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ABSTRACT: Formal hydroperfluoroalkylation of enones is achieved in a
two-step process comprising conjugate hydroboration and subsequent
radical perfluoroalkylation. The 1,4-hydroboration of the enone is
conducted in the absence of any transition metal catalyst with
catecholborane in 1,2-dichloroethane, and the generated boron enolate is
in situ α-perfluoroalkylated with a perfluoroalkyl iodide upon blue LED
irradiation in the presence of an amine additive. Both reactions proceed
under very mild conditions at room temperature.

Perfluoroalkyl containing organic compounds have gained
great importance in various fields such as polymer

chemistry, the agrochemical industry, and the pharmaceutical
industry.1 Various agrochemicals and pharmaceuticals bear at
least one fluorine atom.2 It is well-known that a perfluoroalkyl
group, in particular the CF3-moiety, in a bioactive compound
influences the pharmacokinetics.3 Therefore, the development
of synthetic methods for the preparation of perfluoroalkylated
compounds has found significant attention in the past, and
various strategies have been developed to form a C(sp3)−CF3
bond using electrophilic,4 nucleophilic,5 and radical6 CF3-
sources.
Among several scaffolds, the synthesis of α-trifluoromethy-

lated ketones has been studied, and accordingly, different
approaches for their preparation have been reported. The most
obvious path that is ionic enolate alkylation using CF3I as the
electrophile does not provide the targeted α-trifluoromethy-
lated ketones. However, C(sp3)−CF3 coupling can be achieved
upon using α-halo ketones with CuCF3 as the reagent.7

Moreover, radical chemistry with the reactive trifluoromethyl
radical as an intermediate has been found to be highly valuable
for the α-trifluoromethylation of ketones.8−10 Along these
lines, Li- and Ti-enolates have been successfully used as radical
acceptors for trifluoromethylation (Scheme 1a).9 In situ
generated silyl enol ethers react efficiently with CF3I in a
radical chain reaction and different initiation protocols have
been developed to run such cascades (Scheme 1b).8 Moreover,
vinyl triflates, readily prepared upon enolate triflation, act as
CF3-radical acceptors as well as CF3-radical precursors with
SO2 as the only byproduct of the chain reaction (Scheme
1c).10 All these methods use ketones as the substrates and all
proceed via formation of the corresponding enolates. It is
known that ketone enolates can also be generated via
conjugate reduction of enones. Subsequent α-trifluoromethy-
lation should provide the targeted α-functionalized ketones in
a formal hydrotrifluoromethylation11 process. Surprisingly,

reductive enone α-trifluoromethylation has been rarely
studied.12 Herein, we report a catalyst-free α-perfluoroalkyla-
tion of α,β-unsaturated ketones via conjugate hydroboration

Received: December 26, 2020
Published: February 2, 2021

Scheme 1. Radical Approaches for the Preparation of α-
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with catecholborane and subsequent radical perfluoroalkylation
of the in situ generated boron enolate (Scheme 1d). In
contrast to the generation of silyl enol ethers or enol triflates
from ketones where strong bases are generally required, the B-
enolate formation via hydroboration of enones occurs in the
absence of any base under mild conditions. Moreover,
regioselective enolization of dialkyl ketones is difficult, whereas
enolization of an enone affords the corresponding enolate as a
single regioisomer.
In a collaboration with the Renaud laboratory we developed

TEMPO mediated oxidation of catecholboron enolates
proceeding via the corresponding enoyl radicals.13 We further
showed that catecholboron enolates are good C-radical
acceptors, and based on this reactivity a boron group transfer
polymerization process was developed.14 We therefore
envisaged that catecholboron enolates can be utilized as
perfluoroalkyl radical acceptors. The studies were commenced
using chlorochalcone 1a as the model substrate in combination
with perfluorobutyl iodide (2a) as the radical alkylation
reagent. In situ generation of the boron enolate through
conjugate enone reduction upon treatment of 2a with
catecholborane (HBcat, 1.2 equiv)15 in THF for 2 h was
followed by the addition of 2a (5 equiv) and subsequent blue
LED irradiation for 16 h. Pleasingly, the targeted α-
perfluoroalkylated ketone 3a was obtained in 29% yield
(Table 1, entry 1). Increasing the amount of HBcat and 2a

led to a slightly better yield (Table 1, entry 2). A further
improvement was achieved upon using DMF as an additive
and 3a was formed in 45% yield (Table 1, entry 3). An even
better result was noted with Et3N as the additive (Table 1,
entry 4). A quick solvent screening revealed that yield was
improved in dioxane (Table 1, entry 5) and 1,2-dichloroethane
provided the best result (84%, Table 1, entry 6). Reducing the
excess of the iodide from 5 to 2.5 equiv led to a lower yield
(Table 1, entry 7), and light irradiation was indispensable
(Table 1, entry 8).
Under the optimized conditions, the substrate scope was

investigated, first varying the enone component. The studied
enones were easily prepared by standard aldol condensation
(see Supporting Information), and reactions were conducted
with perfluorobutyl iodide as the C-radical precursor.
Chalcones 1a−1i reacted well, and the corresponding products

were isolated in good to very good yields (Scheme 2).
Electronic effect are weak and good results were obtained for

the electron-poor as well as electron-rich systems. Hence, the
4-halo chalcones 1a−1c and the nitrile 1e gave the
hydroperfluoroalkylated ketones 3a−3c and 3e in 62−80%
yields. Similar yields were obtained for the chalcones bearing
electron-donating alkyl and the methylthio group as the para-
substituent (3d, 86%; 3f, 86%; 3i, 62%), and also the
unsubstituted congener 1g as well as the phenyl derivative
1h reacted well (3g, 72%; 3h, 75%).
Substitution at the ortho-position of the R-aryl group in the

starting chalcone (see 1j−1l) led to slightly lower yields, likely
due to steric effects, and 3j−3l were isolated in 50−73% yields.
As expected, a meta-substituent does not influence reaction
outcome to a large extent (3m, 75%). The chalcone derived

Table 1. Reaction Optimizationa,b

entry solvent HBcat (equiv) additive 2a (equiv) yield (%)

1 THF 1.2 − 5 29
2 THF 2.2 − 10 35
3 THF 1.5 DMFc 5 45
4 THF 1.5 Et3N

d 5 59e

5 dioxane 1.5 Et3N
d 5 74

6 DCE 1.5 Et3N
b 5 84

7 DCE 1.5 Et3N
d 2.5 60

8 DCE 1.5 Et3N
d 5 0f

aReaction conditions: 1a (0.2 mmol, 1 equiv), solvent (1 mL),
additive, rt, Ar, 16 h. bYield were determined by NMR using 2,4,6-
trimethoxybenzene as internal standard. c0.1 mL DMF used. d2.5
equiv used. eIsolated yield based on 1a. fWithout light.

Scheme 2. Hydroperfluoroalkylation of Various Enones
Also Varying the Perfluoroalkyl Radical Precursora

aReaction conditions: 1 (0.2 mmol, 1 equiv), DCE (1 mL), HBCat
(0.3 mmol, 1.5 equiv), Et3N (69 μL, 2.5 equiv), rt, Ar, 16 h. bReaction
conducted on 1 mmol scale.
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from 2-naphthyl aldehyde exerting weak steric effects reacted
efficiently to provide 3n in 80% yield. We were pleased to find
that enones derived from aliphatic aldehydes engaged in the
hydroperfluoroalkylation as documented by the successful
preparation of the cyclopropyl- (3o) and methyl congener
(3p), albeit slightly lower yields were achieved (54−55%).
Moreover, heteroarenes are tolerated as the benzofuryl (3q)
and thienyl ketone (3s) could be prepared by this method. The
latter example further shows that also the Ar-group in the
enones of type 1 can be varied. Along these lines, the para-
methoxyphenyl ketone 3r was obtained in an excellent 90%
yield. Unfortunately, cyclic enones are not eligible substrates
due to the failure of the initial conjugate hydroboration.15

Methyl styryl ketone worked, albeit the yield was moderate
(3x, 24%).
We finally tested whether the perfluorobutyl iodide can be

replaced by other perfluoroalkyl radical sources. Pleasingly,
reaction of ICF2CO2Et with 1a under the optimized conditions
gave the desired ketone 3t in 71% yield. As expected, the novel
cascade can also be conducted with perfluoropropyl iodide
(3u), perfluorohexyl iodide (3v), and importantly also with
trifluoromethyl iodide (3w).
To check the role of the catecholboron moiety in the radical

alkylation, we studied the α-perfluorobutylation of two
additional boron enolates. The enolate derived from conjugate
reduction of 4-chlorochalcone (1a) with 9-borabicyclo[3.3.1]-
nonane (9-BBN)16 was reacted with C4F9I under the
optimized condition (LED irradiation). However, only traces
of the targeted 3a were identified (Scheme 3). In addition, we

generated the pinacol boron enolate derived from α-
iodoacetophenone (4a).17 Again, radical α-perfluorobutylation
was not efficient upon irradiation, and 5a was formed in traces
only. In both cases reduction worked, but the subsequent
radical C−Rf-bond formation failed. These two experiments
clearly show the importance of the catechol moiety at boron
on its radical reactivity. Notably, the unique reactivity of the
catechol entity was previously also found for the boron enolate
oxidation with TEMPO.13

The suggested mechanism for the radical perfluoroalkylation
of a catecholboron enolate A is depicted in Scheme 4. In the
initiation step, the perfluoroalkyl radical is generated by blue
LED irradiation of the perfluoroalkyl iodide/amine complex.
The electrophilic C-radical then adds to the catecholboron
enolate A to generate the corresponding borylated ketyl radical
B. Structure of A was confirmed for the enolate derived from
1a (Ar = Ph, R = 4-ClPh) by NMR spectroscopy (see SI). For
this particular substrate, enolate generation occurred selectively
and the Z-configuration was assigned based on literature
precedence.15a This highly nucleophilic radical can undergo

rapid SET-oxidation by the perfluoroalkyl iodide to give the
product ketone 3, IBcat and the perfluoroalkyl radical,
qualifying the overall cascade as an electron catalyzed
process.18 The SET-oxidation of intermediate B might be
assisted with the Lewis-basic amine coordinating to the B atom
of the enolate.19 Alternatively, radical B might engage in an
endothermic I atom abstraction reaction from RfI followed by
very fast ionic IBcat fragmentation.
In summary, we have presented formal hydroperfluoroalky-

lation of various aromatic enones. These transformations
proceed via initial conjugate reduction of the α,β-unsaturated
ketone with catecholborane and subsequent light initiated
radical chain α-perfluoroalkylation of the intermediately
formed catecholboron enolate. The radical alkylation works
only on catecholboron enolates and analogous pinacolboron-
and dialkyl boron enolates do not engage in the radical
alkylation. The process works under mild conditions, and a
catalyst is not required in both steps of the cascade.
Importantly, the two-step procedure can be conducted in
one pot, further increasing the practicality of the process. The
method introduced further expands boron-based radical
chemistry.20
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