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Introduction. To design more effective interventions, such as neurostimulation, for stroke rehabilitation, there is a need to
understand early physiological changes that take place that may be relevant for clinical monitoring. We aimed to study
changes in neurophysiology following recent ischemic stroke, both at rest and with motor planning and execution. Materials
and Methods. We included 10 poststroke patients, between 7 and 10 days after stroke, and 20 age-matched controls to assess
changes in cortical motor output via transcranial magnetic stimulation and in dynamics of oscillations, as recorded using
electroencephalography (EEG). Results. We found significant differences in cortical oscillatory patterns comparing stroke
patients with healthy participants, particularly in the beta rhythm during motor planning (p =0.011) and execution (p = 0.004)
of a complex movement with fingers from both hands simultaneously. Discussion. The stroke lesion induced a decrease in
event-related desynchronization in patients, in comparison to controls, providing evidence for decreased disinhibition.
Conclusions. After a stroke lesion, the dynamics of cortical oscillations is changed, with an increasing neural beta
synchronization in the course of motor preparation and performance of complex bimanual finger tasks. The observed patterns
may provide a potential functional measure that could be used to monitor and design interventional approaches in subacute

stages.

1. Introduction

Stroke represents the third major cause of death and is one
of the leading sources of disability, contributing to a decline
in the global quality of life. Although several approaches are
applied to the rehabilitation of patients, current interven-
tions lack efficacy [1].

In order to develop new and more effective interventions
for neurorehabilitation, and particularly, for the rehabilita-
tion of stroke patients, it is fundamental to understand sub-
acute physiological changes of potential neuroplastic
significance following the event. After a brain lesion, neural
networks are damaged, which triggers the reorganization of

neural connectivity and brain rhythms. Plastic changes
may occur not only on the lesioned but also in the contralat-
eral hemisphere [2]. It is frequently reported in the literature
that the activity of the unaffected hemisphere increases in
the first days after the cerebrovascular accident [2, 3]. After
this period, at 3 to 6 months following the event, a relative
increase in the activity of the areas adjacent to the lesion is
frequently observed, concurrent with functional improve-
ments [3].

Functional techniques to assess brain changes include
electroencephalography, magnetoencephalography, and func-
tional magnetic resonance imaging [2]. Electroencephalogra-
phy (EEG) can potentially contribute to the understanding
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TaBLE 1: Demographic data of volunteers.

Healthy participants

Stroke patients

N =20 N=10
Age (years; mean + SD) 60.20 +11.237 67.10 +13.470
Sex (female/male) 11/9 4/6
Handedness (right/left-handed) 20/0 10/0

TasLE 2: Clinical data of stroke patients'.

Time since stroke (days; mean + SD) 8.50 +1.581
Lesion side (right/left hemisphere) 4/6
NIHSS (mean + SD) 6.40 +3.718
WMEFT log performance time (mean + SD) 2.14+0.651
WMEFT FAS (points; mean + SD) 48.80 £ 31.255

T Abbreviations: FAS: functional ability scale; NIHSS: National Institutes of
Health Stroke Scale; WMFT: Wolf Motor Function Test. The severity of
the poststroke impairment increases with higher NIHSS scores, wherein a
score of 0 would indicate no overall deficits and higher scores would
represent greater deterioration of tested functions. WMFT scores (test
described below) reflect the motor functionality of the affected upper
limb. Lower performance time and higher scores in FAS are both
associated with better performance.

of the physiology of brain reorganization [4], in particular in
which concerns the study of dynamics of oscillations [5].

Brain oscillations can appear at diverse frequencies, asso-
ciated to distinct levels of synchrony in neuronal networks
[6]. The visual alpha rhythm is known to respond to a stim-
ulus or instruction with a decrease in amplitude or power,
resulting in an event-related desynchronization (ERD). Syn-
chronization (ERS) occurs in the absence of stimuli or idle
states. It is therefore believed that alpha ERS is associated
to cortical inhibition, whereas ERD is related to the reduc-
tion of inhibition, in turn [7]. Current knowledge, neverthe-
less, also points out a role for other types of alpha rhythm in
attention and conscious awareness [8].

Performing a voluntary movement or receiving instruc-
tions to execute a motor task are generally associated with
a decrease in upper alpha (mu rhythm) and in beta rhythms
[6, 7], in those regions around sensorimotor areas [6, 9].
This reduction of movement-related beta power is thought
to be associated with the excitability of the primary motor
cortex and to be affected by GABA (gamma-aminobutyric
acid) levels [10].

Preparation and execution of motor tasks might reveal
altered activity patterns in stroke, which may have signifi-
cant implications for the design of therapeutic interventions
[11]. Changes in neural synchronization and oscillatory
activities can play a role in the pathophysiology of distinct
disorders, such as in stroke [7]. The poststroke changes in
brain oscillations, particularly those accompanying move-
ments of the impaired limbs, are worthy of further research
[10]. Therefore, exploration of biomarkers to strengthen
stroke investigation has been advocated [12], and recent
works have been studying EEG activity in stroke, along with
motor tasks, such as unilateral [11-13] or bilateral wrist
movements [13].

Here, we determined motor thresholds as a measure of
cortical excitability and assessed ERD and ERS in the course
of motor tasks, both in healthy subjects and in poststroke
patients. To the best of our knowledge, this is the first time
that the neurophysiology of stroke patients is analysed
shortly after the event (between 7 and 10 days poststroke)
by EEG preceding and during simple and complex fine-
tuned unilateral and bilateral motor tasks performed with
both the affected and unaffected arms and hands, and a
direct comparison with a control healthy sample that did
the same experiment is provided. Our aim was to study the
impact of a subacute ischemic stroke in brain neurophysiol-
ogy at rest and during motor preparation and execution.
Moreover, we investigated whether significant changes in
the EEG brain activity pattern following stroke could be cor-
related with the motor performance of the affected upper
limb, assessed by the Wolf Motor Function Test.

2. Materials and Methods

The present work was conducted in accordance with the
Declaration of Helsinki and received the approval from the
Ethics Committee of the Faculty of Medicine of the Univer-
sity of Coimbra. Written informed consent was collected
from each participant.

2.1. Sample. We included 10 patients who were recruited
from the Neurology Department of the Coimbra University
Hospital after a first-ever middle cerebral artery stroke and
fulfilled our requirements: (i) 18 to 85 years of age; (ii) cor-
ticosubcortical ischemic lesion; (iii) stroke event 7 + 3 days
before; (iv) motor deficit of the upper extremity; (v) score
<1 on the modified Rankin Scale, previous to the event;
and (vi) ability to comprehend and follow the tasks. On
the other hand, patients who (i) were not clinically stable,
(ii) were diagnosed with cognitive impairment or dementia,
(iii) had history of epileptic seizures, (iv) presented posterior
or global aphasia, (v) presented neglect, (vi) abused drugs or
alcohol, or (vii) presented contraindications to transcranial
magnetic stimulation as assessed by a questionnaire based
on published guidelines [14, 15] were excluded. Moreover,
we recruited 20 age-matched healthy controls. Demographic
data from the participants, both healthy individuals and
stroke patients, is presented in Table 1.

In Table 2 we present some clinical data from our sample
of stroke patients.

2.2. Wolf Motor Function Test (WMFT). First of all, we have
evaluated motor function of stroke patients by applying the
WMFT. This test consisted on 15 timed tasks [16] that were
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FIGURE 1: Schematic representation of the electrode clusters selected for the quantification of visual alpha (a) and mu and beta motor

rhythms (b).

performed with the affected upper limb. Each movement had
a maximum length of 120 seconds. This way, if a patient could
not perform the task, it was attributed a duration of 120 sec-
onds. The quality of the movements was also evaluated by
the functional ability scale (FAS) [17], wherein we attributed
a score of “0” when a given movement was not performed
and a maximum of “5” points per task, if it appeared to be nor-
mal, counting up to a maximum of 75 points.

2.3. Electroencephalography (EEG) Task. In this study, we
have used the same methodological EEG procedure as used
in our prior works addressing oscillatory changes induced
by TMS [18, 19]. EEG was conducted using a SynAmps2
RT amplifier and Scan 4.5 software (Compumedics, Char-
lotte, NC). Electrodes’ positioning was based on the Interna-
tional 10-20 montage, through the use of a 64-channel cap
(QuickCap, NeuroScan, USA), including a ground placed
in the forehead, close to FPZ, and online reference channel
close to CZ. The signal was acquired at a 1000 Hz sampling
rate. We applied a high-pass filter from the DC level and a
low-pass at 200Hz. For the study of posterior alpha
rhythms, we recorded electrical activity during 180 seconds
of eyes opening and closure task (blocks of 10sec). To ana-
lyse differences in cortical oscillatory patterns along motor
preparation and execution, we instructed participants to per-
form two different motor tasks, namely, 90° shoulder flexion
and thumb opposition. Motor tasks were executed with both
upper limbs, first individually and then simultaneously. Each
participant was instructed to perform the movement and
sustain it for 15 seconds and then reposition and rest for
another 15 seconds. Subjects performed 6 trials of 30 sec-
onds per movement, divided into blocks of 6secs locked to
the beginning of the task, in a 180 sec experiment for each
movement, totalizing 540secs per task and 1080secs for
the complete motor paradigm. Triggers time-locked to the
beginning of each movement were inserted in the EEG file
during the online recording of all tasks.

We carried out signal analysis with Scan 4.5 software
(Compumedics, Charlotte, NC) and with the MATLAB (ver-
sion R2017b, The MathWorks, USA) toolbox EEGLAB
v.14.1.1b [20]. After recording data, we filtered the signal off-
line from 1 to 45Hz and downsampled data to 250 Hz. The

average of all channels was used for offline rereference.
Moreover, we ran custom MATLAB scripts (adapted from
our previous works by Castelhano et al. [21] and by Silva
et al. [22]) to quantify alpha (8-13 Hz), mu (10-12 Hz), and
beta (15-25Hz) power, in the specified electrode clusters
(Figure 1).

We selected posterior electrodes for the analysis of visual
alpha in the occipital area. For the motor tasks, in order to
quantify motor rhythms, namely, mu and beta bands, we
selected those electrodes located on the central motor
regions.

During the acquisition, we inserted online manual trig-
gers in the EEG file marking the events that could disturb
the signal and should be rejected. We have also used an off-
line procedure implemented in EEGLAB, with default
parameters, that included a 1 Hz high-pass filtering step, a
voltage threshold, and a visual confirmation of the muscle
artifacts. Moreover, we computed Independent Component
Analysis for further cleaning of the data and to remove com-
ponents such as eye blinks. The pseudo-Wigner-Ville trans-
formation was applied, according to the works by Uhlhaas
et al. [23] and others [21, 24-26], for performing a time-
frequency analysis. The amplitude and phase were computed
for all periods of interest, with epochs being defined ahead,
for all frequency bins from 5 to 40 Hz (resolution of 1 Hz/
frequency bin). Posterior alpha rhythm was assessed from
-2000 to 10000 milliseconds, where the period between
-2000 milliseconds and 0 was defined as the baseline. Quan-
tification of motor rhythms, in turn, was computed between
-2000 and 0 milliseconds for premovement and preparation
and from 0 until 4000 milliseconds, time-locked to the
beginning of the movement. We also mapped topographical
distribution in EEGLAB, using default parameters.

In addition, for patients, we determined beta power for
one central electrode in each hemisphere to assess whether
changes in relation to controls were central and bilateral or
if they were due to hemispheric asymmetries induced by
the lesion. This analysis was carried out over C3 and C4,
where oscillations such as the mu rhythm are reported to
show maximum amplitude [27]. One patient was not able
to complete the EEG recording; therefore, for EEG analysis,
we had a sample size of 9 patients and 20 healthy volunteers.
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FIGURE 2: Beta power relative to baseline. Both groups showed desynchronization (negative mean power) with bimanual finger opposition.
However, stroke patients did not increase beta desynchronization as much as the healthy controls. Significant differences (p < 0.05) are
observed between healthy participants and stroke patients in power of the beta rhythm in the premovement and preparation and in the
time-locked beginning of bimanual finger opposition. Error bars represent +1 SE.

2.4. Transcranial Magnetic Stimulation (TMS). We applied
single pulses of transcranial magnetic stimulation to the
unaffected primary motor cortex (M1) of patients and ran-
domly to the right or left M1 of healthy subjects, at 45° to
the sagittal plane, via a figure-of-eight coil plugged into a
MagPro X100 magnetic stimulator (MagVenture, Den-
mark). Active motor threshold (aMT) was determined dur-
ing isometric contraction of the upper limbs, being defined
as the lowest intensity that elicited a minimal visible muscle
twitch on the hand. The aMT was selected as a measure of
cortical excitability, rather than the resting motor threshold
(rMT), since it is reported that it presents less variability
than rMT, due to the lower variability in the spinal excitabil-
ity, associated with muscle contraction [28].

2.5. Statistics. Statistical tests were computed on the SPSS
Statistics software, version 24 (IBM SPSS Statistics, IBM
Corporation, Chicago, IL), and we adopted a significance
level of 5% for all tests. We ran Mann-Whitney U test to
address differences between healthy individuals and stroke
patients, in cortical excitability and oscillatory patterns,

comparing groups regarding active motor threshold, alpha
power (8-13Hz), and the ERD in mu (10-12Hz) and beta
(15-25Hz) rhythms. Moreover, we applied the same test to
investigate differences between groups of participants in
age and handedness. For differences in sex, we used Fisher’s
exact test. Hemispheric asymmetries in patients were tested
with the Wilcoxon test. We corrected with false discovery
rate (FDR) for multiple comparisons. To check for correla-
tions between changes in EEG and the severity of the motor
deficits, as evaluated by NIHSS and WMFT scores, we
assessed normality of data with Shapiro-Wilk tests and
determined Pearson coefficients.

3. Results

The demographic characteristics of the stroke patients who
were included in our sample did not differ significantly from
those pertaining to the healthy participants, concerning age
(U=67.000, p=0.150), sex (p=0.700), or handedness as
assessed by an adapted Edinburgh Handedness Inventory
questionnaire [29] (U = 80.000, p = 0.272).
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FIGURE 3: Group-averaged time-frequency plots for the motor area (central electrode, Cz), with bimanual thumb opposition task. (a) shows
the time-frequency for healthy controls, while in (b), we present data from the stroke patients’ group.

As described in Materials and Methods, we measured the
individual active motor threshold for both healthy subjects
and patients. Patients showed no significant differences in
aMT values on the unaffected hemisphere, when comparing
with healthy participants (U =70.500, p =0.785), thereby
showing that these hemispheres were matched and enabling
a fair comparison of neurophysiological profiles.

Concerning changes in neurophysiology following the
stroke event, we assessed alpha rhythm at rest and motor
rhythms, namely, mu and beta bands, during motor plan-
ning and execution.

Even though both groups showed the expected beta
desynchronization on the central motor areas (see Figure 1
for selection of electrode clusters) with simultaneous biman-
ual finger opposition, stroke patients showed significantly
reduced ERD, in comparison with controls. This difference
was significant both during premovement/preparation and
on time-locked beginning of movement (U =37.000, p =
0.011, Figure 2(a) and U =31.000, p =0.004, Figure 2(b),
respectively).

In Figure 3, we illustrate the group-averaged time-
frequency plots, wherein we can distinctly observe the
desynchronization pattern for the beta band in the motor
area (Cz) of the control volunteers but not of the stroke
patients.

The differences in the beta band with the thumb opposi-
tion of both hands simultaneously coexisted with changes in
the topography of individuals after a cerebrovascular lesion.
In Figure 4, we compare stroke topographical distribution
with that of a healthy brain, by presenting beta band scalp
mapping during bimanual thumb opposition task.

Topographical distribution seems to corroborate the
lower beta desynchronization (blue) in the central areas of
stroke patients, comparing with controls. Moreover, in
patients, the lesioned hemisphere showed a red pattern that
suggests impaired modulation of beta oscillations.

Differences between healthy participants and stroke
patients in alpha power of the posterior area were not signif-
icant, either when the subjects had the eyes opened
(U =68.000, p=0.317) or closed (U =72.000, p=0.417).
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desynchronization.

Mu rhythm did not show significant group differences when
performing motor tasks with each upper limb (healthy or
stroke-affected) individually or both simultaneously, either
on shoulder flexion (p>0.183) or thumb opposition
(p=0.077). Beta rhythm was not significantly altered in
stroke patients comparing with healthy participants for
shoulder flexion (p >0.216).

We found a significant moderate negative correlation
between beta power during the execution of bimanual
thumb opposition and the velocity of execution in WMFT
tasks (r=-0.675, p = 0.046).

In patients, beta power in selected central electrodes (C3
and C4) did not show significant asymmetries between the
affected and unaffected hemispheres on the preparation
(Z=-0.652, p=10.570) or execution (Z =-0.178, p=0.910)
of bimanual thumb opposition.

4. Discussion

The study of the hemisphere contralateral to the stroke
lesion seems to be critical for the investigation of poststroke
alterations [30]. The active motor threshold was assessed on
the unaffected hemisphere, in patients, and randomly on the
right or left hemisphere of healthy participants. After stroke,
the hemisphere contralateral to the lesion is known to
become overactive, which raises the hypothesis that the
aMT in this hemisphere would be reduced. Our results how-
ever indicated only a nonsignificant trend for lower active
motor threshold, suggesting that the hemisphere contralat-

eral to the lesion was still relatively preserved. This is consis-
tent with other findings. For example, Prashantha et al
analysed changes in the resting motor threshold of the non-
affected hemisphere compared with healthy controls and
reported no differences at baseline (2 weeks after stroke
onset), a trend for a decrease after 4 weeks of the lesion
and a significant reduction on the second follow-up, at 6
weeks poststroke [30].

Our group-averaged time-frequency plots in the central
Cz electrode revealed a distinct pattern of desynchronization
with bimanual thumb opposition task in healthy subjects,
which was not so evident in poststroke individuals. We
found significant differences between patients and healthy
participants in motor rhythms during thumb opposition,
when performing the task with both hands simultaneously.
These were observed as a lower reduction in beta power with
the motor task, for patients, which indicates less desynchro-
nization and suggests a less disinhibited state on central
motor areas of stroke patients, when comparing to healthy
subjects. Moreover, from the observation of topographical
distribution in patients, we hypothesize that the impaired
modulation of beta oscillations during movements including
the affected hand might be detrimental to motor control.
Bonstrup et al. [31] and Rossiter et al. [10] both assessed
brain oscillations with paretic hand grip tasks in stroke
patients, the first in the acute and the latter in the chronic
phase of the disease, and described less movement-related
beta decrease. Interestingly, Rossiter et al. did not detect
changes in baseline power levels, reporting significant
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differences between groups only when studying dynamic
changes with the motor task [10]. We suggest that, in our
study, poststroke changes in oscillatory activity during
bimanual thumb opposition were not circumscribed to the
areas located near the lesion, which is supported by our
results showing no significant asymmetries between powers
on the electrode located in affected versus unaffected
hemispheres.

Bartur et al. [12] found a correlation between the magni-
tude of ERD in the high-mu and low-beta bands and the
motor function of the paretic upper limb, evaluated by
EMG and by Fugl-Meyer and Box and Block tests, with bet-
ter motor performance being correlated with greater desyn-
chronization in the lesioned hemisphere only. In our work,
we studied the correlation between WMFT and beta rhythm
during bimanual movements and observed that patients who
had more severe deficits (with slower execution in WMFT
tasks) showed a significant correlated decrease in beta
desynchronization with bimanual thumb opposition, which
is in line with those results reported by Bartur et al. for the
lesioned hemisphere. Our significant moderate correlation
suggests that future studies, with large sample sizes, should
further explore the potential of beta levels as biomarkers
for stroke recovery of motor deficits. Actually, oscillations
in the beta band are especially responsive to motor parame-
ters [32]. Interestingly, Fu et al. [33] studied shoulder-elbow
movement of the affected limb and also reported a signifi-
cant decrease poststroke in peak ERD% in the mu range
(8-12Hz), comparing with healthy participants.

Regarding the shoulder flexion task, we were not able to
detect significant differences between groups. This is consis-
tent with the notion that movement complexity can influ-
ence the brain activation of the lesioned primary motor
cortex [34]. Gerloff et al. [35] had already suggested that
the involvement of M1 might be superior in more complex
movement sequences, where there is larger activation of cor-
tical areas. Puh et al. [36] pointed out finger movements as
being the most suitable instruction when the focus is motor
rehabilitation. The higher complexity involved in thumb
opposition, associated to the motor control required for
the transitions between fingers [36], can possibly explain
the specificity of our results. This also provides insights into
task dependence when probing neurophysiological changes
in stroke and on the design of neurostimulation approaches.

This study has some limitations. Although it is crucial to
analyse the neurophysiology of stroke in the acute and sub-
acute stages, we cannot disregard the possibility that the tim-
ing of our experiment was too early to detect significant
changes in the active motor threshold. Also, the effort
required from poststroke patients to perform the motor
tasks during electroencephalographic recording prevented
us from including a larger number of trials for each move-
ment. Despite this, we were able to find significant differ-
ences in motor rhythms, particularly in the beta band, in
patients, when comparing with healthy controls.

The findings from this proof-of-concept study point out
the value of studying EEG oscillations as potential biomark-
ers for understanding the neurophysiology of subacute
stroke and the importance of conducting future work, with

larger sample sizes, for potential application in clinical mon-
itoring and novel therapeutic approaches.

5. Conclusions

We found that cerebrovascular lesions induced by recent
ischemic stroke alter neurophysiological motor response
patterns in both hemispheres translating into an alteration
in event-related synchronization and desynchronization,
particularly at beta frequencies during motor planning and
execution of complex bimanual movements. These results
have implications for tailoring neurostimulation strategies.
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