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Rhodium-catalysed C(sp2)–C(sp2) bond formation
via C–H/C–F activation
Panpan Tian1, Chao Feng1,2 & Teck-Peng Loh1,2

Fluoroalkenes represent a class of privileged structural motifs, which found widespread use in

medicinal chemistry. However, the synthetic access to fluoroalkenes was much under-

developed with previous reported methods suffering from either low step economy or harsh

reaction conditions. Here we present a RhIII-catalysed tandem C–H/C–F activation for

the synthesis of (hetero)arylated monofluoroalkenes. The use of readily available

gem-difluoroalkenes as electrophiles provides a highly efficient and operationally simple

method for the introduction of a-fluoroalkenyl motifs onto (hetero)arenes under oxidant-free

conditions. Furthermore, the employment of alcoholic solvent and the in-situ generated

hydrogen fluoride are found to be beneficial in this transformation, indicating the possibility of

the involvement of hydrogen bond activation mode with regards to the C–F bond cleavage

step.
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F
luorine, ‘small atom with a big ego’, due to its intrinsic
properties such as small size and high electronegativity in
comparison with other halogen atoms, has played a key role

in all fields of science1,2. More specifically, the incorporation of
fluorine or fluorine-containing structural motifs into organic
molecule brings about substantial improvement in its bioactivity
and provides unique chemical and physical properties, thus
enabling the widespread use of this strategy in the field of
medicinal chemistry3–5. In this context, fluoroalkenes represent a
class of very important molecules owing to their biological
properties and also their synthetic potential in synthetic organic
chemistry6,7. Furthermore, as favourable peptide bond mimetics,
both electrostatically and geometrically, as well as their resistant
nature to enzymatic degradation, the fluoroalkene structural
motifs have been attracting increasing interest in medicinal
chemistry and drug-discovery research8–12. Albeit their great
importance, compared with the development of analogous
fluorination and trifluoromethylation methodologies13–18,
the synthetic access to alkenyl fluorides remains largely
underdeveloped, with most of the reported protocols suffering
from the need of substrate pre-activation or using non-readily
available starting materials, low regio- or stereo-selectivity and
poor functional group tolerance due to the employment of
sensitive reagents19–21. By taking advantage of the Pd/Cu-
catalysed C–H activation strategy, Hoarau and colleagues22,23

reported elegant works on the fluoroalkenylation of heteroarenes
either through C–H/C–Br or C–H/CO2H couplings (Fig. 1d).
Notwithstanding the advance attained, the development of a new
synthetic method, which streamlines the access to fluoroalkene
motifs using readily available building blocks while avoiding
substrate pre-activation steps, would still be of meaningful
importance in both the synthetic organic chemistry and
pharmaceuticals development.

With explosive advancements achieved in the past decade, the
directing group assisted C–H bond activation has emerged as a
powerful and competent tool, which not only result in
fundamental changes in the retrosynthesis but more importantly
represents the state-of-the-art in the organic synthesis and shows

the direction of development beyond what traditional synthetic
methodologies could bring about24,25. As a subclass, the
Rh(III)-catalysed C–H functionalization is booming rapidly in
the recent years26–30. Although a diverse range of synthetically
useful transformations have already been attained in this context,
the application of Rh(III)-catalysed C–H activation in the fluorine
chemistry is unprecedented and more importantly the
employment of C(sp2)-X as electrophilic coupling partner is
totally unrecognized in high valent rhodium catalysis31,32.
Therefore, the development of a Rh(III)-catalysed C–H
functionalization protocol that enables the easy access of
biologically relevant fluoroalkenes is highly desirable and the
feasibility of such protocol was based on the following
considerations: (i) Rh(III)-catalysed alkenylation has evolved to
be a competent and reliable method for the introduction of olefin
segments, although stoichiometric amount of external oxidant
was always required to fulfill the redox demand (Fig. 1a)33,34;
(ii) notwithstanding its high dissociation energy, the C–F bond
could be activated by transition metal or through the formation of
hydrogen bond, provided that suitable hydrogen bond donor is
present (Fig. 1b)35–40; (iii) gem-difluoroalkenes represent a class
of appealing synthetic intermediates with the C–C double bond
being highly polarized because of the electronegativity of fluorine
and also the repulsion effect stemming from its unpaired
electrons41,42. Furthermore, it is well-known that hetero-
nucleophiles could undergo facile nucleophilic addition or
substitution reactions under basic conditions (Fig. 1c)43–46.
We reasoned that the putative carbocation character of
gem-difluoroalkenes is of critical importance in ensuring the
regioselectivity of carborhodationic step and the employment of
hydrogen-bond donor would result in the activation of C–F bond.
Assuming the viability of our proposal, there comes with an
affiliated bonus, as no external oxidant was required because of
the redox neutral property of this transformation32. With our
ongoing interest in rhodium and fluorine chemistry47–49, herein
we would like to present the chelation-assisted C–H activation
strategy for the direct incorporation of the a-fluoroalkenyl unit
using gem-difluoroalkene as the fluoroalkene donor (Fig. 1e)50.
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Figure 1 | Proposed method of rhodium-catalysed a-fluoroalkenylation. (a) Oxidative alkenylation through Rh(III)-catalysed C–H activation.

(b) Transition-metal-catalysed C–C bond formation through C–F activation. M, metal; TM, transition metal. (c) Base-promoted inter- or intramolecular

nucleophilic addition or substitution of gem-difluoroalkenes with heteronucleophiles. X, hetero atom. (d) Pd/Cu-catalysed C–H fluoroalkenylation of

heteroarenes. X, Br or CO2H. (e) In this report, oxidant-free Rh(III)-catalysed a-fluoroalkenylation of (hetero)arenes. The hydrogen bonding interaction is

believed to promote the cleavage of C–F bond, which, in turn, renders this reaction redox neutral. DG, directing group.
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Results
Reaction condition optimization for 3aa. To test our
hypothesis, the cross-coupling between 1-(2, 2-difluorovinyl)-4-
methoxybenzene (2a) and 1-(pyrimidin-2-yl)-1H-indole (1a) was
selected as the model reaction. After examination of a consider-
able variety of reaction parameters, we were rather pleased to find
that the anticipated fluoroalkenylation product could be obtained
in 89% yield when using [RhCp*(CH3CN)3](SbF6)2 as the catalyst
and methanol as solvent, and at 80 �C for 16 h (see
Supplementary Tables 1–3 for details of reaction optimization).
In accordance with our hypothesis mentioned above, this reaction
occurred in an excellent regio- and stereo-selective manner due to
the intrinsic property of gem-difluoro substituents. Considering
the fact that hydrogen fluoride (HF) itself is a strong hydrogen-
bond donor, which could provide a resultant stabilization energy
in the cleavage of C(sp3)–F bond process, as well as to evaluate
whether such an interaction was present and in turn facilitated
our reaction process, control experiments with external HF
sequesters were conducted37. As expected, the addition of
exogenous bases such as NaHCO3, Na2CO3 and 2,6-di-tert-
butyl-4-methylpyridine for the neutralization of the HF generated
in the reaction was proved to be detrimental to this
transformation. Taking this phenomenon together with the
superiority of alcoholic solvents into consideration, it is
reasonable to assume that the activation of C–F bond through

hydrogen-bond formation is involved and proved to be crucial
for the execution of this protocol. Furthermore, the
hydroarylation product arising from the protonation of
carborhodation intermediate was not observed throughout
the whole reaction, implying the kinetic favourability of the
b-defluorination step51.

Substrate scope. Having obtained the optimized reaction con-
ditions, the issues with respect to functional group tolerance and
scope of gem-difluoroalkene was thus addressed and the results
were summarized in Table 1. In general, with respect to aryl
substituted gem-difluoroalkenes, both electron-donating and
electron-withdrawing functional groups, regardless of the sub-
stitution patterns, on the arene moiety were all well tolerated,
affording the desired products in high to excellent yield. When
electron-rich substituents such as Me or OMe are present in the
ortho, meta or para positions, the reaction proceeded well, leading
to the formation of the desired products with the yields ranging
from 69% to 91% (3ab–3ae). However, when 2f was used as a
substrate, the reaction afforded product 3af in 46% yield, which
may be attributed to the competitive chelation effect of nitrogen
substituent in this case. Substrates with synthetically useful
functional groups such as NO2, CF3, Ac, CO2Me and CN (2g–2k)
participated in this reaction efficiently, to deliver the

Table 1 | Scope of gem-difluoroalkene for the C–H/C–F activation reaction.
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Experiments were performed with 1 (0.1 mmol), 2a (0.15 mmol) and [Cp*Rh(MeCN)3](SbF6)2 (0.004 mmol) in MeOH (0.5 ml) for 16 h at 80 �C.
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fluoroalkenylation products in high to excellent yields. Further-
more, we were pleased to find that halogen substituents were also
well tolerated in this reaction, which offers the opportunity for
further synthetic elaborations (2l–2p). The benzo[d][1,3]dioxole
and naphthalyl derived substrates 2q, 2r were also amenable to
this reaction conditions to deliver the desired products in 91%
and 94% yield, respectively. Notably, heterocycle based gem-
difluoroalkenes, such as thiophene (2s) and benzo[b]thiophene
(2t), also proved to be viable substrates, leading to valuable
products in high yields. Pleasingly, this protocol also

accommodates the alkyl derived gem-difluoroakenes, and when
2u was employed as substrate the desired product 2au was
obtained in 81% yield.

The reaction generality of indole derivatives was subsequently
investigated and the results were summarized in Table 2. It was
found that electron-releasing groups, regardless of their positions
on the substrates, were proved to be beneficial, leading to the
desired products in excellent yields (3ba–3fa). Again, halogen
atoms were nicely tolerated (3ga–3ka). Substituents with strong
electron-withdrawing ability have somewhat deleterious effect on

Table 2 | Scope of indole and 2-arylpyridine derivatives in the C–H/C–F activation reaction.
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Table 3 | Scope of benzamide in the C–H/C–F activation reaction.
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this reaction and the impact became more severe with regard to
5-CN-based indole substrate 1m, which afforded the coupling
product 3ma in low yield. Furthermore, it was realized that this
protocol was not restricted to indole-derived heterocycles as
demonstrated in the cases of 1n to 1p. It needs to be noted that
the switch to trifluoroethanol as solvent was proved to be critical
for achieving high reactivity when pyrrole substrates 1n and 1o
were employed32. The superiority of CF3CH2OH as the reaction
solvent in these cases was attributed to its ability of acting as a
better hydrogen-bond donor than MeOH. When 2-(thiophen-2-yl)
pyrimidine 1p was used, the reaction also worked well to afford
the desired product (3pa) in 72% yield. To further challenge the
reaction scope of this reaction, 2-arylpyridine derivatives were
subsequently examined. We were pleased to find that when
simple 2-phenyl pyridine was tested, the desired product 5aa was
obtained in synthetically useful yield. For substrates containing
ortho-substituents, such as 4b–4c, the reaction efficiency was
slightly decreased because of the steric hindrance involved,
whereas in the cases of 4d and 4e, which have meta-substituents,
the reaction proceeded selectively on the sterically more accessible
site to afford the desired products in good yields. In accordance
with the solvent effect encountered in the cases of 3na and 3oa
formations, the use of trifluoroethanol as solvent was shown to be
beneficial with respect to the reaction efficiency when using
substrates containing electron-withdrawing groups, although at
the expense of high selectivity for mono-fluoroalkenylations in
some cases (5ga–5ja). Furthermore, substrates that possess
substituents on the pyridine ring also engaged well in this
reaction to furnish the desired products in moderate to good
yields (5ka and 5na). Finally, 2-phenylpyrimidine and benzo[h]
quinoline were all viable substrates and participated in this
reaction nicely to produce the desired products in high yields
(5la–5ma).

To further extend the reaction scope and to gain more insight
into the limitation of this reaction, substrates that do not contain
strong chelation-directing groups, such as pyridine and pyrimi-
dine, were examined and the results were presented in Table 3.
Although at the present stage ketone, imine and anilide proved to
be not suitable substrates, benzamide derivatives were found to be
effective coupling partners, especially the Ts-imide analogues,
which provide the desired fluoroalkenylation products in
moderate yields, with slight modification of the reaction
condition. Specifically, Ts-imide substrates with either electron-
donating or electron-withdrawing groups reacted smoothly under
modified reaction condition to deliver the desired products
(7aa–7ga). The ortho-substitute was nicely tolerated without any
deleterious effect on the reaction efficacy being observed
compared with the para-analogue (7aa versus 7ba). When
substrates that contain other potential chelation groups, such as
ester and carbamate were employed, the reaction selectively
occurred on the ortho-position of Ts-imide directing group
(7fa and 7ga). It should be pointed out that thiophene-derived
substrate also worked efficiently to produce the product 7ha in
synthetically useful yield. In contrast to the effectiveness of using
Ts-imide as directing group, when the reaction was carried out
with N,N-diisopropylbenzamides as substrates, the reaction tend
to afford the desired products in relatively low yields, which was
due to the low conversion of starting materials (7ia–7la).

Synthetic elaboration and mechanistic investigation. To further
showcase the synthetic applicability of these fluoroalkenylation
products, base-promoted dehydrofluoration protocol for the
synthesis of alkynes were attempted. After the examination of a
variety of reaction conditions, we were delighted to find that the
alkyne product 8a could be isolated in 77% yield when 3aa was
treated with 4 equivalent of t-BuOK in a solution of

tetrahydrofuran (THF) at 100 �C for 23 h. With this strategy, 2-
alkynyl indoles 8b and 8c were readily obtained in excellent yield
(Fig. 2a). Furthermore, the t-BuOK-promoted dehydrofluoration
was also proved to be effective for the synthesis of 2-(2-(alky-
nyl)phenyl)pyridine derivatives and when 5ea was employed, the
desired product 8d was generated in 60% yield (Fig. 2b). To gain
insight into the electronic bias of the C–H activation step, com-
petition experiments between 4f/4g was examined. When an
equimolar mixture of 4f, 4g and 2a were subjected to the opti-
mized reaction condition, the desired products 5fa and 5ga were
formed in the ratio of 2.7:1, thus indicating that electron-rich
substrate was more favoured in the C–H activation step in this
reaction (Fig. 2c). To determine the role of gem-difluoro sub-
stituents in this reaction, substrates with gem-dibromo and mono-
fluoro substituents were subjected to the optimized reaction
condition; however, neither led to the formation of the desired
products. These experiments clearly demonstrated that the gem-
difluoro substituents was indispensable for the activation of the
C–C double bond, which is in full agreement with our hypothesis
(Fig. 2d).

Discussion
A highly effective rhodium(III)-catalysed a-fluoroalkenylation
of (hetero)arenes through C–H/C–F bond activations was
developed. This reaction proceeds smoothly and stereoselectively
under base- and oxidant-free reaction conditions to deliver a
diverse range of synthetically useful and pharmaceutically
relevant cis-alkenyl fluorides in good yields. Furthermore,
the involvement of activation of the C–F bond through
hydrogen-bond formation is crucial for the success of this
transformation. Last but not the least, the success of
incorporation of a-fluoroalkenyl unit onto (hetero)arenes
through C–H/C–F activation manifold was in principle amenable
to be extended to other processes wherein the key intermediates
arylrhodiums were not formed by C–H activation, provided that
each elemental reaction step was compatible and balanced,
thereby offering a more generalized and versatile protocol for the
synthesis of functionalized fluoroalkene derivatives.

Methods
Materials. For 1H, 13C NMR spectra of compounds in this manuscript,
see Supplementary Figs 1–66. For optimization of reaction conditions,
see Supplementary Tables 1–3. For details of the synthetic procedures, see
Supplementary Methods.

Syntheses of products 3 and 5. An oven-dried 10-ml Schlenk tube with a
magnetic stirring bar was charged with 1 or 4 (0.1 mmol), [RhCp*(CH3CN)3]
(SbF6)2 (3.3 mg, 0.004 mmol), 2 (0.15 mmol) in sequence, followed by adding
anhydrous MeOH (0.5 ml) through syringe. The reaction tube was sealed with
Teflon-coated screw cap and the reaction solution was stirred at 80 �C for 16 h.
After cooling the reaction mixture to room temperature and removing the solvent
in vacuo, the resulting residue was purified by silica gel column chromatography to
afford the desired product 3 or 5.
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