So, the
data set D consists of β× α× (n + m) post-stimulus training signals.

|D| =
β

∑
i=1
|ζ(σi)| =

β

∑
i=1

α(n + m) = βα(n + m) (8)

2.3. Pre-Processing and Feature Extraction

The EEG signals in each electrode were filtered by an infinite impulse response (IIR)
filter. It was applied to remove the unuseful information and ensure that the detected
signal effectively corresponded to the P300 response. The filter block should be well
tuned to avoid introducing spurious information that an inappropriate application of filter
parameters could generate [15]. The applied bandpass filter was set to eight, which kept
the data between 1 and 10 Hz.

2.4. Classification Strategy

In the case of a single classifier, all the training data set D signals were used to train a
2-class classifier. The classifier was trained to predict if a signal contained a P300 response
or not. Given a post-stimulus signal corresponding to an intensification I of a row/column
of M, the prediction method, denoted ρ, returned a value of 1 or 0, which indicated whether
the signal ζ(I) was a P300 response or not.

ρ(ζ(I)) = v such that v ∈ {0, 1} (9)

The evoked potentials arise about 300 ms after the stimulus; this time window is
enough to capture all required time features for efficient classification. The extracted signals
are filtered with an 8th order bandpass filter to keep the bins between 0.1 and 10 Hz.
The filtered signals have been decimated according to 10 Hz, which results in a signal
composed of 14 samples. Finally, a post-stimulus signal has been transformed into a vector
by concatenating the 14 samples of all the 64 channels. So, for each subject, the training
portion comprises 15,300 post-stimulus vectors of dimension 896, for which labels are
v ∈ {0, 1}.

Given a sequence of intensifications S, the parsing method denoted τ returned a row
vector with values obtained by using the prediction method ρ.

τ(ζ(S)) = U (10)

U is a row vector composed of the elements < u1, u2, . . . , un+m > such that
ui = ρ(ζ(I(j∈[1···n+m]))) where Ij.rcid = i. As such,

τ(ζ(S)) =< ρ(ζ(I.rcid = 1)), ρ(ζ(I.rcid = 2)), · · · , ρ(ζ(I.rcid = n + m)) > (11)

The parsing method τ identified which intensifications of rows/columns of M were
elicited, during the sequence S, P300 responses and which were not.
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Given a selection σ, the α sequences of intensifications were parsed sequentially by
the single classifier using the parsing method τ leading to α row vectors, each of which
corresponded to τ(ζ(Si))1≤i≤α. The α row vectors τ(ζ(Si))1≤i≤α were then used to calculate
the probability that the intensifications of rows and columns of M that occurred during the
selection σ elicited P300 responses. These probabilities were computed using the following
prediction function:

Ψ(ζ(σ)) =< u1, · · · , um, um+1, · · · , um+n >

such that ui =
1
α <

α

∑
i=1

ρ(ζ(Ij.rcid = i))
(12)

where Ij.rcid = i is the intensification of the row/column of M, in which rcid was equal to
i, that was performed within the jth sequence Sj during the selection σ.

Ψ(ζ(σ)) =< 1
α <

α

∑
i=1

ρ(ζ(Ij.rcid = i)), · · · ,

1
α <

α

∑
i=1

ρ(ζ(Ij.rcid = n + m)) >
(13)

Let y be the rcid of the M column that had most probably elicited P300 responses. y is
the identifier of the column that maximizes the score uy.

uy = Maxm
i=1(ui) (14)

Let x be the rcid of the M row that has most probably elicited P300 responses. x is the
identifier of the row that maximizes the score um+x.

ux = Max(m+n)
i=m+1(ui) (15)

We consider that the symbol cxy of M is the most probably user’s desired symbol.

3. Results

The proposed system was validated according to the online approach for comparison
and benchmarking purposes and regarding the online approach to check the stability of
the system in term of accuracy with real users.

3.1. Offline Testing

The offline testing was performed using a public dataset provided by the BCI com-
petition [25]. It contained the EEG signals recorded from two different subjects and five
spelling sessions. According to the offline approach, the system was validated using a
public dataset containing P300 post-stimulus signals recorded from two subjects during
five spelling sessions. For each subject, the training set is composed of 85 characters
spelling. Every character spelling corresponds to 180 = 12 × 15 post-stimulus labeled
signals (each of them collected over 64 channels). Thus, for each subject, the training
dataset corresponds to 15,300 = 85 × 180 post-stimulus labeled signals. In the meantime,
for each subject, the testing set is composed of 100 characters spelling which correspond to
18,000 = 100 × 180 post-stimulus signals. Table 2 sums up the different parameters of the
dataset using the previous mathematical modeling.
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Table 2. Description of the benchmarking dataset.

Parameter Notation Formula Value

The number of rows of the command Matrix M. n 6

The number of columns of the command Matrix M. m 6

The number of signals during a single sequence S. |ζ(S)| |ζ(S)| = n + m 12

The number of sequences S in a single selection σ. α 15

The number of post-stimulus signals during a single selection. |ζ(σ)| |ζ(S)| = α(n + m) 180

The number of selections (per subject) of the training dataset. β 85

The number of post-stimulus signals (per subject) of the training dataset. |D| |D| = βα(n + m) 15,300

The number of selections (per subject) of the testing dataset. β′ 100

The number of post-stimulus signals (per subject) of the testing dataset. |D′| |D′| = β′α(n + m) 18,000

3.2. Online Testing

The online testing was performed using the acquisition system G.Nautilus Research,
which allowed the non-invasive recording of the brain activities from the scalp through
64 dry electrodes. The EEG signals were captured and digitalized using a highly accurate
analogic to digital converter with 25-bit accuracy at a 250 Hz sampling rate. The electrodes
were placed. The amplifier was connected to a P.C. using a USB cable, and the management
was performed using a C Application Programming Interface (C API). The electrodes were
placed on the scalp according to the international position system 10–20 as depicted in
Figure 8A. The proposed application was controlled through the P300 signals, and the
related brain activities mainly appeared in the cortex area. Therefore, only the electrodes
in this region were kept during the acquisition (Fz, Cz, Pz, P4, P3, Oz, P08, P07) and
placed on the scalp via the g.GAMAcap as illustrated in Figure 8B. The skin preparation
needed low impedance between the skin and electrodes, so a conductive gel was used.
The management of the G.Nautilus Research amplifier was assured by an open-source
framework called BCI2000. This framework was implemented using the C++ language.
BCI2000 comprises four modules to handle brain signals: the source module to acquire
signals, the processing module to treat EEG signals, the application module to take the user
feedback, and the operator module. Furthermore, the BCI2000 configures the P300 speller
window, such as the size and location of the window, spelling modes, spelling matrix, and
destination address used to submit the user’s selections to the user’s application.

Figure 8. EEG electrode localization. (A) electrode positions. (B) g. GAMAcap.

4. Discussion

The proposed framework allows users with severe disabilities to control most of the
functionalities of an operating system, mainly by brain activities. It helps them submit
commands to the terminal, enter text and messages, control mouse movements, interact
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with the files systems, manage the process, etc. The signal processing algorithm was tested
according to the online and offline approaches and used different classification algorithms
for comparison purposes to select the suitable one with maximum performance in terms
of accuracy [26]. In this respect, we implemented four classifiers from different families:
Linear Discriminant Analysis (LDA) [14], Partial Least Squares regression (PLS) [27],
logistic regression (REG) [11], and Support Vector Machine (SVM) [28].

The system performance was evaluated based on its accuracy, defined by the ratio
between the correctly classified trials and the total number of investigated trials. Table 3
shows the accuracy of the system obtained by the different classifiers. The SVM method
outperformed the other algorithms for P300 detection, providing an accuracy average of
94.5%. In contrast, the accuracy of the SVM classifier reached 96% for subject A where the
LDA, PLS, and REG algorithms achieved 93%, 94%, and 94%, respectively. However, the
SVM failed to keep the highest accuracy for subject B, where the PLS and REG algorithms
outperformed the SVM and the LDA.

For comparison purposes, Table 4 summarizes the accuracy obtained by the adopted
classification strategy and those obtained by the winners of the BCI competition. The pro-
posed classification strategy with the simple feature extraction and the filtering technique
outperformed the 2nd and 3rd ranked algorithms. Compared to the winner, the proposed
system reached the same accuracy of 96% for subject A, and the accuracy decreased by 3%
only for subject B.

Table 3. Asymmetrical pairs between happy and pleased emotions.

Subject LDA SVM PLS REG

Subject A 93 96 94 94

Subject B 92 93 94 94

The system was validated according to the online approach by connecting an acquisi-
tion system to the computer and asking five participants to use the different APIs of the
proposed environment. Furthermore, the subjects were requested to minimize any source
of physiological artifacts that could deteriorate the system performance, such as avoiding
eye movement or any muscular activities during the use of the system. The obtained
accuracies were very promising and tended to be 97% for some subjects, and in the least,
the obtained accuracy was about 90%. The obtained accuracies exceeded the requirement
of the navigation accuracy by 20% [16]. The promising accuracies obtained according to the
online approach clearly showed the efficiency of the proposed method as the accuracy was
maintained above 70% for all subjects. The experimental results encouraged the use of the
proposed system by people with severe disabilities as it guaranteed a good performance in
terms of accuracy.

Table 4. Accuracy obtained by the different classifiers (%).

Winner of BCI Competition

Subject Proposed Method 1st 2nd 3rd

Subject A 96 96 90.5 80

Subject B 93 95 90.5 80

In [29] , a file explorer based on BCI mouse is proposed allowing the user to access a
computer and manipulate the stored files. The framework integrates the common function
of an explorer such as BCI mouse, BCI speller, and an explorer. BCI mouse is controlled by
the P300 and motor imagery signals to move the cursor from an arbitrary initial position to
an arbitrary target position, and further select a target of interest or reject an unintended
target. The BCI speller is implemented based on P300 speller to enter the path. The explorer
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is composed from the BCI mouse and the P300 speller allowing to perform window’s
explorer basic function (e.g., access a fold in the computer, open, close, copy, paste, and
delete a file in this fold). Shenghong et al. proposed an asynchronous hybrid BCI system
integrating a speller, web browser, an email-client and a file explorer controlled by the
EEG and electrooculography (EOG) signals [30]. The file explorer API is validated on
ten healthy subjects and the average accuracy reached 95% and the and the time spent
performing a selection/rejection is about 1.76 min using the motor imagery signals against
1 min using the P300 signals [29] . The GUI integrates few features only such as the
movement of the cursor and the selection of icons. Mathias presented in [31] a simple GUI
allowing user to control mouse cursor and keyboard input on the level of operating system,
thereby making it possible to use any windows application such as notepad. The system
reached an average accuracy of 85% in a free-spelling mode, which enable participant to
write 21 error-free characters per minute. Compared to the previous systems, the proposed
framework contains more features and cover the most functionalities of an operating system
instead on focus on a simple feature as the launch of a software. Furthermore, it contains a
command line interface, lexical and syntax analyzer, file and disks libraries management,
and process management. In term of the accuracy, the platform outperformed than the
framework presented in [31] where the accuracy is enhanced by a 10%.

5. Conclusions

This study presents an integrated computational environment using brain-computer
interface (BCI) technology to enhance the accessibility to information and open a new
opportunity for assisting people with severe disabilities in their daily life activities. Using
the extended and customized open-source software tools, our proposed environment
provides a new opportunity to interact with graphical user interfaces via brain activities
to manage computer resources. The proposed system enables a complete control of the
personal computer with the minimum number of commands, giving the user more comfort
and satisfaction. The signal processing chain is based on an IIR filter to remove artifacts and
different classifiers to predict which symbol/command of a command matrix is the user’s
target command. The average accuracy of the proposed system achieved 94.5% using the
SVM classifier.

In the future, we intend to extend the proposed system to include the control of the
developed APIs to be used by subjects with eyesight problems. Finally, we want to expand
the framework to have a web browser, which edits API to write documents and gives the
user a wider control and a more independent environment.
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