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ABSTRACT

Aberrant transforming growth factor β1 (TGFβ1) signaling plays a pathogenic 
role in the development of vascular fibrosis. We have reported that Schisandra 
chinensis fruit extract (SCE), which has been used as a traditional oriental medicine, 
suppresses TGFβ1-mediated phenotypes in vascular smooth muscle cells (VSMCs). 
However, it is still largely unknown about the pharmacologic effects of SCE on various 
TGFβ1 signaling components. In this study, we found that SCE attenuated TGFβ1-
induced NF-κB activation and nuclear translocation in VSMCs. Among the five active 
ingredients of SCE that were examined, schisandrol B (SolB) and schisandrin B (SchB) 
most potently suppressed TGFβ1-mediated NF-κB activation. In addition, SolB and 
SchB effectively inhibited IKKα/β activation and IκBα phosphorylation in TGFβ1-
treated VSMCs. The pharmacologic effects of SolB and SchB on NF-κB activation 
were independent of the Smad-mediated canonical pathway. Therefore, our study 
demonstrates that SCE and its active constituents SolB and SchB suppress TGFβ1-
mediated NF-κB signaling pathway in a Smad-independent mechanism. Our results 
may help further investigations to develop novel multi-targeted therapeutic strategies 
that treat or prevent vascular fibrotic diseases.
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INTRODUCTION

Transforming growth factor β1 (TGFβ1) mediates 
tissue repair or wound healing processes by regulating 
various molecular and cellular mechanisms, including cell 
migration, proliferation, and extracellular matrix (ECM) 
production [1, 2]. However, aberrant TGFβ1 signaling 
disturbs physiological tissue remodeling, which leads 
to pathologic fibrotic changes [3]. Particularly, TGFβ1 
is involved in the pathogenesis of a range of vascular 

fibrotic diseases, such as restenosis, atherosclerosis, and 
hypertension [4–6]. In these pathological states, TGFβ1 
acts on vascular smooth muscle cells (VSMCs) to induce 
synthetic phenotypes, including cell migration and 
proliferation, to the injured sites [7–10]. 

NF-κB is a transcription factor that controls the 
expression of genes involved in various biological 
processes, including inflammation and cell survival [11–
14]. Deregulated activation of NF-κB is closely associated 
with many diseases, including cancer and vascular human 
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diseases [11, 15–18]. In VSMCs, NF-κB participates in 
the progress of vascular fibrotic diseases via multiple 
cellular processes, including increased cell migration 
and neointima formation [19, 20]. In addition, NF-κB 
activity is elevated during the normal aging process, 
which contributes to the development of vascular diseases 
[21, 22]. Therefore, NF-κB signaling pathway has gained 
attention as a promising a therapeutic target for treatment 
of vascular fibrosis [23–25].

TGFβ1 engagement of the type II receptor (TβRII) 
serine/threonine kinases at the plasma membrane allows 
TβRII to phosphorylate TβRI [26, 27]. In turn, the 
activated TβRI propagates the signals through both the 
Smad-dependent canonical pathways and the Smad-
independent non-canonical pathways [28–30]. Therefore, 
the cellular output to TGFβ1 signaling is influenced by 
interaction between canonical and non-canonical signaling 
cascades. Accumulating evidence has shown that TGFβ1 
activates NF-κB pathway via the non-canonical pathways 
[28, 31], suggesting that TGFβ1-NF-κB signaling axis 
plays a crucial role in the pathogenesis of vascular fibrotic 
diseases.

Schisandra chinensis fruit extract (SCE) has been 
used as a traditional oriental medicine and shown to be 
effective in the treatment of cardiovascular diseases 
[32]. We have demonstrated that SCE and its active 
ingredient schisandrin B (SchB) effectively inhibit 
TGFβ1-induced Smad activation and myosin light chain 
(MLC) phosphorylation in VSMCs [33, 34]. These results 
suggest that SCE or its active components can be used as 
multi-targeted therapeutic agents that attenuate or prevent 
vascular fibrotic diseases.

In this study, we investigated the effect of SCE and 
its active ingredients on TGFβ1-NF-κB signaling axis in 
A7r5 VSMCs. We discovered that SCE inhibited TGFβ1-
induced NF-κB activation. Of the five active ingredients of 
SCE that were examined, schisandrol B (SolB) and SchB 
were most potently inhibited TGFβ1-NF-κB signaling axis 
via a Smad-independent mechanism. Our results provide 
insight into understanding the molecular mechanisms of 
pharmacologic actions of SCE and its active constituents 
on vascular fibrosis.

RESULTS

SCE inhibits TGFβ1-induced NF-κB activation 
in A7r5 cells 

It has been known that SCE suppresses TGFβ1 
signaling in fibrotic responses [33, 34]. On the other 
hand, it has been found that SCE inhibits NF-κB 
signaling in inflammatory responses [35–37]. Based on 
these findings, we have raised a question whether SCE 
inhibits TGFβ1-induced NF-κB activation in VSMCs. To 
solve this question, we first performed luciferase assays 
using reporter gene constructs containing Smad- or NF-

κB-binding elements in TGFβ1-treated A7r5 cells. As 
expected [33], SCE inhibited Smad-mediated luciferase 
activity (Figure 1A). Similarly, SCE suppressed NF-κB-
mediated luciferase activity in a dose-dependent manner 
(Figure 1B), indicating that SCE inhibits TGFβ1-induced 
NF-κB activation. 

To confirm these results, we analyzed the microarray 
data (GSE87439) obtained from A7r5 cells treated with 
TGFβ1 and/or SCE. The SAM analysis identified that 
TGFβ1 induces changes in the expression levels of 3840 
genes in A7r5 cells. Of the 3840 genes, SCE completely 
or partially reversed the expression levels of 2147 genes in 
TGFβ1-treated cells (data not shown). We also found that 
TGFβ1 affects the expression levels of 98 NF-κB target 
genes in A7r5 cells. Of the 98 genes, SCE completely 
or partially reversed the expression levels of 48 genes in 
TGFβ1-treated cells. The quantitative graphs showed the 
typical NF-κB target genes expression induced by TGFβ1 
which regulated by SCE. These results demonstrate that 
SCE inhibits TGFβ1-induced NF-κB activation in addition 
to Smad (Figure 1C and Supplementary Figure 1).

SCE inhibits TGFβ1-induced IKK activation 
and IκBα degradation in A7r5 cells 

To further confirm the inhibitory effect of SCE on 
TGFβ1-induced NF-κB activation, we examined whether 
SCE affect IKK signaling pathway. Western blot analysis 
showed that TGFβ1 increased the levels of phospho-IκBα 
and -IKKα/β and concomitantly decreased those of total 
IκBα following 1 h of treatment with TGFβ1 (Figure 2A). 
Under the same condition, SCsE markedly suppressed 
TGFβ1-mediated phosphorylation of IκBα and IKKα/β 
and degradation of IκBα (Figure 2B). In addition, confocal 
microscopic analysis revealed that SCE inhibited TGFβ1-
induced NF-κB translocation to the nucleus (Figure 2C 
and 2D). Therefore, these results demonstrate that 
SCE inhibits TGFβ1-induced IKK activation and IκBα 
degradation. 

SolB and SchB inhibit TGFβ1-induced NF-κB 
activation in A7r5 cells 

To identify the effective ingredients of SCE against 
TGFβ1-induced NF-κB activation, we examined five 
active ingredients of SCE using luciferase assays. Among 
these compounds, schisandrol B (SolB) and schisandrin B 
(SchB) most potently inhibited NF-κB activity in TGFβ1-
treated A7r5 cells, whereas schisandrin C slightly reduced 
NF-κB activity (Supplementary Figure 2). SolB and SchB 
suppressed NF-κB-mediated luciferase activity in a dose-
dependent manner (Figure 3A and 3B). Therefore, we 
chose SolB and SchB as effective components for the 
following studies. SolB and SchB co-treatment showed 
additive inhibitory effect on NF-κB activity (Figure 3C). 
Interestingly, we found that SolB and SchB exert different 
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pharmacologic effects in TGFβ1-treated A7r5 cells. SolB 
inhibited NF-κB activity, whereas it did not affect Smad 
activity (Figure 3D). On the other hand, SchB suppressed 
both NF-κB and Smad activity (Figure 3E). Co-treatment 
of SolB and SchB was not shown any additive effects on 
Smad activity (Figure 3F). 

To determine the molecular mechanisms of SolB 
and SchB action on NF-κB activity, we examined the 
phosphorylation level of IκBα and IKKα/β in A7r5 cells. 
TGFβ1 elevated the phosphorylation levels of IκBα and 
IKKα/β and concomitantly reduced those of total IκBα 
(Figure 4A and 4B). Under the same condition, SolB 

Figure 1: SCE inhibits TGFβ1-induced NF-κB activation in A7r5 cells. The cells were transfected with 3TP-PAI1-Luc (A) or 
3×kB-Luc (B) reporter constructs and then treated with TGFβ1 (1 ng/ml) and/or SCE (100 or 500 mg/ml) for 24 h. The luciferase activity 
was expressed as a relative value compared to that of the untreated cells which was set to 100%. The data were expressed as the mean ± 
SEM (n = 3–5). ***p < 0.005. (C) The heatmap shows SCE-regulated NF-κB target genes in TGFβ-treated cells.
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and SchB reversed these TGFβ1-induced molecular 
changes (Figure 4A and 4B). But the phosphorylation 
of Smad3 was not reversed by SolB (Figure 4A). These 
results were further confirmed by confocal microscopic 
analysis. As presented in Figure 4C and 4D, SolB and 
SchB inhibited TGFβ1-induced nuclear translocation of 
NF-κB in A7r5 cells. 

To test whether SolB and SchB could affect 
the production of NF-κB-regulated profibrotic gene 
expression and -cytokine, we checked expression of 
collagen I, fibronectin, and secretion of Interleukin (IL)-6.  
SolB and SchB inhibited TGFβ1-induced expression 
of collagen I and fibronectin in dose-dependent 
manner (Figure 5A and 5B). And SolB and SchB 
were significantly decreased of the secretion of IL-6 
(Figure 5C). These results demonstrate that SolB and 
SchB inhibit TGFβ1-induced NF-κB activation and its 
target gene expression.

Smad activity is irrelevant to NF-κB activity in 
TGFβ1-treated A7r5 cells 

We found that SolB and SchB have different 
pharmacologic effects on Smad and NF-κB activity 
(Figure 3). Based on these observations, we investigated 
whether Smad activity affects NF-κB activity in TGFβ1-
treated cells. We first examined the effect of Smad3-DN or 
siSmad3 on NF-κB activity. Both Smad3-DN and siSmad3 
inhibited Smad-mediated luciferase activity in TGFβ1-treated 
cells (Figure 6A and 6B). In contrast, they did not affect 
NF-κB-mediated luciferase activity (Figure 6C and 6D). In 
addition, they did not influence on the levels of phospho- and 
total IκBα (Figure 6E and 6F). These results indicate that 
TGFβ1-induced NF-κB activation is independent of Smad 
activity. In addition, our findings suggest that SolB and SchB 
suppress TGFβ1-induced NF-κB activation by inhibiting 
Smad-independent IKK pathway.

Figure 2: SCE inhibits TGFβ1-induced IKK activation and IκBα degradation in A7r5 cells. The cells were treated with 
TGFβ1 (1 ng/ml) and/or SCE (100 or 500 mg/ml) for the indicated times (A) or for 1 h (B) prior to western blot analysis. (C) The cells 
were treated with TGFβ1 (1 ng/ml) and/or SCE (100 or 500 mg/ml) for 1 h prior to confocal microscopy. The subcellular localization of 
p65 was assessed using anti-p65 antibody and FITC-conjugated IgG antibody. DAPI was used to visualize the nucleus. (D) The nuclear/
cytosolic ratio of p65 was measured in at least 15 independent fields (n = 4). The data were expressed as the mean ± SEM. ***p < 0.005.



Oncotarget3125www.impactjournals.com/oncotarget

DISCUSSION

Aberrant regulation of TGFβ1 signaling underlies 
the pathogenesis of vascular fibrotic diseases, including 
atherosclerosis and restenosis. We have reported that SCE 
and its active ingredient SchB inhibit TGFβ1-induced 
Smad activation and myosin light chain phosphorylation 
[33, 34]. In this study, we found that SCE inhibits TGFβ1-
induced NF-κB activation. Among the active ingredients 
of SCE tested, SolB and SchB most potently suppressed 
TGFβ1-induced NF-κB activation by inhibiting the 
Smad-independent IKK pathway. Our study broadens 
understanding of the molecular mechanisms by which 
SCE and its active ingredients inhibit TGFβ1-induced 
phenotypes of VSMCs.

TGFβ1 controls a variety of signaling molecules 
via the Smad-dependent or -independent mechanisms. 
We have shown that SCE and its ingredients exert 
their pharmacologic effects by inhibiting canonical 
and non-canonical pathways of TGFβ1 signaling 
[33, 34]. Interestingly, SolB and SchB have different 
pharmacologic activity on TGFβ1 signaling Figure 3). 

SolB inhibited TGFβ1-induced NF-κB activation, but not 
Smad. In contrast, SchB suppressed both Smad and NF-
κB in TGFβ1 signaling pathways. These results indicate 
that NF-κB activity does not affect Smad activity in 
TGFβ1-treated cells. In addition, we demonstrated that 
Smad does not affect TGFβ1-mediated NF-κB activity 
(Figure 6). Therefore, our findings demonstrate that 
Smad and NF-κB are unrelated to each other in TGFβ1-
treated VSMCs and that SCE and its constituents inhibit 
canonical and non-canonical signaling of TGFβ1 via a 
separate mechanism.

NF-κB plays a pleiotropic role in a range of 
cellular processes, such as cell survival, proliferation, 
inflammation, and cell invasion, in response to various 
extracellular stimuli [11, 12, 38]. Therefore, NF-κB 
has been considered as a promising a therapeutic target 
for treatment of cancer and inflammatory diseases [11, 
20, 39–41]. Particularly, NF-κB has been known to 
mediate pathogenic functions in the development of 
fibrotic diseases [17, 42]. Here, we found that SCE and 
its ingredients suppress NF-κB activity by inhibiting 
IKK activation and thereby IκBα phosphorylation and 

Figure 3: SolB and SchB inhibit TGFβ1-induced NF-κB activation in A7r5 cells. The cells were transfected with 3×kB-Luc 
(A–C) or 3TP-PAI1-Luc (D–F) reporter constructs and then treated with TGFβ1 (1 ng/ml) and/or SolB (2 or 10 µM) or SchB (2 or 10 µM) 
for 24 h. The luciferase activity was expressed as a relative value compared to that of the untreated cells which was set to 100%. The data 
were expressed as the mean ± SEM (n = 4). **p < 0.01, ***p < 0.005.
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Figure 4: SolB and SchB inhibit TGFβ1-induced IKK activation and IκBα degradation in A7r5 cells. The cells were 
treated with TGFβ1 (1 ng/ml) and/or SolB (2 or 10 µM) or SchB (2 or 10 µM) for 1 h prior to western blot analysis (A, B) or confocal 
microscopy (C, D). The nuclear/cytosolic ratio of p65 was measured in at least 15 independent fields (n = 4). The data were expressed as 
the mean ± SEM. ***p < 0.005. 

Figure 5: SolB and SchB inhibit TGFβ1-induced NF-κB target gene production in A7r5 cells. The cells were stimulated 
with TGFβ1 (1 ng/ml) and/or SolB (2 or 10 µM) or SchB (2 or 10 µM) for 48 h prior to western blot analysis (A–C). (C) For IL-6 
measurement, the medium was collected at 48 h after treatment. TNFα (10 ng/ml) used as a positive control for NF-κB activation. IL-6 
level was determined by ELISA assay kit according to the manufacturer’s instruction. The data were expressed as the mean ± SEM (n = 4). 
**p < 0.01, ***p < 0.005.
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NF-κB nuclear translocation. These results suggest that 
SCE and its active constituents may be useful to treat a 
range of NF-κB-mediated diseases.

In summary, the present study demonstrated that 
SCE and its ingredients SolB and SchB inhibit TGFβ1-
induced NF-κB activation in VSMCs. Our results 
provide a scientific basis for future investigation aiming 
at understanding and treating TGFβ1-induced vascular 
fibrotic diseases. 

MATERIALS AND METHODS

Cell culture and reagents

The A7r5 rat aortic smooth muscle cell line was 
obtained from ATCC (CRL –1444). Cells were cultured 
in DMEM supplemented with 10% fetal bovine serum, 
penicillin (100 U/ml), and streptomycin (100 μg/ml). Prior 

to treatment with TGFβ1 (R&D Systems, Minneapolis, 
MN), cells were maintained in DMEM containing 0.2% 
FBS for 2 h. All cell culture agents were purchased from 
Hyclone (Logan, UT) or Gibco (Grand Island, NY). SCE 
and its constituents were prepared as described in our 
papers [33, 34, 43]. All other reagents not specified were 
supplied by Sigma-Aldrich (St. Louis, MO).

Microarray experiment and computational 
analysis

Microarray experiments were performed using the 
cells treated with 100 mg/ml SCE for 24 h as described in 
our previous papers [44–46]. The microarray data, which 
are available through the Gene Expression Omnibus 
(GEO) database (accession number GSE87439), were 
normalized using single-channel array normalization 
(SCAN) method, which is efficient to reduce array-

Figure 6: Smad activity is irrelevant to NF-κB activity in TGFβ1-treated A7r5 cells. The cells were transfected with 3TP-
PAI1-Luc (A, B) or 3×kB-Luc (C, D) reporter constructs. Under the condition, the cells were co-transfected with Smad3-DN (A and C) 
or siSmad3 (B and D). The transfected cells were further treated with TGFβ1 (1 ng/ml) for 24 h. The luciferase activity was expressed 
as a relative value compared to that of the untreated cells which was set to 100%. The data were expressed as the mean ± SEM (n = 4). 
***p < 0.005. n.s., not significant. (E, F) The cells were transfected with Smad3-DN or siSMAD3 for 48 h and then treated with TGFβ1  
(1 ng/ml) for 1 h prior to western blot analysis. #GFP-Smad3.
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specific background for standardization of individual 
probe-level data [45, 47]. Microarray probes were mapped 
to 13,877 genes using a custom mapping file, Rat2302_
Rn_ENTREZG (version 19.0.0) which is provided by the 
BrainArray resource (http://brainarray.mbni.med.umich.
edu/brainarray/). The Significance Analysis of Microarrays 
(SAM) analysis was carried out to identify differentially 
expressed genes (DEGs) among 314 NF-κB target genes 
(http://www.bu.edu/NF-κB/gene-resources/target-genes/). 
A tuning parameter, delta of 0.4, optimized the cutoff for 
significance with the estimation of false discovery rate 
(FDR) threshold q-value of 0.01.

Transfection

Cells were transfected with 100 nM siRNA against 
Smad3 (siSmad3) for 48 h [48] using Lipofectamine 
RNAiMAX reagent (Invitrogen, Karlsruhe, Germany). 
The siRNAs were purchased from Qiagen (Hilden, 
Germany). Cells were also transfected with the dominant 
negative mutant of Smad3 (Smad3-DN) in pEGFP-N1 
[49] using FuGENE 6 according to the manufacturer’s 
protocol (Roche, Mannheim, Germany)

Luciferase assay

Cells were transfected with 3×κB-Luc [50] or 3TP-
PAI1-Luc [33] reporter gene plasmids using FuGENE 6. 
At 24 h after transfection, the cells were incubated with 
TGFβ1, SCE, and/or its active ingredients for 24 h. The cells 
were harvested and assayed for luciferase activity using a 
commercial kit (Promega, Madison, WI). The luciferase 
activity was normalized to β-galactosidase activity.

Western blot analysis

Antibodies against pIκBαS32/36, IκBα, pIKKα/
βS176/180, IKKα/β, pSmad3S423/425, and Smad3 were obtained 
from Cell Signaling Technology (Beverly, MA). Anti-
collagen I, anti-fibronectin, and anti-tubulin antibodies 
were purchased from abcam (Cambridge, UK), Santa 
Cruz Biotechnology (Santa Cruz, CA), and Sigma-
Aldrich, respectively. The crude extracts were resolved 
in 6–10% SDS-PAGE gels and probed with the indicated 
antibodies. The data shown are representative of at least 
three independent experiments. Quantification for Western 
blots is shown in Supplementary Figure 3.

Confocal microscopy

Cells were grown on glass coverslips in 12-well 
plates. After cells were treated with TGFβ1, SCE, SolB, 
and/or SchB for 1 h, the cells were fixed with 3.7% 
formaldehyde in PBS for 10 min, permeabilized with 0.1% 
Triton X-100 for 5 min, and blocked with 5% normal goat 
serum in PBS for 30 min. The cells were labeled with 
anti-p65/RelA antibody (Santa Cruz, CA) for overnight at 

4ºC and then probed with FITC-conjugated anti-rabbit IgG 
antibody (Invitrogen) and DAPI (Roche) for additional 1 
h at RT. The cells were photographed using the FluoView 
1000 confocal microscope (Olympus, Tokyo, Japan).

Interleukin (IL)-6 measurements

A7r5 cells (1.2 × 104) cultured in 12-well plates. 
Cells were treated with TGFβ1 with or without SolB 
or SchB for 24 h after then cells were starved in DMEM 
containing 0.2% FBS. Then the cultured medium collected. 
IL-6 concentrations were determined by ELISA assay kit 
according to the manufacturer’s instructions (R&D Systems).

Statistical analysis

All data are expressed as mean ± SEM. Comparison 
of means among experimental groups was carried out 
with ANOVA followed by a post hoc test. p < 0.05 was 
considered statistically significant.
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