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A computer vision system for deep learning-based detection of
patient mobilization activities in the ICU
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Early and frequent patient mobilization substantially mitigates risk for post-intensive care syndrome and long-term functional
impairment. We developed and tested computer vision algorithms to detect patient mobilization activities occurring in an adult
ICU. Mobility activities were defined as moving the patient into and out of bed, and moving the patient into and out of a chair. A
data set of privacy-safe-depth-video images was collected in the Intermountain LDS Hospital ICU, comprising 563 instances of
mobility activities and 98,801 total frames of video data from seven wall-mounted depth sensors. In all, 67% of the mobility activity
instances were used to train algorithms to detect mobility activity occurrence and duration, and the number of healthcare
personnel involved in each activity. The remaining 33% of the mobility instances were used for algorithm evaluation. The algorithm
for detecting mobility activities attained a mean specificity of 89.2% and sensitivity of 87.2% over the four activities; the algorithm
for quantifying the number of personnel involved attained a mean accuracy of 68.8%.
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INTRODUCTION

Survivors of prolonged, high-intensity care frequently suffer from
post-intensive care syndrome, characterized by long-term cogni-
tive and physical impairment leading to a significant decline in
functional status.” Mobilization of critically ill patients can
shorten time to weaning from mechanical ventilation, reduce
delirium, and prevent muscle wasting and dysfunction (ICU-
acquired weakness).*™ This is significant, as these are preventable
harms that impact overall survival, the ability to independently
perform activities of daily living, and health-related quality of
life2'° Although early studies indicate benefit of mobility
interventions in select patient groups,*'""'?> much more-detailed
studies are needed to determine how variations in the type,
frequency, and duration of mobilization activities impact out-
comes for this diverse patient population.'>'* Unfortunately, the
scope of such studies is currently limited, as implementation of
early mobility protocols requires overcoming substantial organiza-
tional and cultural barriers,’> and success has historically been
difficult to measure.

Current practices for monitoring patient mobility include direct
human observation'® and mining of the electronic health record
(EHR) for documentation of mobility events.'” These methods are
time and labor intensive, prone to inaccurate documentation, and
involve a notable time lag between patient care and reporting.
Computer vision technology (CVT) offers an alternative approach
by passively capturing data from the clinical environment, with
application of machine-learning algorithms to detect and quantify
patient and staff activities automatically.'® Indeed, there has been

increasing interest in using CVT to perform activity recognition
and improve patient care in hospitals.'® For instance, computer
vision algorithms have been developed to perform automated
recognition of hand hygiene events in hospital corridors?® and
trauma resuscitation events in the emergency department.?'?>
CVT has also been applied in the operating room, where
algorithms recognize patient care tasks (such as moving the
patient onto the operating table), steps and tools in a surgical
procedure, and even the surgeon’s level of operative skill.2>%*
Finally and most relevant to our study, Ma et al.>> used CVT to
determine a numeric mobility level for patients in a single ICU
room. We build off of this work by using depth sensor-based CVT
to collect data from seven individual adult ICU rooms and develop
machine-learning algorithms to temporally detect patients’ bed-
side activities and the healthcare personnel involved.

RESULTS
Algorithm performance for detection of mobility activities

The algorithm for detection of mobility activity occurrence
achieved a mean sensitivity and specificity of 87.2% and 89.2%,
respectively, and a mean area under the curve of 0.938, over all
four activities when evaluating prediction at the level of individual
frames of video data (frame-level prediction). Per-activity break-
down and receiver operating characteristic curves are shown in
Fig. 1. Frame-level predictions were merged to determine the
duration of the mobility activities detected by the algorithm. The
mean duration for all mobility activities predicted by the algorithm
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Fig. 1

1 - Specificity

Algorithm performance for detecting the occurrence of mobility activities. a Per-class specificity and sensitivity, evaluated at the frame-

level. b Per-class receiver operating characteristic curves (ROC). These ROC curves demonstrate the trade-off between sensitivity (the true
positive rate) and 1-specificity (the false-positive rate), as the detection thresholds are varied. The area under the ROC curve (AUC) is an
aggregate measure of detection performance, and indicates the probability that the model will rank a positive example more highly than a
negative example (@ model whose predictions are 100% correct will have an AUC of 1.0)
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Fig. 2 Algorithm performance for quantifying the number of
healthcare personnel involved in mobility activities. A confusion
matrix is shown for true number of healthcare personnel assisting
with mobility activity instances (numbered 0-3), vs. the number of
personnel detected by the algorithm. When a patient mobilizes
alone, the number of detected healthcare personnel is reported as 0.
When a patient mobilizes with one healthcare personnel assisting,
this is reported as 1, etc. Values are normalized across each row (true
number of personnel)

was 7.6s (standard deviation 12.6s, min 0.4s, max 146.5s, for
durations of individual mobility activities, see Supplementary Data
1). For comparison, the mean duration of all activities as based on
the manually reviewed, annotated data (ground truth) was 9.0's
(standard deviation 12.9's, min 0.5 s, max 123.9 s, see Supplemen-
tary Table 1 for a comparison of algorithm-predicted and ground
truth activity durations). Activities were both correctly classified
and had predicted durations within + /— 15% of the ground truth
standard duration for 58.1% of activities; within 4 /— 25 for 68.7%
of activities; and within + /— 50% for 82.0% of activities.

Algorithm performance for detection of healthcare personnel

The algorithm for quantifying the number of healthcare personnel
involved in each activity achieved a mean accuracy of 68.8%. A
confusion matrix for distribution of true vs. predicted personnel
during mobility activities is shown in Fig. 2. The confusion matrix
demonstrates that when a patient mobilizes alone, the algorithm
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correctly detects this (0 predicted personnel) 75% of the time;
when there is a single healthcare worker present, the algorithm
correctly detects this (1 predicted personnel) 74% of the time.
Detection accuracies for 2 and 3 healthcare personnel were 62%
and 60%, respectively. The algorithm correctly detects 2 or more-
predicted personnel (as opposed to 0 or 1) 78% of the time (see
Supplementary Figure 1).

Figure 3 shows qualitative examples of the algorithm outputs.
Sampled depth image frames from two (condensed) periods of
time inside patient rooms are shown. Beneath these, timelines are
shown indicating detected activities and their temporal occur-
rence, duration, and number of healthcare personnel involved.
Comparison with the ground truth standard is also shown.

DISCUSSION

We show that computer vision algorithms can accurately detect
patient mobility activities, their duration, and the number of
personnel that complete them. Although our study builds on the
work of Ma et al.,”> whose algorithm calculates a numeric mobility
score for ICU patients, our algorithms enable more detailed study
of how specific types of mobility events and variation in their
frequency and duration will impact clinical outcomes. This aspect
of our work is clinically significant, as there is currently great
variation in protocols for early mobilization of critically ill patients,
which limits the generalizability of study findings.”® Overall, our
method represents a clinically useful tool for quantifying patient
mobility practices in real time, and provides proof-of-concept that
more comprehensive mobility data may be collected using CVT.
Ultimately, it is this level of granularity that will allow clinicians to
hone in on the most effective mobility practices in order to refine
and standardize mobility protocols. In addition to aiding in
refinement of mobility protocols, our algorithms may also be used
to provide insights into how they may be most effectively
implemented. Limitations on multidisciplinary staffing and work-
load are cited as major barriers to implementation of patient
mobility protocols.'> Thus, our CVT-based method to quantify the
staffing and time required to complete patient care activities
promises to enhance our understanding of barriers or facilitating
factors that contribute to adoption of best practices. Moreover,
this approach could be applied to other healthcare activities, and
may be used to augment time-directed activity-based costing®’
and other methods to define the resources required for delivering
optimal care.

Scripps Research Translational Institute



Ground T e —x
Truth % z/eﬁ é

05:20 05:25

S. Yeung et al.

np)j

1 pers.

Algorithm 0 pers.

Ground

Truth 0 pers.

03:10

Get out of bed

03:20

: Opers

~~ 0 pers.

03:25

(LI

Get out of chair

03:30 Time (min)

Get in chair

Fig. 3 Timelines of mobility activity occurrence and healthcare personnel involvement. Two timelines from condensed periods of time in
patient rooms are shown. In each timeline, sampled depth image frames from the period are shown. Spatial bounding boxes of person
detections are also overlaid (shown only in the center frame for ease of visualization). The temporal extents and number of healthcare
personnel (abbreviated “pers.”) involved in each activity (taking into account that one person detected corresponds to the patient) are
indicated on the timeline. Human-annotated ground truth is shown for comparison

The performance of our algorithm for detection of mobility
activities differs between the types of activities. We do not
anticipate that current differences in detecting the selected
mobility activities will limit the ability to utilize the algorithm for
downstream studies, as these levels of sensitivity and specificity
should be sufficient to detect the broader clinical trends.
Interestingly, these differences shed light on the relative difficulty
of detecting some activities as compared with others. For
example, the activities getting into/out of a chair may be more
difficult to detect because these events tend to be shorter in
duration (with ground truth mean durations of 3.1s and 2.7s,
respectively). Similarly, the algorithm for detection of healthcare
personnel assisting with mobility activities reached a mean
accuracy of 68.8%. Notably, most of the errors occur in
distinguishing between two and three personnel, which may be
attributed to occlusion in the sensor viewpoint when more than
two people are present to assist the patient. We hope to address
this in future studies by incorporating additional sensor view-
points into the data stream. Overall, it is important to note that
these levels of accuracy are a strong starting point for clinical
deployment of the algorithms in this study. As we continue to
collect and expose the algorithms to additional data, allowing
them to see more examples of these mobility activities in a variety
of different physical environments, we expect that these
differences in performance will minimize over time.

Previous methods for studying mobility practices for critically ill
patients have relied on direct human observation or retrospective
review of documented mobility events in the EHR. The primary
disadvantage of these methods is that they are time and labor
intensive, and provide only sparse temporal coverage (as human
observers cannot practically collect data 24 h a day). These data
collection methods are therefore difficult to scale to enable large
clinical studies. In fact, a recent systematic review suggests that
many clinical correlation studies examining the impact of early
mobility protocols do not reach statistical significance precisely
owing to a lack of sufficient, quality data.'® In contrast to these
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methods, CVT collects data 24 h a day, eliminates the need for
direct observation, and reduces susceptibility to error from
variations in rater reliability or recall. Our computer vision
algorithms, now that they have been developed, can be deployed
continuously and at very little additional labor cost to detect the
real-time occurrence of mobility activities at the scale needed to
enable useful downstream clinical studies. Furthermore, we
demonstrate that CVT can facilitate additional descriptive analyses
of these activities beyond just occurrence, such as their duration
and the number of healthcare workers assisting with the activity.
Nevertheless, challenges to our approach remain. To develop
these algorithms, substantial cognitive labor was needed to
manually annotate data and obtain sufficient training examples
for temporally sparse activities such as those examined. We were
able to partially mitigate this challenge by developing a web-
based application for nurses to flag the approximate time
occurrences of witnessed patient mobility activities. This stream-
lined the review and manual annotation of flagged mobility
events by research assistants, and allowed us to generate a large
curated data set of mobility activity examples. Despite these
multiple layers of annotation, human labeling of data for
algorithm development remains laborious and is still susceptible
to error (for inter-rater reliability calculations, see Methods).
However, an advantage of using this CVT-based method is that
once the algorithms have been developed, they may also be
deployed to new environments with relatively little additional
annotation of data. Known as “fine-tuning”, labeling of a limited
number of additional training examples in a new setting can allow
the algorithms to quickly achieve a high level of performance in
that setting. Our algorithms were trained and evaluated using
data from seven patient rooms in a single ICU setting. Thus, we do
not yet have empirical evidence for how our approach would
perform in a significantly different environment. Nonetheless, the
strong performance of these algorithms in the current setting with
seven rooms indicates promise for effective generalization to
other environments. In addition, we anticipate that once the
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algorithms are exposed to data from multiple institutions, they will
learn institution-level generalization such that the need for fine-
tuning will eventually be eliminated.

Overall, we describe an automated approach to detect intended
patient care activities and propose that the method could be used
to generate critical insights to promote effective and efficient early
mobility protocols for critically ill patients.

METHODS

Study participants

The study was conducted in the adult ICU of Intermountain LDS Hospital
(Salt Lake City, Utah). Participants included patients admitted to rooms
equipped with computer vision depth sensors between August and
October 2017, as well as staff entering these rooms. The purpose of this
study was to develop and validate computer vision algorithms to detect
the occurrence of patient mobility activities, as well as other descriptive
attributes of mobility activities such as their duration and the number of
personnel assisting. As such, we did not access patient clinical data or
quantify the number of patients monitored, as this information was not
necessary to validate algorithmic performance. The study protocol was
approved by the Intermountain Healthcare Institutional Review Board.
Informed consent was waived because the protocol posed no more than
minimal risk to participants.

Data collection and annotation

Depth sensors capture 3D volumetric images of humans and objects based
on their distance from the sensor, thereby providing visual information
while preserving privacy. Sensors were mounted directly facing the bed in
seven individual patient rooms, and image data were collected 24 h a day
during the study period (2 months). Supplementary Figure 2 shows a floor
plan for the Intermountain LDS Hospital ICU, including the location of each
sensor and the relative configuration of each room in the study.

To create a curated data set of mobility event occurrences for model
training and evaluation, data were manually reviewed and annotated by
trained research assistants for four separate activities related to patient
mobilization: patient getting into and out of bed, and patient getting into
and out of chair. The number of personnel assisting with each mobility
activity was also annotated. Owing to the temporal sparsity of patient
mobility activities (making it difficult to find and annotate occurrences in
long stretches of recorded data), a web-based application was developed
to allow nursing staff to flag the approximate time occurrences of the
patient mobility activities they witnessed, providing research assistants
with a time stamp in the data for focused retrospective review. The use of
time stamps to coarsely indicate the occurrence of mobility events enabled
our research assistants to retrospectively examine only the periods of data
flagged by nursing staff to identify and label mobility activities, avoiding
manual review of thousands of hours of data. Three trained research
assistants reviewed these sampled periods of data to provide precise
temporal annotations, with each occurrence of a mobility activity being
reviewed by one research assistant. To assess consistency of the manual
review across the different research assistants, a subset of the data was
annotated by all three of the research assistants. Frame-level inter-rater
reliability of annotations on this subset was 0.894 using Fleiss's kappa.?®

Training and test data sets

A total of 563 mobility events were annotated and included in the final,
curated data set, comprising 154 instances of patient getting out of bed,
182 of getting into bed, 112 of getting out of chair, and 115 of getting into
chair. The final data set included 98,801 frames of data, totaling 5.7 h. From
the collected data set, 67% of the mobility activity instances and
surrounding frames were randomly used for training, and 33% for testing.
As such, 379 instances of patient mobility activities were used for training,
and the remaining 184 instances of patient mobility activities were used
for testing. The test data set included 48 instances of patient getting out of
bed, 64 of patient getting into bed, 32 of patient getting out of chair, and
40 of patient getting into chair.

Augmentation of training data set

An augmentation data set was used during the training of the neural
network for temporal detection of mobility activities and their duration. In
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order to improve algorithm performance, additional data comprising
simulations of the targeted mobility activities was used to augment the
training set during model development. These simulations were con-
ducted to provide scripted instances of mobility activities over a short
period of time, making them less labor intensive to manually annotate as
compared to non-simulation activities that occur infrequently over long
stretches of time. This data was collected during clinician-led mobility
activity simulations in two of the seven patient rooms equipped with
computer vision sensors in the LDS Hospital ICU, as well as in a dedicated
patient simulation room at Stanford University. In total, data collected
during simulations added 318 additional occurrences of mobility activities,
totaling 41,353 frames of additional training data. This additional data
included 97 instances of patient getting out of bed, 93 of patient getting
into bed, 59 of patient getting out of chair, and 69 of patient getting into
chair. Supplementary Figure 3 shows how simulation data were
incorporated into the training data set. The simulation data were used
only for improving training of the model (by providing an additional 318
training examples) and not for evaluation of algorithm accuracy, such that
the evaluation remains based only on patient data. We chose not to
include any simulation data in the test data set to evaluate the neural
network because we felt that it would be a less-direct measure of how the
algorithm would perform on data from a real-world, patient care
environment.

Supplementary Table 2 shows the performance statistics for the
algorithm with and without the addition of the simulation data to the
training data set. Obtaining training data through simulation was a useful
technique to enhance the neural network’s performance in a time-efficient
manner, and improved the mean sensitivity and specificity on the
evaluation data set from 8293 and 84.44% to 87.20 and 89.20%,
respectively. Adding the simulation data provided more examples for all
activity classes and increased the exposure to variability in the training
data. A comparison of the AUC (an aggregate measure of classification
performance) for each activity class shows the improvement obtained with
the addition of the simulation data to the training set (Supplementary
Figure 4).

Model for detection of mobility activities and their duration

The algorithm for temporal detection of the mobility activities and their
duration was a multi-label recurrent convolutional neural network model.?®
We used an 18-layer ResNet convolutional neural network® pre-trained on
the large-scale ImageNet®' and fine-tuned on our data set to initially
extract informative visual features from every frame of data. We
subsequently used a two-layer bidirectional long short-term memory
recurrent network to reason over temporal structure in consecutive 64-
frame sequences of these features. An ensemble of six such models was
used to produce the final detection output.

Model for detection of healthcare personnel

The algorithm for quantifying the number of personnel involved in each
mobility activity was based on the YOLOv2*? convolutional neural network
architecture for object detection. The YOLOv2 convolutional neural
network was trained to predict the spatial locations of people in each
image frame of data using annotated bounding boxes of the spatial
locations of people in 1379 frames of patient data. This trained person-
detector was evaluated to achieve a spatial average precision of 0.66
compared with human annotation. After applying the person-detector to
the image data, post-processing was used to smooth detections over time.
The maximum number of detected people over the duration of a mobility
activity (taking into account that one person is the patient) was used to
quantify the number of healthcare personnel involved in each activity. In
the data set, 7% of activities had a true number of 0 healthcare personnel
involved, 51% had one healthcare personnel, 32% had two healthcare
personnel, and 10% had three healthcare personnel.

Evaluation of algorithm performance

Evaluation of the algorithms' accuracy was assessed by comparing the
manual annotations of the data set (known as the ground truth standard)
with the predictions made by the algorithms. Sensitivity, specificity, and
receiver operating characteristic calculations were performed using Python
3.6 (Python Software Foundation, https://www.python.org/).

Scripps Research Translational Institute
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Code availability
Full code is available from the authors upon reasonable request.

DATA AVAILABILITY
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Healthcare, but restrictions apply to the availability of these data, which were used
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Intermountain Healthcare.
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