
RESEARCH ARTICLE

Finite time synchronization of

memristor-based Cohen-Grossberg

neural networks with mixed delays

Chuan Chen1☯, Lixiang Li1☯*, Haipeng Peng1☯, Yixian Yang1,2☯

1 Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing

University of Posts and Telecommunications, Beijing 100876, China, 2 State Key Laboratory of Public Big

Data, Guizhou 550025, China

☯ These authors contributed equally to this work.

* li_lixiang2006@163.com

Abstract

Finite time synchronization, which means synchronization can be achieved in a settling

time, is desirable in some practical applications. However, most of the published results on

finite time synchronization don’t include delays or only include discrete delays. In view of the

fact that distributed delays inevitably exist in neural networks, this paper aims to investigate

the finite time synchronization of memristor-based Cohen-Grossberg neural networks

(MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a

simple feedback controller and novel finite time synchronization analysis methods, several

new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed

delays. The obtained criteria are very concise and easy to verify. Numerical simulations are

presented to demonstrate the effectiveness of our theoretical results.

Introduction

Memristor, which was first proposed by Chua in 1971 [1], is deemed as the fourth fundamental

circuit element besides inductor, capacitor and resistor. In 2008, the prototype of memristor

was first realized by the scientists of Hewlett-Packard (HP) [2]. Memristor, the contraction of

memory resistor, reflects the nonlinear relationship between charge and flux (see Fig 1). It has

been proved that memristor has variable resistance and the function of memory. In the artifi-

cial neural network, the synapses are usually modeled by resistors [3]. Since memristors own

memory and perform more like real biological synapses, now memristors have been utilized to

replace the resistors in artificial neural network to build memristor-based neural network

(MNN), which is the appropriate candidate for simulating the human brain [4].

On the other hand, synchronization of complex networks [5–7] has received much atten-

tion due to its great application prospect in many different fields such as image encryption [8],

secure communications [9] and associative memory [10]. By utilizing a memristor to replace

the diode in Chuas circuit, Chua obtained several oscillators in [11]. Since then, various mem-

ristive chaotic systems have been proposed by using the similar methods. As we know, chaos
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[12, 13] presents complex nonlinear behaviours, but it can appears in a simple memristor-

based Chuas circuit! So it is important to study the synchronization control of MNNs [14–17].

In [14], the exponential synchronization of MNNs with mixed delays was investigated via

adaptive control. By means of intermittent control, the authors of [15] studied the stability and

synchronization of memristor-based coupling neural networks with time-varying delays.

Finite-time Mittag-Leffler synchronization of fractional-order memristive BAM neural net-

works with time delays was studied in [17]. Moreover, in view of the characteristics that signals

transmit in real neural network, we should study the neural networks with time delays, includ-

ing discrete delays [18, 19] and distributed delays [20, 21].

It should be pointed out that controller plays an important part in realizing synchroniza-

tion. But how to design the optimal controller? It seems this problem has not been addressed.

So far, many effective control methods have been proposed, such as the activation control [22],

pinning control [23, 24], the linear separation method [25], the linear coupling method [26],

impulsive control [27], adaptive control [14, 28], intermittent control [15], the sliding mode

control [29], etc. However, in this paper, the controller that we design is a discontinuous feed-

back controller. Compared with the above-mentioned control methods, feedback control has

the simplest form, and is very easy to be manipulated in practical applications.

In 1983, Cohen and Grossberg [30] proposed the Cohen-Grossberg neural network model,

which is very general and important in all kinds of neural network models. Some important

neural networks, such as cellular neural network and Hopfield neural network, can be deemed

as the special cases of Cohen-Grossberg neural network. Although there have been many

results about delayed Cohen-Grossberg neural networks [31–40], few of them are related to

delayed MCGNNs. Recently, the exponential synchronization of MCGNNs with mixed delays

was discussed in [41], the function projective synchronization of MCGNNs with time-varying

discrete delays was studied in [42]. Obviously, most published results about synchronization

control of MCGNNs only consider asymptotical synchronization and exponential synchroni-

zation, which mean that the synchronization time is infinite, but in application fields, it is

more meaningful that the synchronization can be achieved in finite time. However, up to now,

only Ref. [43] was concerning the finite time synchronization of MCGNNs with discrete

delays. It should be pointed out that the distributed delays were not considered in [43], and the

Fig 1. The relations among resistor (R), capacitor (C), inductor (L), memristor (M), voltage (v), current

(i), charge (q) and flux (φ): dv = Rdi, dq = Cdv, dφ = Ldi and dφ = Mdq.

https://doi.org/10.1371/journal.pone.0185007.g001
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controller used in [43] was very complicated. As far as we know, there has been no published

result on finite time synchronization of MCGNNs with mixed delays until now.

Inspired by the above analysis, this paper is devoted to studying the finite time synchroniza-

tion problem of MCGNNs with mixed delays. The main contributions and originality of our

paper are listed below: (i) This is the first attempt to investigate the finite time synchronization

problem of MCGNNs with mixed delays, including time-varying discrete delays and distrib-

uted delays. Compared with the results in [43], the results in this paper are more general. (ii)

The finite time synchronization analysis method used in this paper is a novel finite time syn-

chronization analysis method, which has only been used in our another paper [44]. By adopt-

ing this novel analysis method, we derive some sufficient conditions that can ensure the finite

time synchronization of the studied MCGNNs. Furthermore, the analysis method used in this

paper can also be applied to analyze the finite time synchronization of other MNNs. (iii) In

many literatures on the finite time synchronization of delayed systems, the controllers are very

complicated. Although the neural network model considered in this paper is MCGNN with

mixed delays, only simple feedback controllers are enough to derive the finite time synchroni-

zation of the studied MCGNNs. In some papers, the designed controllers were also similar to

the controllers in this paper, however, only the asymptotical synchronization or the exponen-

tial synchronization of the studied systems can be obtained.

The rest of this paper is organized as follows. Some essential preliminaries are introduced

in Section 2. In Section 3, our main results are derived. In Section 4, numerical simulations are

presented to verify the theoretical results. Conclusions are drawn in Section 5.

Preliminaries

Referring to some existing MCGNN models [41–43], in this paper, we consider the following

MCGNN with mixed delays:

_x iðtÞ ¼ � wiðxiðtÞÞ½aiðxiðtÞÞ �
Xn

j¼1

bijðxiðtÞÞfjðxjðtÞÞ �
Xn

j¼1

cijðxiðtÞÞfjðxjðt � tijðtÞÞÞ

�
Xn

j¼1

dijðxiðtÞÞ
Z t

� 1

Kijðt � sÞfjðxjðsÞÞds � Ii�; i ¼ 1; 2; . . . ; n;
ð1Þ

where ξi(t) represents the state of the ith neuron; wi(�) is the amplification function; ai(�)
denotes the appropriately behaved function; τij(t) is the discrete delay; Kij: [0, +1)!

[0, +1) stands for the delay kernel of the unbounded distributed delay; Ii is the external

input; the initial value of MCGNN (1) is φ(s) = (φ1(s), φ2(s), . . ., φn(s))T, s� 0; bij(ξi(t)),
cij(ξi(t)) and dij(ξi(t)) are memristive connection weights, which are given by

bijðxiðtÞÞ ¼

( b0ij; jxiðtÞj � Ui;

b00ij; jxiðtÞj > Ui;
cijðxiðtÞÞ ¼

( c0ij; jxiðtÞj � Ui;

c00ij; jxiðtÞj > Ui;

dijðxiðtÞÞ ¼

( d0ij; jxiðtÞj � Ui;

d00ij; jxiðtÞj > Ui;

ð2Þ

for i, j = 1, 2, . . ., n, where Ui; b0ij; b
00
ij; c
0
ij; c
00
ij; d

0
ij; d

00
ij are known constants [45, 46].

To derive the theoretical results, some assumptions will be needed:

(A1) 0� τij(t)�τij, _t ijðtÞ � sij < 1, where τij> 0 and σij> 0 are constants, i, j = 1, 2, . . ., n.

Finite time synchronization of MCGNNs
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(A2) wi(�) is continuous and 0 < wi � wið�Þ � wi, where wi > 0 and wi > 0 are constants,

i = 1, 2, . . ., n.

(A3) _aið�Þ � ai, where ai> 0 are constants, i = 1, 2, . . ., n.

(A4) For 8x, y 2 R, there exist constants li> 0 such that

jfiðxÞ � fiðyÞj � lijx � yj; i ¼ 1; 2; . . . ; n:

(A5) There exist constants Mi> 0 such that |fi(�)|�Mi, i = 1, 2, . . ., n.

(A6) There exist constants Kij> 0 such that

Z þ1

0

KijðsÞds � Kij; i; j ¼ 1; 2; . . . ; n:

Choose a transformation function Fi(�), which satisfies

d
du
ðFiðuÞÞ ¼

1

wiðuÞ
: ð3Þ

In view of 1

wiðuÞ
> 0, we know Fi(�) is strictly monotone increasing, then F� 1

i ð�Þ exists. Let xi(t)

= Fi(ξi(t)), we have _xiðtÞ ¼
dFiðxiðtÞÞ

xiðtÞ
_x iðtÞ ¼ 1

wiðxiðtÞÞ
_x iðtÞ; xiðtÞ ¼ F� 1

i ðxiðtÞÞ. On the other hand,

by the derivative theorem of inverse function, d
du ðF

� 1

i ðuÞÞ ¼ wiðuÞ. Then it follows that

_xiðtÞ ¼ � aiðF
� 1

i ðxiðtÞÞÞ þ
Xn

j¼1

bijðF
� 1

i ðxiðtÞÞÞfjðF
� 1

j ðxjðtÞÞÞ

þ
Xn

j¼1

cijðF
� 1

i ðxiðtÞÞÞfjðF
� 1

j ðxjðt � tijðtÞÞÞÞ

þ
Xn

j¼1

dijðF
� 1

i ðxiðtÞÞÞ
Z t

� 1

Kijðt � sÞfjðF
� 1

j ðxjðsÞÞÞdsþ Ii; i ¼ 1; 2; . . . ; n:

ð4Þ

Throughout this paper, we set bij ¼ maxfb0ij; b
00
ijg; bij ¼ minfb0ij; b

00
ijg; b

u
ij ¼ maxfjb0ijj; jb

00
ijjg,

cij ¼ maxfc0ij; c
00
ijg; cij ¼ minfc0ij; c

00
ijg; c

u
ij ¼ maxfjc0ijj; jc

00
ijjg,

dij ¼ maxfd0ij; d
00
ijg; dij ¼ minfd0ij; d

00
ijg; d

u
ij ¼ maxfjd0ijj; jd

00
ijjg, for i, j = 1, 2, . . ., n. co½E� stands

for the closure of the convex hull generated by set E.

Based on the relevant theories of differential inclusions and set-valued maps [47, 48], we

can derive that:

_xiðtÞ 2 � aiðF
� 1

i ðxiðtÞÞÞ þ
Xn

j¼1

co½bijðF
� 1

i ðxiðtÞÞÞ�fjðF
� 1

j ðxjðtÞÞÞ

þ
Xn

j¼1

co½cijðF
� 1

i ðxiðtÞÞÞ�fjðF
� 1

j ðxjðt � tijðtÞÞÞÞ

þ
Xn

j¼1

co½dijðF
� 1

i ðxiðtÞÞÞ�
Z t

� 1

Kijðt � sÞfjðF
� 1

j ðxjðsÞÞÞdsþ Ii; i ¼ 1; 2; . . . ; n;

ð5Þ

Finite time synchronization of MCGNNs
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where

co½bijðF
� 1

i ðxiðtÞÞÞ� ¼

b0ij; jF� 1

i ðxiðtÞÞj < Ui;

bij; bij�; jF
� 1

i ðxiðtÞÞj ¼ Ui;

b00ij; jF� 1

i ðxiðtÞÞj > Ui;

8
>>>><

>>>>:

co½cijðF
� 1

i ðxiðtÞÞÞ� ¼

c0ij; jF� 1

i ðxiðtÞÞj < Ui;

cij; cij�; jF
� 1

i ðxiðtÞÞj ¼ Ui;

c00ij; jF� 1

i ðxiðtÞÞj > Ui;

8
>>>><

>>>>:

co½dijðF
� 1

i ðxiðtÞÞÞ� ¼

d0ij; jF� 1

i ðxiðtÞÞj < Ui;

dij; dij�; jF
� 1

i ðxiðtÞÞj ¼ Ui;

d00ij ; jF� 1

i ðxiðtÞÞj > Ui;

8
>>>><

>>>>:

ð6Þ

for i, j = 1, 2, . . ., n. Then, there exist �bijðtÞ 2 co½bijðF
� 1

i ðxiðtÞÞÞ�, �cijðtÞ 2 co½cijðF
� 1

i ðxiðtÞÞÞ� and

�dijðtÞ 2 co½dijðF
� 1

i ðxiðtÞÞÞ� such that

_xiðtÞ ¼ � aiðF
� 1

i ðxiðtÞÞÞ þ
Xn

j¼1

�bijðtÞfjðF
� 1

j ðxjðtÞÞÞ þ
Xn

j¼1

�cijðtÞfjðF
� 1

j ðxjðt � tijðtÞÞÞÞ

þ
Xn

j¼1

�dijðtÞ
Z t

� 1

Kijðt � sÞfjðF
� 1

j ðxjðsÞÞÞdsþ Ii; i ¼ 1; 2; . . . ; n:
ð7Þ

MCGNN (1) is referred to as the drive system, this is the corresponding response system:

_Z iðtÞ ¼ � wiðZiðtÞÞ½aiðZiðtÞÞ �
Xn

j¼1

bijðZiðtÞÞfjðZjðtÞÞ �
Xn

j¼1

cijðZiðtÞÞfjðZjðt � tijðtÞÞÞ

�
Xn

j¼1

dijðZiðtÞÞ
Z t

� 1

Kijðt � sÞfjðZjðsÞÞds � Ii� þ RiðtÞ; i ¼ 1; 2; . . . ; n;
ð8Þ

where Ri(t) is the appropriate controller; the initial value of MCGNN (8) is f(s) = (f1(s), f2(s),
. . ., fn(s))T, s� 0; bij(ηi(t)), cij(ηi(t)) and dij(ηi(t)) are defined as:

bijðZiðtÞÞ ¼

( b0ij; jZiðtÞj � Ui;

b00ij; jZiðtÞj > Ui;
cijðZiðtÞÞ ¼

( c0ij; jZiðtÞj � Ui;

c00ij; jZiðtÞj > Ui;

dijðZiðtÞÞ ¼

( d0ij; jZiðtÞj � Ui;

d00ij ; jZiðtÞj > Ui;

ð9Þ

for i, j = 1, 2, . . ., n.

In this paper, we design such a feedback controller:

RiðtÞ ¼ � piðZiðtÞ � xiðtÞÞ � qisignðZiðtÞ � xiðtÞÞ; i ¼ 1; 2; . . . ; n; ð10Þ

where pi> 0 and qi> 0 are control gains.

Finite time synchronization of MCGNNs
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Similarly, it can be derived that

_yiðtÞ ¼ � aiðF
� 1

i ðyiðtÞÞÞ þ
Xn

j¼1

�bijðtÞfjðF
� 1

j ðyjðtÞÞÞ þ
Xn

j¼1

�cijðtÞfjðF
� 1

j ðyjðt � tijðtÞÞÞÞ

þ
Xn

j¼1

�dijðtÞ
Z t

� 1

Kijðt � sÞfjðF
� 1

j ðyjðsÞÞÞdsþ Ii

�
pi

wiðF
� 1

i ðyiðtÞÞÞ
ðF� 1

i ðyiðtÞÞ � F� 1

i ðxiðtÞÞÞ

�
qi

wiðF
� 1

i ðyiðtÞÞÞ
signðF� 1

i ðyiðtÞÞ � F� 1

i ðxiðtÞÞÞ; i ¼ 1; 2; . . . ; n;

ð11Þ

where yi(t) = Fi(ηi(t)), �bijðtÞ 2 co½bijðF
� 1

i ðyiðtÞÞÞ�, �cijðtÞ 2 co½cijðF
� 1

i ðyiðtÞÞÞ�, �dijðtÞ 2
co½dijðF

� 1

i ðyiðtÞÞÞ� and

co½bijðF
� 1

i ðyiðtÞÞÞ� ¼

b0ij; jF� 1

i ðyiðtÞÞj < Ui;

bij; bij�; jF
� 1

i ðyiðtÞÞj ¼ Ui;

b00ij; jF� 1

i ðyiðtÞÞj > Ui;

8
>><

>>:

co½cijðF
� 1

i ðyiðtÞÞÞ� ¼

c0ij; jF� 1

i ðyiðtÞÞj < Ui;

cij; cij�; jF
� 1

i ðyiðtÞÞj ¼ Ui;

c00ij; jF� 1

i ðyiðtÞÞj > Ui;

8
>><

>>:

co½dijðF
� 1

i ðyiðtÞÞÞ� ¼

d0ij; jF� 1

i ðyiðtÞÞj < Ui;

dij; dij�; jF
� 1

i ðyiðtÞÞj ¼ Ui;

d00ij ; jF� 1

i ðyiðtÞÞj > Ui;

8
>>><

>>>:

ð12Þ

for i, j = 1, 2, . . ., n.

Let ei(t) = yi(t) − xi(t), i = 1, 2, . . ., n, then we have

_eiðtÞ ¼ � ½aiðF
� 1

i ðyiðtÞÞÞ � aiðF
� 1

i ðxiðtÞÞÞ�

þ
Xn

j¼1

�bijðtÞ½fjðF
� 1

j ðyjðtÞÞÞ � fjðF
� 1

j ðxjðtÞÞÞ�

þ
Xn

j¼1

�cijðtÞ½fjðF
� 1

j ðyjðt � tijðtÞÞÞÞ � fjðF
� 1

j ðxjðt � tijðtÞÞÞÞ�

þ
Xn

j¼1

�dijðtÞ
Z t

� 1

Kijðt � sÞ½fjðF
� 1

j ðyjðsÞÞÞ � fjðF
� 1

j ðxjðsÞÞÞ�ds

þ
Xn

j¼1

ð�bijðtÞ � �bijðtÞÞfjðF
� 1

j ðxjðtÞÞ þ
Xn

j¼1

ð�cijðtÞ � �cijðtÞÞfjðF
� 1

j ðxjðt � tijðtÞÞÞ

þ
Xn

j¼1

ð�dijðtÞ � �dijðtÞÞ
Z t

� 1

Kijðt � sÞfjðF
� 1

j ðxjðsÞÞÞds

�
pi

wiðF
� 1

i ðyiðtÞÞÞ
ðF� 1

i ðyiðtÞÞ � F� 1

i ðxiðtÞÞÞ

�
qi

wiðF
� 1

i ðyiðtÞÞÞ
signðF� 1

i ðyiðtÞÞ � F� 1

i ðxiðtÞÞÞ; i ¼ 1; 2; . . . ; n;

ð13Þ
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with initial value ψ(s) = (ψ1(s), ψ2(s), . . ., ψn(s))T, s� 0, where ψi(s) = Fi(φi(s)) − Fi(fi(s)),
i = 1, 2, . . ., n.

Lemma 1 [49]. (Chain Rule) If V(�) : Rn! R is C−regular and x(t) 2 Rn is absolutely contin-

uous on any compact subinterval of [0, +1), then V(x(t)): [0, +1)! R is differentiable for a.

e.t 2 [0, +1) and

d
dt
VðxðtÞÞ ¼ vðtÞ _xðtÞ; 8vðtÞ 2 @VðxðtÞÞ:

where @V(x(t)) is the Clarke generalized gradient.

Definition 1. MCGNN (8) is said to be synchronized with MCGNN (1) in finite time, if

there exists a constant t� > 0 such that lim
t!t�

eiðtÞ ¼ 0 and ei(t)� 0 for t� t�, i = 1, 2, . . ., n,

where t� is called the settling time.

Remark 1. lim
t!t�

eiðtÞ ¼ 0 and ei(t)� 0 for t� t� mean that lim
t!t�

xiðtÞ ¼ lim
t!t�

yiðtÞ and

xi(t)� yi(t) for t� t�, that is to say, lim
t!t�

FiðxiðtÞÞ ¼ lim
t!t�

FiðZiðtÞÞ and Fi(ξi(t))� Fi(ηi(t)) for t

� t�. Since Fi(�) is strictly monotone increasing, we know lim
t!t�

eiðtÞ ¼ 0 and ei(t)� 0 for t� t�

are also equivalent to lim
t!t�

xiðtÞ ¼ lim
t!t�

ZiðtÞ and ξi(t)� ηi(t) for t� t�.

Main results

In this section, we will derive some sufficient conditions that can guarantee the finite time syn-

chronization of MCGNNs (1) and (8).

Theorem 1. Let assumptions A1-A6 hold. If control gains pi and qi satisfy

pi � � wiai þ
w2

i li
wi

Xn

j¼1

buji þ
1

1 � sji
cuji þ d

u
jiKji

 !

;

qi > wi

Xn

j¼1

ðbij � bij þ cij � cij þ dijKij � dijKijÞMj; i ¼ 1; 2; . . . ; n;

ð14Þ

MCGNN (8) will be synchronized with MCGNN (1) in finite time under the controller (10).

Proof. We design such a Lyapunov function:

VðtÞ ¼ V1ðtÞ þ V2ðtÞ þ V3ðtÞ; ð15Þ

where

V1ðtÞ ¼
Xn

i¼1

jeiðtÞj;

V2ðtÞ ¼
Xn

i¼1

Xn

j¼1

1

1 � sij
cuijljwj

Z t

t� tijðtÞ
jejðzÞjdz;

V3ðtÞ ¼
Xn

i¼1

Xn

j¼1

duij ljwj

Z 0

� 1

Z t

tþs
Kijð� sÞjejðzÞjdzds:

ð16Þ

Finite time synchronization of MCGNNs
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By Lemma 1, the derivative of V1(t) can be calculated as:

_V 1ðtÞ ¼
Xn

i¼1

signeiðtÞf� ½aiðF
� 1

i ðyiðtÞÞÞ � aiðF
� 1

i ðxiðtÞÞÞ�

þ
Xn

j¼1

�bijðtÞ½fjðF
� 1

j ðyjðtÞÞÞ � fjðF
� 1

j ðxjðtÞÞÞ�

þ
Xn

j¼1

�cijðtÞ½fjðF
� 1

j ðyjðt � tijðtÞÞÞÞ � fjðF
� 1

j ðxjðt � tijðtÞÞÞÞ�

þ
Xn

j¼1

�dijðtÞ
Z t

� 1

Kijðt � sÞ½fjðF
� 1

j ðyjðsÞÞÞ � fjðF
� 1

j ðxjðsÞÞÞ�ds

þ
Xn

j¼1

ð�bijðtÞ � �bijðtÞÞfjðF
� 1

j ðxjðtÞÞÞ þ
Xn

j¼1

ð�cijðtÞ � �cijðtÞÞfjðF
� 1

j ðxjðt � tijðtÞÞÞÞ

þ
Xn

j¼1

ð�dijðtÞ � �dijðtÞÞ
Z t

� 1

Kijðt � sÞfjðF
� 1

j ðxjðsÞÞÞds

�
pi

wiðF
� 1

i ðyiðtÞÞÞ
ðF� 1

i ðyiðtÞÞ � F� 1

i ðxiðtÞÞÞ

�
qi

wiðF
� 1

i ðyiðtÞÞÞ
signðF� 1

i ðyiðtÞÞ � F� 1

i ðxiðtÞÞÞg:

ð17Þ

Based on assumptions A2 and A3, it can be obtained that

signeiðtÞf� ½aiðF
� 1

i ðyiðtÞÞÞ � aiðF
� 1

i ðxiðtÞÞÞ�g

¼ � signeiðtÞa0iðy1Þ½F
� 1

i ðyiðtÞÞ � F� 1

i ðxiðtÞÞ�

¼ � signeiðtÞa0iðy1ÞððF
� 1

i Þ
0
ðy2ÞÞeiðtÞ � � aiwijeiðtÞj;

ð18Þ

where θ1 is between F� 1

i ðyiðtÞÞ and F� 1

i ðxiðtÞÞ, θ2 is between yi(t) and xi(t).
Based on assumptions A2 and A4, it follows that

signeiðtÞ�bijðtÞ½fjðF
� 1

j ðyjðtÞÞÞ � fjðF
� 1

j ðxjðtÞÞÞ�

� j�bijðtÞj � ljjF
� 1

j ðyjðtÞÞ � F� 1

j ðxjðtÞÞj � buijljwjjejðtÞj:
ð19Þ

Similarly, we have

signeiðtÞ�cijðtÞ½fjðF
� 1

j ðyjðt � tijðtÞÞÞÞ � fjðF
� 1

j ðxjðt � tijðtÞÞÞÞ�

� cuijljwjjejðt � tijðtÞÞj
ð20Þ

and

signeiðtÞ�dijðtÞ
Z t

� 1

Kijðt � sÞ½fjðF
� 1

j ðyjðsÞÞÞ � fjðF
� 1

j ðxjðsÞÞÞ�ds

� duij ljwj

Z t

� 1

Kijðt � sÞjejðsÞjds:
ð21Þ

Based on assumption A5, it follows that

signeiðtÞð�bijðtÞ � �bijðtÞÞfjðF
� 1

j ðxjðtÞÞ � j�bijðtÞ � �bijðtÞjMjgi � ðbij � bijÞMjgi; ð22Þ

Finite time synchronization of MCGNNs
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where γi = 0 if ei(t) = 0, otherwise γi = 1. Similarly, we get

signeiðtÞð�cijðtÞ � �cijðtÞÞfjðF
� 1

j ðxjðt � tijðtÞÞÞ � ðcij � cijÞMjgi ð23Þ

and

signeiðtÞð�dijðtÞ � �dijðtÞÞ
Z t

� 1

Kijðt � sÞfjðF
� 1

j ðxjðsÞÞÞds

� ðdij � dijÞMjgi

Z t

� 1

Kijðt � sÞds � ðdij � dijÞKijMjgi:

ð24Þ

On the other hand,

signeiðtÞ �
pi

wiðF
� 1

i ðyiðtÞÞÞ
ðF� 1

i ðyiðtÞÞ � F� 1

i ðxiðtÞÞÞ
� �

� � signeiðtÞ �
pi
wi
� wieiðtÞ ¼ �

piwi

wi
jeiðtÞj:

ð25Þ

Furthermore, since F� 1

i ð�Þ is strictly monotone increasing, we know that

signðF� 1

i ðyiðtÞÞ � F� 1

i ðxiðtÞÞÞ ¼ signeiðtÞ. Then we have

signeiðtÞ �
qi

wiðF
� 1

i ðyiðtÞÞÞ
signðF� 1

i ðyiðtÞÞ � F� 1

i ðxiðtÞÞÞ
� �

� �
qigi
wi
: ð26Þ

Calculating the derivatives of V2(t) and V3(t), we get that

_V 2ðtÞ ¼
Xn

i¼1

Xn

j¼1

1

1 � sij
cuijljwjjejðtÞj �

Xn

i¼1

Xn

j¼1

1 � _t ijðtÞ
1 � sij

cuijljwjjejðt � tijðtÞÞj

�
Xn

i¼1

Xn

j¼1

1

1 � sij
cuijljwjjejðtÞj �

Xn

i¼1

Xn

j¼1

cuijljwjjejðt � tijðtÞÞj
ð27Þ

and

_V 3ðtÞ ¼
Xn

i¼1

Xn

j¼1

duij ljwj

Z 0

� 1

Kijð� sÞjejðtÞjds �
Xn

i¼1

Xn

j¼1

duij ljwj

Z 0

� 1

Kijð� sÞjejðt þ sÞjds

�
Xn

i¼1

Xn

j¼1

duij ljwjKijjejðtÞj �
Xn

i¼1

Xn

j¼1

duij ljwj

Z t

� 1

Kijðt � sÞjejðsÞjds;
ð28Þ

where assumptions A1 and A6 have been used.
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Therefore,

_V ðtÞ �
Xn

i¼1

� aiwi �
piwi

wi

� �

jeiðtÞj þ
Xn

i¼1

Xn

j¼1

buijljwj þ
1

1 � sij
cuijljwj þ d

u
ij ljwjKij

 !

jejðtÞj

þ
Xn

i¼1

Xn

j¼1

½ðbij � bijÞMj þ ðcij � cijÞMj þ ðdij � dijÞKijMj� �
qi
wi

( )

gi

¼
Xn

i¼1

� aiwi �
piwi

wi
þ liwi

Xn

j¼1

buji þ
1

1 � sji
cuji þ d

u
jiKji

 !" #

jeiðtÞj

þ
Xn

i¼1

Xn

j¼1

ðbij � bij þ cij � cij þ dijKij � dijKijÞMj �
qi
wi

" #

gi:

ð29Þ

If the conditions in Theorem 1 are satisfied, we have

_V ðtÞ � � ε
Xn

i¼1

gi; ð30Þ

where

ε ¼ min
i

qi
wi
�
Xn

j¼1

ðbij � bij þ cij � cij þ dijKij � dijKijÞMj

" #

> 0:

By using the same analysis methods as those in [44], we can prove there exists a constant

t� > 0 such that

k eðt�Þ k1 ¼ 0 and k eðtÞ k1 � 0; 8t � t�; ð31Þ

where e(t) = (e1(t), e2(t), . . ., en(t))T and k eðtÞ k1 ¼
Pn

i¼1

jeiðtÞj:

According to Definition 1, MCGNNs (1) and (8) achieve synchronization in finite time.

The proof is completed.

Remark 2. In Theorem 1, since the distributed delays in MCGNNs (1) and (8) are

unbounded, it is difficult to estimate the settling time t�.
If the delay kernels satisfy

KijðtÞ ¼

(
1; 0 � t � bij;

0; t > bij;
ð32Þ

where βij> 0 are constants, i, j = 1, 2, . . ., n, MCGNN (1) can be written as

_x iðtÞ ¼ � wiðxiðtÞÞ½aiðxiðtÞÞ �
Xn

j¼1

bijðxiðtÞÞfjðxjðtÞÞ �
Xn

j¼1

cijðxiðtÞÞfjðxjðt � tijðtÞÞÞ

�
Xn

j¼1

dijðxiðtÞÞ
Z t

t� bij

fjðxjðsÞÞds � Ii�; i ¼ 1; 2; . . . ; n:
ð33Þ

Finite time synchronization of MCGNNs
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This is the corresponding response system:

_Z iðtÞ ¼ � wiðZiðtÞÞ½aiðZiðtÞÞ �
Xn

j¼1

bijðZiðtÞÞfjðZjðtÞÞ �
Xn

j¼1

cijðZiðtÞÞfjðZjðt � tijðtÞÞÞ

�
Xn

j¼1

dijðZiðtÞÞ
Z t

t� bij

fjðZjðsÞÞds � Ii� þ RiðtÞ; i ¼ 1; 2; . . . ; n:
ð34Þ

In fact, MCGNNs (33) and (34) can also achieve finite time synchronization under the con-

troller (10), what is more, the settling time t� can be estimated.

Corollary 1. Let assumptions A1-A5 hold. If control gains pi and qi satisfy

pi � � wiai þ
w2

i li
wi

Xn

j¼1

buji þ
1

1 � sji
cuji þ d

u
jibji

 !

;

qi > wi

Xn

j¼1

ðbij � bij þ cij � cij þ dijbij � dijbijÞMj; i ¼ 1; 2; . . . ; n;

ð35Þ

MCGNN (34) will be synchronized with MCGNN (33) in finite time under the controller (10).

Moreover, the settling time

t� �
1

ε

Xn

i¼1

jeið0Þj þ
Xn

i¼1

Xn

j¼1

1

1 � sij
cuijljwj

Z 0

� tijð0Þ

jejðzÞjdz þ
Xn

i¼1

Xn

j¼1

duij ljwj

Z 0

� bij

Z 0

s
jejðzÞjdzds

" #

;

where

ε ¼ min
i

qi
wi
�
Xn

j¼1

ðbij � bij þ cij � cij þ dijbij � dijbijÞMj

" #

> 0:

Proof. Consider such a Lyapunov function:

VðtÞ ¼ V1ðtÞ þ V2ðtÞ þ V3ðtÞ; ð36Þ

where

V1ðtÞ ¼
Xn

i¼1

jeiðtÞj;

V2ðtÞ ¼
Xn

i¼1

Xn

j¼1

1

1 � sij
cuijljwj

Z t

t� tijðtÞ
jejðzÞjdz;

V3ðtÞ ¼
Xn

i¼1

Xn

j¼1

duij ljwj

Z 0

� bij

Z t

tþs
jejðzÞjdzds:

ð37Þ

Referring to the proofs of Theorem 1 and Ref. [44], we can give the remaining proof of Cor-

ollary 1, which is omitted here.

Remark 3. In MCGNN (1), if
R t
� 1

Kijðt � sÞfjðxjðsÞÞds is replaced by
R t
t� rijðtÞ

fjðxjðsÞÞds,

where 0� ρij(t)� ρij, we can get a new MCGNN. Similarly to Corollary 1, we can prove that

MCGNNs with this kind of distributed time-varying delays can achieve finite time synchroni-

zation under the controller (10), and the settling time t� can also be estimated.

Remark 4. It has been proved that controller (10) can synchronize MCGNNs effectively.

Controller (10) consists of two parts: linear part −pi(ηi(t) − ξi(t)) and nonlinear part −qisign

Finite time synchronization of MCGNNs
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(ηi(t) − ξi(t)). In the proofs of Theorem 1 and Corollary 1, the nonlinear part of the controller

is used to deal with the parameter mismatches of the drive-response MCGNNs, while the lin-

ear part of the controller plays a key role in driving the response MCGNN to synchronize with

the drive MCGNN.

Remark 5. In [43], the authors also investigated the finite time synchronization of

MCGNNs. However, the finite-time synchronization analysis methods they utilized were tra-

ditional ones [50], that is, they should prove _V ðtÞ � � aVZðtÞ, α> 0, 0< η< 1, or

_V ðtÞ � � aVZðtÞ þ yVðtÞ, α> 0, θ> 0, 0< η< 1, where V(t) is the Lyapunov function. In

this paper, we utilize some novel finite-time synchronization analysis methods [44]. First, we

prove that _V ðtÞ � � ε
Pn

i¼1

gi, where ε> 0; γi = 0 if ei(t) = 0, otherwise γi = 1. Then we use the

strict mathematic analysis to derive the results. Moreover, though the delays considered in

[43] were only discrete delays, the controller used in [43] was very complicated, i.e. RiðtÞ ¼

� piðviðtÞ � uiðtÞÞ � ZisignðviðtÞ � uiðtÞÞ �
Pn

j¼1

kijsignðvjðtÞ � ujðtÞÞ �
Pn

j¼1

dijsignðviðtÞ �

uiðtÞÞjvjðt� tjðtÞÞ � ujðt � tjðtÞÞj. In this paper, we consider MCGNN model with mixed

delays, however, the controller that we use is very simple, i.e. Ri(t) = −pi(ηi(t) − ξi(t)) − qisign
(ηi(t) − ξi(t)).

Remark 6. In MCGNN (1), if the memristive connection weights bij(ξi(t)) = bij, cij(ξi(t)) = cij
and dij(ξi(t)) = 0, MCGNN (1) will reduce into the Cohen-Grossberg neural network model

studied in [39, 40]. Therefore, the theoretical results of this paper can be applicable to the

Cohen-Grossberg neural networks in [39, 40], while the opposite is probably not true. In this

sense, the obtained results of this paper are less conservative.

Numerical simulations

In this section, numerical simulations are given to validate the obtained results in this paper.

Example 1. Consider the following MCGNN:

_x iðtÞ ¼ � wiðxiðtÞÞ½aiðxiðtÞÞ �
X2

j¼1

bijðxiðtÞÞfjðxjðtÞÞ �
X2

j¼1

cijðxiðtÞÞfjðxjðt � tijðtÞÞÞ

�
X2

j¼1

dijðxiðtÞÞ
Z t

� 1

Kijðt � sÞfjðxjðsÞÞds � Ii�; i ¼ 1; 2;

ð38Þ

where a1(v) = 1.8v, a2(v) = 1.6v, τ11(t) = 1 − 0.2sint, τ12(t) = 0.9 − 0.1cost, τ21(t) = 0.5sint, τ22(t)
= 0.5cost, I1 = −0.02, I2 = −0.12, wiðvÞ ¼ 1þ 0:3

2þtanhðvÞ, fj(v) = tanh(v), Kij(t) = e−0.5t, i, j = 1, 2, and

U1 = U2 = 1, b0
11
¼ 0:25, b00

11
¼ � 0:18, b0

12
¼ � 1:2, b00

12
¼ 0:95, b0

21
¼ � 0:85, b00

21
¼ 0:25,

b0
22
¼ 0:36, b00

22
¼ � 0:18, c0

11
¼ 0:60, c00

11
¼ 0:70, c0

12
¼ � 0:24, c00

12
¼ � 0:15, c0

21
¼ 0:56,

c00
21
¼ � 0:68, c0

22
¼ 0:85, c00

22
¼ 0:45, d0

11
¼ � 0:56, d00

11
¼ � 0:25, d0

12
¼ 0:15, d00

12
¼ � 0:18,

d0
21
¼ 0:76, d00

21
¼ 0:56, d0

22
¼ � 0:85, d00

22
¼ � 0:35.

The initial value of MCGNN (38) is φ(t) = (−0.2, 1.2)T for t 2 [−5, 0], and φ(t) = (0, 0)T for t
2 (−1, −5). The transient behaviour of MCGNN (38) is showed in Fig 2.
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This is the corresponding response system:

_Z iðtÞ ¼ � wiðZiðtÞÞ½aiðZiðtÞÞ �
X2

j¼1

bijðZiðtÞÞfjðZjðtÞÞ �
X2

j¼1

cijðZiðtÞÞfjðZjðt � tijðtÞÞÞ

�
X2

j¼1

dijðZiðtÞÞ
Z t

� 1

Kijðt � sÞfjðZjðsÞÞds � Ii� þ RiðtÞ; i ¼ 1; 2:

ð39Þ

The initial value of MCGNN (39) is f(t) = (0.4, 0.6)T for t 2 [−5, 0], and f(t) = (0, 0)T for t
2 (−1, −5). The transient behaviour of MCGNN (39) without control inputs is showed in

Fig 3.

Fig 2. The transient behaviour of MCGNN (38).

https://doi.org/10.1371/journal.pone.0185007.g002

Fig 3. The transient behaviour of MCGNN (39) without control inputs.

https://doi.org/10.1371/journal.pone.0185007.g003
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The synchronization errors between MCGNNs (38) and (39) are defined as zi(t) = ηi(t) −
ξi(t), i = 1, 2. The evolutions of the synchronization errors between MCGNNs (38) and (39)

without control inputs are showed in Fig 4.

Obviously, τ11 = 1.2, τ12 = 1, τ21 = 0.5, τ22 = 0.5, σ11 = 0.2, σ12 = 0.1, σ21 = 0.5, σ22 = 0.5, a1 =

1.8, a2 = 1.6, wi ¼ 1:1, wi ¼ 1:3, li = 1, Mi = 1, Kij = 2, i, j = 1, 2, so assumptions A1-A6 hold.

According to Theorem 1, if we choose p1 = 7, p2 = 6.6, q1 = 5.4 and q2 = 6.2, MCGNN (39) will

be synchronized with MCGNN (38) in finite time under the controller (10). Fig 5 shows the

evolutions of the synchronization errors between MCGNNs (38) and (39) under the

controller (10).

Fig 4. The evolutions of the synchronization errors without control inputs.

https://doi.org/10.1371/journal.pone.0185007.g004

Fig 5. The evolutions of the synchronization errors under the controller (10).

https://doi.org/10.1371/journal.pone.0185007.g005
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Example 2. Consider the following MCGNN:

_x iðtÞ ¼ � wiðxiðtÞÞ½aiðxiðtÞÞ �
X2

j¼1

bijðxiðtÞÞfjðxjðtÞÞ �
X2

j¼1

cijðxiðtÞÞfjðxjðt � tijðtÞÞÞ

� Ii�; i ¼ 1; 2;

ð40Þ

where a1(v) = 1.61v + sin(v), a2(v) = 1.45v + sin(v), I1 = I2 = 0, w1ðvÞ ¼ 6þ 1

1þv2,

w2ðvÞ ¼ 3 � 1

1þv2, U1 = 0.3, U2 = 1, b0
11
¼ 1:81, b00

11
¼ 2:2, b0

12
¼ � 0:14, b00

12
¼ 0:12, b0

21
¼ � 1:9,

b00
21
¼ � 2:2, b0

22
¼ 5, b00

22
¼ 5:2, c0

11
¼ � 0:95, c00

11
¼ � 1:3, c0

12
¼ 0:08, c00

12
¼ 0:15, c0

21
¼ � 0:2,

c00
21
¼ � 0:18, c0

22
¼ � 2:5, c00

22
¼ � 2:3, and fj(�), τij(t), i, j = 1, 2, are the same as those in Example

1. The initial value of MCGNN (40) is φ(t) = (−0.2, 1.2)T, t 2 [−2, 0]. The transient behaviour

of MCGNN (40) is showed in Fig 6.

This is the corresponding response system:

_Z iðtÞ ¼ � wiðZiðtÞÞ½aiðZiðtÞÞ �
X2

j¼1

bijðZiðtÞÞfjðZjðtÞÞ �
X2

j¼1

cijðZiðtÞÞfjðZjðt � tijðtÞÞÞ

� Ii� þ RiðtÞ; i ¼ 1; 2:

ð41Þ

The initial value of MCGNN (41) is f(t) = (0.4, 0.6)T, t 2 [−2, 0]. The transient behaviour

of MCGNN (41) without control inputs is showed in Fig 7. The evolutions of the synchroniza-

tion errors between MCGNNs (40) and (41) without control inputs are showed in Fig 8.

According to Corollary 1, if we choose p1 = 48.3, p2 = 45.6, q1 = 20 and q2 = 10, MCGNN

(41) will be synchronized with MCGNN (40) in finite time under the controller (10), and the

settling time t� can be estimated as 7.143. Fig 9 shows that MCGNNs (40) and (41) realize

finite time synchronization within t�.

Fig 6. The transient behaviour of MCGNN (40).

https://doi.org/10.1371/journal.pone.0185007.g006
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Fig 8. The evolutions of the synchronization errors without control inputs.

https://doi.org/10.1371/journal.pone.0185007.g008

Fig 9. The evolutions of the synchronization errors under the controller (10).

https://doi.org/10.1371/journal.pone.0185007.g009

Fig 7. The transient behaviour of MCGNN (41) without control inputs.

https://doi.org/10.1371/journal.pone.0185007.g007
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Conclusion

This paper studies the finite time synchronization problem of MCGNNs with mixed delays. By

utilizing some novel and effective analysis techniques, several sufficient conditions that can

guarantee the finite time synchronization of MCGNNs with mixed delays are derived. The

feedback controllers that we design are very simple, but they can solve the parameter mismatch

problem of the drive-response MCGNNs perfectly. However, the conservativeness of the theo-

retical analysis probably makes the control gains of our feedback controllers much larger than

those needed in the engineering applications. On the other hand, it is costly and impractical to

control a network by applying controllers to all the nodes. Since adaptive pinning controller

can avoid the high control gains effectively and reduce the number of the controlled nodes,

our future work will focus on the synchronization control of MCGNNs via the adaptive pin-

ning control. Numerical simulations are given to verify the obtained theoretical results.
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