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Abstract
, the etiologic agent of Chagas disease, causes a latentTrypanosoma cruzi

infection that results in cardiomyopathy. Infection with this pathogen is a
major socio-economic burden in areas of endemic infection throughout
Latin America. The development of chagasic cardiomyopathy is dependent
on the persistence of this parasite in host tissues. Pathogenesis of this
cardiomyopathy is multifactorial and research indicates that it includes
microvascular dysfunction, immune responses to host and parasite
antigens, and various vasoactive and lipid mediators produced by both the
host and parasite. It has been demonstrated that  persists inT. cruzi 
adipose tissue and uses fat as a nutritional niche in infected hosts. This
chronic infection of adipose tissue plays an important role in the
pathogenesis and persistence of this infection and involves mitochondrial
stress responses as well as the production of various anti-inflammatory
adipokines and pro-inflammatory cytokines by both white and brown
adipose tissue. The changes in diet in endemic regions of infection have
resulted in an epidemic of obesity that has significant implications for the
pathogenesis of  infection and the development of chagasicT. cruzi 
cardiomyopathy in infected humans.
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Introduction
Infection with Trypanosoma cruzi causes Chagas disease. Car-
diomyopathy, due to T. cruzi infection, develops in about 30% 
of patients with Chagas disease and is a major socio-economic  
burden in Latin America1. Evidence of T. cruzi infection has 
been found in mummies over 9000 years old from northern 
Chile and southern Peru2. Chagas disease–related cardio-
myopathy develops several years or decades after the initial  
infection. The pathogenesis of chronic Chagas cardiomyopathy is  
multifactorial3. Mechanisms contributing to the progression 
of cardiomyopathy involve the persistence of parasites, myo-
cardial damage, microvascular dysfunction, and neurogenic 
disturbances. Many of these changes are regulated by host 
immune-metabolic mediators. Although cardiomyopathy is 
the characteristic manifestation of chronic Chagas disease, this 
chronic infection can alter the function of other organs and tissues.  
One such organ is adipose or fat tissue4–6. Previously, we dem-
onstrated that T. cruzi persists in adipose tissue and uses fat as a 
nutritional niche in infected murine models of T. cruzi infection  
and confirmed this finding in fat tissue from infected humans7.

Adipose tissue is now recognized to function as an endocrine 
organ involved in whole body immune-metabolic homeostasis8,9.  
In mammals, three types of adipose depots commonly exist: 
white (WAT), brown (BAT), and beige/brite/brown-like (bAT) 
adipose tissues10. These three types of adipose tissues differ in 
morphology (shape, color, number, and size of lipid droplets  
and number of mitochondria), development, localization, and  
functions11. WAT and BAT have been extensively studied. WAT 
is a storage organ for energy in the form of lipids, whereas 
BAT regulates body temperature by producing heat via the 
expenditure of stored energy. Therefore, energy expenditure is  
greater in BAT compared with WAT. The morphology of white 
and brown adipocytes differs. In WAT, lipids are organized in a 
unique droplet (unilocular) and in BAT lipids are present in many  
droplets (multilocular). The size and number of mitochondria  
are significantly greater in BAT compared with WAT11.

Adipose tissue is composed of adipocytes (80% of the cells) 
and a stromal fraction containing a variety of cells, includ-
ing preadipocytes, adipose tissue–specific macrophages (ATM), 
T cells, endothelial cells, and nerve cells12. The physiology 
of adipose tissue is highly regulated by the systemic energy  
homeostasis and vice versa. Importantly, fat tissue is highly 
sensitive to the whole body immune-metabolic challenges 
because of various infections, drug treatments, and disease 
states. Human hearts have epicardial and pericardial fat tis-
sues, which may play a role in the pathogenesis of Chagasic  
cardiomyopathy. In this brief review, we summarize data on the 
role of adipose tissue and its dysfunction in the pathogenesis 
of chronic Chagas disease and in the progression of Chagasic  
cardiomyopathy.

Adipose tissue: a reservoir for T. cruzi during 
infection
T. cruzi is an obligate intracellular protozoan that persists indefi-
nitely following infection in mammals. For several decades,  
invasion mechanism(s) and persistence have been studied mainly 
in infected macrophages and cardiomyocytes13,14. In 1970, 
Shoemaker et al. first reported that T. cruzi may exist in BAT 

of infected mice15. Using acute and chronic murine models of  
Chagas disease, our laboratory subsequently demonstrated that  
adipose tissue can serve as a reservoir for T. cruzi7. Parasite load 
significantly increased in adipose tissues (both WAT and BAT) of  
T. cruzi–infected mice compared with heart tissue during 
early acute infection, suggesting that these parasites likely 
prefer lipid-rich fat cells over cardiomyocytes as a host cell  
environment7. We also demonstrated the persistence of these 
parasites in adipose tissue during chronic cardiomyopathy, 
when parasite loads in the heart were significantly reduced7. 
In humans, the persistence of this organism was demonstrated 
in adipose tissue in elderly seropositive patients with chronic  
chagasic heart disease16.

Fat cells are a unique niche; they increase in number with age 
and generally are stable in adults. Although adipocytes die (about 
10% of cells per year in an adult die), they are replaced by new 
cells. Adipocytes are rich in nutrients and secrete the anti- 
inflammatory adipokine adiponectin17,18. They therefore represent 
an excellent cell for persistence of an intracellular pathogen.  
Furthermore, in the adipose tissues of chronic T. cruzi–infected 
mice, there is a polarization of macrophages toward an M2  
phenotype, probably further limiting sterilizing immunity and  
thereby allowing T. cruzi to persist in adipose tissue6.

Adipose tissue physiology during the acute and 
chronic stages of T. cruzi infection
T. cruzi infects both BAT and WAT7. Interestingly, the para-
site load was greater in both WAT and BAT of T. cruzi–infected 
mice compared with that found in the corresponding heart tissue 
at the early stages of acute infection (15 days after infection)7. 
This time point of acute infection is characterized by a lack of 
blood parasitemia and overt illness. There is a significant change 
in adipose tissue physiology, even at this early stage of infec-
tion, and these changes differed in WAT and BAT4. Adipose tissue 
physiology depends on the levels of adipogenesis and adipolysis 
(lipolysis), which are tightly regulated by the levels of localized  
adipokines, mainly peroxisome proliferator-activated receptor 
gamma (PPARγ) and adiponectin and adipose tissue–specific mac-
rophage (ATM)-secreted tumor necrosis factor alpha (TNFα)19–21.

Adipocyte differentiation is controlled by a tightly regulated 
transcriptional cascade in which PPARγ and members of the 
C/EBP family are key players22. T. cruzi infection significantly 
decreased the expression of PPARγ in BAT and significantly 
increased PPARγ levels in WAT at 15 days after infection and 
this was probably due to their different responses to infection-
induced inflammation4. Although there were significant similarities  
between BAT and WAT in regard to an increased infiltration 
of immune cells and elevated levels of lipolysis and inflamma-
tory markers, WAT demonstrated a unique feedback response 
to elevated lipolysis by inhibiting nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) activation4. PPARγ  
was not decreased in the WAT during early acute infection4.  
Levels of adiponectin were significantly reduced in both BAT and 
WAT, suggesting that deregulated lipid loss in adipose tissue may  
affect adiponectin levels independent of PPARγ levels4.

By the end of the acute stage of infection (30 days after infec-
tion), mice displayed a threefold decrease in total body fat mass 
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because of significant loss of lipid droplets compared with unin-
fected mice7. The loss in lipid droplets was associated with 
significantly increased levels of infiltration of macrophages 
and inflammatory markers such as TNFα, interferon gamma  
(IFNγ), and interleukin 1 beta (IL-1β) in adipose tissue7. The  
levels of adiponectin, an anti-inflammatory cytokine specifically 
secreted by adipose tissue, were significantly reduced by the 
end of acute infection7. This is consistent with reported results 
of increased levels in serum of several inflammatory markers23.  
Although TNFα and IFNγ were increased, they weakly cor-
related in the acute phase23. The levels of inflammatory markers 
that were contributed mainly by adipose tissue, such as IL-6, 
monocyte chemoattractant protein-1 (MCP-1), and resistin, were  
significantly increased during acute infection in the murine  
T. cruzi infection model7. Patients with the acute phase of Cha-
gas disease also display increased circulating levels of IL-624. 
Infants with congenital exposure to T. cruzi (diagnosed between  
6 and 12 months of age) also have increased levels of IL-6 at 1 
month of age24. These data suggest that an intense inflammatory 
response in adipose tissue probably contributes to the circulating 
cytokine levels during acute infection.

The levels of body fat mass increased in T. cruzi–infected 
mice when they reached the chronic stage (90 days after infec-
tion) of infection compared with the acute stage of infection 
(30 days after infection); however, these levels of body fat were 
significantly lower than those of uninfected mice of the same 
age, suggesting that impaired fat tissue physiology and metabo-
lism may occur in chronic T. cruzi infection. Levels of TNFα,  
IFNγ, and IL-1β in the adipose tissue of chronically infected 
CD1 mice significantly increased at 90 days after infection7.  
Serum levels of several cytokines and chemokines (TNFα, IL-1β, 
IL-4, IL-5, CCL-5, CCL-11, CXCL-9, IL-2, IL-10, IL-17, and 
CCL-3) also increased during chronic infection in C57BL/6 mice 
(depending on the strain of T. cruzi)25,26. These levels of serum  
pro-inflammatory markers subside during the indeterminate 
stage and then increase during chronic stages in T. cruzi–infected 
humans with cardiac abnormalities27,28. Symptomatic chronic 
Chagas patients displayed greater levels of pro-inflammatory 
cytokines such as TNFα, IFNγ, and IL-6, and asymptomatic 
patients showed higher levels of IL-4, IL-10, IL-13, and trans-
forming growth factor beta (TGFβ)27–29. There is a significantly 
increased loss of fat tissue in mice that develop cardiomyopathy  
compared with mice that do not develop cardiomyopathy dur-
ing the chronic stage of infection7 and adipose tissues from 
these mice expressed higher levels of TNFα, IFNγ, and IL-1β7. 
These data suggest that adipose tissue physiology is altered  
during acute and chronic infections and adipose tissue–generated 
anti-inflammatory adipokines and pro-inflammatory cytokines  
contribute to the levels of serum inflammatory markers.

Mitochondrial and endoplasmic reticulum stress 
during acute and chronic T. cruzi infection
Mitochondria play a significant role in crucial metabolic processes, 
including the tricarboxylic acid cycle, pyruvate decarboxylation, 
oxidative decarboxylation of fatty acids (β-oxidation), and  
degradation of branched amino acids. A primary function of 
mitochondria is to produce more than 95% of adenosine triphos-
phate (ATP) for cellular energy consumption30. WAT adipocytes 
are classically large with a single big lipid droplet, and at 

the periphery of lipid droplets, a few mitochondria and  
tiny (but detectable) smooth endoplasmic reticulum (ER)11. 
BAT adipocytes are small with multiple small lipid droplets 
surrounded by abundant mitochondria and little to no ER11.  
Metabolic processes such as lipolysis and lipogenesis are strictly 
regulated in adipocytes and the mitochondria play a major role in 
this process11. Lipolysis of triglycerides in lipid droplets results 
in the cytoplasmic accumulation of free fatty acids. Fatty acids 
can be translocated—through the carnitin acyl transferases—to  
the mitochondrial matrix, where they undergo β-oxidation, with 
the concomitant generation of acetyl coenzyme A (acetyl-CoA) 
and synthesis of ATP31. Incomplete oxidation of accumulated  
fatty acids results in cell death due to lipotoxicity32.

We have demonstrated that elevated levels of lipolysis of 
lipid droplets and loss of lipid contents (and adipocytes) 
are key factors in adipose tissue pathogenesis during acute  
T. cruzi–infected mouse models4. The increased free fatty acids 
undergo further catabolism as demonstrated by increased levels 
of PPARα in adipose tissue4. This increase in β-oxidation 
increases the cellular levels of reactive oxygen species (ROS)33.  
In WAT adipocytes, which have relatively few mitochondria and 
very large lipid droplets compared to BAT, dysregulated lipoly-
sis of lipid droplets during infection creates an immense burden 
on mitochondrial β-oxidation function and leads to elevated cel-
lular ROS levels and mitochondrial oxidative stress. Continued 
stress on mitochondria during the acute stage of infection leads 
to significant ER stress and dysfunctional mitochondria functon, 
eventually resulting in cell death33. Wen et al. demonstrated  
that both BAT and WAT display oxidative stress markers dur-
ing acute and chronic T. cruzi infection; however, the pattern of 
intensity changes between BAT and WAT and acute and chronic  
stages of infection34.

Adipose tissues from T. cruzi–infected mice demonstrate  
significantly increased mRNA levels of genes encoding compo-
nents of NADPH oxidase complex, suggesting that the production 
of ROS might be enhanced in BAT and WAT during infection34. 
In addition, mRNA levels of anti-oxidant markers such as glu-
tathione peroxidase (GPX) and superoxide dismutase (SODs) 
are reduced in BAT and WAT, consistent with an increase in 
oxidative stress in acutely and chronically infected mice34.  
Interestingly, mRNA levels of eosinophil peroxidases increase 
in both BAT and WAT during acute infection but decrease in 
BAT during chronic infection34. This suggests that an eosinophil  
response may occur in both WAT and BAT.

WAT is under significant oxidative stress during acute T. cruzi  
infection which probably persists in chronic infection. This is  
supported by data showing increased levels of protein carbon-
ylation and malonyldialdehydes in BAT and WAT during acute  
and chronic stages of infection, respectively, in a murine Chagas 
model34. The levels of protein carbonylation and malonyldialde-
hyde are biomarkers of oxidative stress and lipid peroxidation, 
respectively. Increased ROS production and mitochondrial  
oxidative stress are associated with ER stress33. In the adipocyte, 
the ER is directly involved with lipid droplet formation and  
the maintenance of lipid homeostasis35. Adipocytes generally 
have scant ER and are highly susceptible to ER stress under  
conditions of deregulated lipolysis and oxidative stress36. The 
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combination of elevated ROS production and ER stress can  
easily trigger adipocyte apoptosis and cell death, leading to 
the observed loss of fat cells in the murine models of T. cruzi  
infection (Figure 1).

The impact of loss of adipose tissue on the 
pathogenesis of human Chagas cardiomyopathy
Murine models of chronic Chagas cardiomyopathy display an 
inverse relation between body fat mass and susceptibility to 
Chagas cardiomyopathy progression7. The exact role of fat tis-
sue and its immune-metabolic dysregulation in the pathogenesis 
of Chagas disease in patients with or without cardiomyopa-
thy or heart failure is currently unknown; however, a few  
studies have evaluated body mass index (BMI) data in patients  
with various stages of Chagas disease. A study on beta-blocker  
therapy and mortality, reported that patients with Chagas  
heart failure displayed a significantly lower BMI compared 
with other non-Chagas heart failure patients (24.1 ± 4.1  
versus 26.3 ± 5.1, P = 0.001)37. Data (from the United Network 
for Organ Sharing database) collected from patients who were 

heart transplantation recipients between 1987 and 2015 in  
Brazil indicate that patients with Chagas cardiomyopathy had a 
significantly decreased BMI compared with idiopathic dilated  
cardiomyopathy patients (2422–26 versus 2623–30, P = 0.007)38. 
In a study that reported on the mode of death due to progres-
sive heart failure in Chagas patients compared with non-Chagas 
patients with heart failure, the BMI was significantly lower in 
Chagas patients with heart failure compared with non-Chagas  
patients (23.5 [21.3–26.4] versus 25.3 [22.5–29.0], P = 0.003)39. 
Overall, these various studies provide human data which are 
consistent with observations in the murine model of Chagas  
cardiomyopathy; however, more clinical data with cross-sectional 
and longitudinal studies need to be collected to elucidate the 
role of fat tissue in patients with different degrees of Chagas  
cardiomyopathy.

Limitations and Future direction
The changes in body fat mass content during T. cruzi infection 
depend on the strain of mouse, strain of T. cruzi, size of the 
inoculum used to induce infection, and stage of the disease. 
The findings that are described in this review may not be appli-
cable in general to all mouse-parasite strains and to humans.  
Further studies are warranted to evaluate the role of adipose  
tissue in the pathogenesis of this infection, including assess-
ing changes seen in Chagas patients with different degrees of  
cardiomyopathy.

Conclusions
The pathogenesis of Chagas cardiomyopathy is complex and  
multifactorial. Adipose tissue is an immune-metabolic organ 
that has been demonstrated to play a significant role in the 
pathogenesis of Chagas cardiomyopathy in murine models, 
to be a niche and reservoir to T. cruzi in both human Chagas  
cardiomyopathy and murine models, and is an immune-metabolic 
regulator to the progression of Chagas cardiomyopathy in 
murine models. Adipocyte function in adipose tissue physiology  
depends mainly on its mitochondrial β-oxidation capacity. 
The number of mitochondria in white adipocytes is very small 
and thus mitochondrial β-oxidation stress induced by T. cruzi  
infection could easily result in a loss of adipocytes. Altered  
adipose tissue physiology, depending on its mitochondrial stress,  
complicates cardiac pathology, especially in the case of 
chronic Chagas disease. It is important to further investi-
gate the pathophysiological role of adipose tissue and its  
signaling pathways in the progression of Chagas cardiomyopathy.
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Figure 1. A pictorial representation of the effect of Trypanosoma 
cruzi infection on adipose tissue physiology. Infection causes 
adipocyte lipolysis, leading to mitochondrial oxidative stress, 
endoplasmic reticulum (ER) stress, inflammation, and a loss of fat 
cells. These pathologic changes contribute to the development of 
cardiomyopathy. ROS, reactive oxygen species.
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