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Abstract: Amid the genomic data explosion, phylogenomic analysis has resolved the tree of life
of different organisms, including fungi. Genome-wide clustering has also been conducted based
on gene content data that can lighten the issue of the unequal evolutionary rate of genes. In this
study, using different fungal species as models, we performed phylogenomic and protein-content
(PC)-based clustering analysis. The obtained sequence tree reflects the phylogenetic trajectory of
examined fungal species. However, 15 PC-based trees constructed from the Pfam matrices of the
whole genomes, four protein families, and ten subcellular locations largely failed to resolve the
speciation relationship of cross-phylum fungal species. However, lifestyle and taxonomic associations
were more or less evident between closely related fungal species from PC-based trees. Pairwise
congruence tests indicated that a varied level of congruent or discordant relationships were observed
between sequence- and PC-based trees, and among PC-based trees. It was intriguing to find that a few
protein family and subcellular PC-based trees were more topologically similar to the phylogenomic
tree than was the whole genome PC-based phylogeny. In particular, a most significant level of
congruence was observed between sequence- and cell wall PC-based trees. Cophylogenetic analysis
conducted in this study may benefit the prediction of the magnitude of evolutionary conservation,
interactive associations, or networking between different family or subcellular proteins.

Keywords: phylogenomics; protein content phylogeny; cophylogenetic analysis; taxonomic
association; lifestyle association

1. Introduction

Phylogenetic analysis, based on DNA or protein sequence data, is critical in evolutionary biology.
Amid the genomic data explosion, phylogenomic analysis using a large dataset including hundreds
to thousands of orthologous genes/proteins from each species resolved the speciation relationships
of different organisms [1]. Molecular phylogenies have also revealed either convergent or divergent
evolution of protein family sizes or lifestyles [2]. For example, comparative and phylogenomic analysis
of plant, mammalian, and insect pathogenic fungi revealed the convergent evolution of different
pathotypes in association with protein family expansions and contractions [3]. Cophylogenetic analysis
has also been reported to reveal the co-speciation events between parasites and hosts [4,5]. Thus,
tree comparison is beneficial for testing the association or relationships between different phylogenies.

Besides phylogenomic analysis, genome-wide trees also have been generated on the base of the statistic
properties of the genome, chromosomal gene order, or genome-wide gene contents [6,7]. For example,
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clustering analyses using the shared gene contents between bacterial genomes resulted in the phylogenies
in good correlation with the sequence-based phylogenetic relationships [8–10]. Alternatively, protein
contents were converted into binary data for phylogenetic analysis of animals [7,11,12] or viruses [13] based
on the presence or absence of homologous gene families after orthology analyses, which also resulted in
congruence relationships between sequence- and gene-content-based tress. Phylogenetic clustering using
these data could alleviate the issue of the unequal evolutionary rate of the genes used for phylogenomic
analysis [14] or the issue of the substantial gene turnover between deeply diverging lineages [7]. However,
the reliability of the gene content tree has been questioned for resolving speciation relationships due to
the events of horizontal gene transfer [6] or gene duplications (i.e., the presence of multiple paralogs for
certain genes) [7]. It is still obscure for distance-based phylogenetic analysis once the whole genome gene
content was divided into protein families or subcellular locations. The congruent or discordant relationship
between sequence and protein family-content based phylogenies has yet to be determined.

The analysis of the gene/protein content tree has not reported before for fungi. By using cross-phylum
fungal species as models, the aim of this study is to compare the sequence-based phylogenomic tree
with the protein content (PC)-based trees generated based on the PC matrices of the protein families and
subcellular location classifications. The results of cophylogenetic analysis may benefit the understanding
of the congruent or discordant relationships among these two types of trees and therefore the level of
associations or disassociations between protein families.

2. Material and Methods

2.1. Examined Fungal Species

Whole genome protein sequences of 27 fungal species belonging to three phyla, i.e., Mucoromycota,
Basidiomycota and Ascomycota, were downloaded from available resources (Table S1). These species
were selected and included in this study based on the considerations of: availability of genome
information, different pathotypes, and taxonomic associations. In addition to the model saprophytic
fungal species such as Neurospora crassa (abbreviated: NCR), Aspergillus nidulans (AND), Saccharomyces
cerevisiae (SCE), and Schizosaccharomyces pombe (SPO), cross-phylum plant pathogens like the ascomycetes
Magnaporthe oryzae (MOR), Fusarium graminearum (FGR), Sclerotinia sclerotiorum (SSC), Verticillium
albo-atrum (VAL), and Botrytis cinerea (BCI), as well as the basidiomycete Ustilago maydis (UMA),
were selected. Likewise, the cross-phylum mammalian pathogens, including the ascomycetes
A. fumigatus (AFU), Coccidioides immitis (CIM), and Candida albicans (CAL), and the basidiomycete
Cryptococcus neoformans (CNE), were selected. Insect pathogens included two closely-related species
with different host range: Metarhizium robertsii (MAA) and M. acridum (MAC) [5]. Taken together
with the selection of four species of the basidiomycete mushrooms, the use of these fungal groups
may benefit the determination of lifestyle association. Otherwise, four Aspergillus species and three
ascomycete yeast species were selected based on the consideration of their taxonomic associations.
The basal mucoromycete saprophyte Rhizopus oryzae (ROR) was included to root the phylogenetic trees.

2.2. Pfam Analysis and Subcellular Location Prediction

Proteins encoded by each fungal species were first subject to Pfam analysis and classified based on
the top hit with a cutoff of E value < 1× 10−5 (Table S2). A few large protein families were then extracted
including proteases, CAZy (carbohydrate-active enzymes) [15], ribosomal subunits, and those proteins
with domain-unknown function (DUF) and uncharacterized protein family (UPF) (Tables S3–S6).
Subcellular localizations of the proteins of each species were analyzed using the program ProtComp
(ver. 9.0; http://linux1.softberry.com/berry.phtml/). Each protein location was determined based on
the highest hit score obtained among different categories. Fungal cell wall proteins of each species
were also characterized using the algorithm ProFASTA (La Mancha, Spain) [16]. The obtained proteins
for each subcellular location were then subject to Pfam annotation. The identified proteins without
conserved Pfam domains were not included in further analysis. Manual curations were conducted to
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remove those Pfam classes present only in one or two fungal species that might be caused due to the
gene annotation errors. Thus, protein family sizes were obtained for each subcellular proteins of each
fungal species (Tables S7–S16).

2.3. Phylogenetic Tree Construction

To rebuild the phylogenomic tree, 455 single-copy orthologous proteins were identified from each
of 27 examined fungal species by Inparanoid analysis [17] (Table S17). Protein sequences were aligned
using the program MUSCLE (ver. 3.8.31; Mill Valley, USA) [18], and the maximum likelihood (ML)
tree was generated using the concatenated sequences with the program TreePuzzle (ver. 5.2; Berlin,
Germany) with default parameters including a Dayhoff model of substitution and 1000 bootstrap
replicates [19]. Fungal phenograms were also constructed by hierarchical clustering [8] using the
average distance matrices estimated from pairwise Pearson correlation coefficient calculated based
on the protein content (PC) of different families (Tables S2–S16). The analysis was conducted in a
MATLAB TAH Edition (https://github.com/knowledgeontology/fungal_evolution).

2.4. Tree Topology Congruence Tests

To determine the significance of topological congruence or incongruence between sequence and
PC-based phylogenetic trees, the Newick tree format data (Table S18) were tested by calculation
of the index Icong based on maximum agreement subtrees without parametrizing the likelihood of
evolutionary events. A p-value less than 0.05 means that two trees are more congruent than expected
by chance [20].

3. Results and Discussion

3.1. Protein Family Size Variation

Pfam analysis identified 2806 protein families with content variations for each Pfam class from
27 examined fungal species (Table S2), including 49 families of proteases (Table S3), 64 families of
CAZy enzymes (Table S4), 94 classes of ribosomal subunits (Table S5), and 344 classes of DUF/UPF
proteins (Table S6). Pfam analysis could not finely classify some big protein families such as kinases,
transporters, transcription factors, and cytochrome P450s. The contents of these families were therefore
not included in further analysis. Subcellular classifications resulted in the varied number of the
proteins with putative locations to different organelles for each fungal species (Tables S7–S16). Overall,
for example, plant pathogenic and white-rot fungi encode more CAZy enzymes than do other fungi.
These glycoside hydrolases are essential for these fungi to degrade plant biomasses [21]. In contrast,
higher numbers of chitinases (PF00704, Glycos_hydro_18) and serine proteases (PF00082, Peptidase_S8;
PF00089, Trypsin) are encoded in insect pathogenic Metarhizium species than those of other fungi.
These enzymes are important for Metarhizium to degrade and penetrate the chitin- and protein-rich
insect cuticles [22]. Overall, similar to previous observations [23,24], protein family content largely
correlates with fungal lifestyles.

3.2. Diverse Phylogenetic Associations

A ML phylogenomic tree was generated (Figure 1A) using the concatenated orthologous protein
sequences. Being supported by bootstrap replications and consistent with previous reports [25,26],
the tree is rooted by R. oryzae, which is then followed by the sequential divergence of basidiomycete and
ascomycete fungi. Within the ascomycete lineage, yeast fungi diverged first while insect pathogenic
Metarhizium species evolved after the speciation of plant pathogens (Figure 1A). Consistent with a
previous report [27], the penicillin-producing fungus Penicillium chrysogenum (PCH) is grouped with
Aspergillus species with A. nidulans being diverged first. Thus, a reliable phylogenetic tree was obtained.

Based on the selected protein family and subcellular PC matrices, 15 phenogram trees were also
generated with different topologies (Figures S1 and S2; Table S18). Of these, only the trees generated
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for the whole genome, nuclear, mitochondrial, and plasma membrane protein contents could be rooted
to R. oryzae (Figure 1B and Figure S2). It was also found that, in contrast to the phylogenetic tree,
sequential divergence of the basidiomycete and ascomycete fungi from the basal species R. oryzae could
not be perfectly evident in any PC-based phylogeny. However, lineage-specific clustering was frequently
observed for those fungi with either the same lifestyles (e.g., plant, insect, or human pathogens) or
taxonomic connections (e.g., the ascomycete Aspergillus and yeast species). For example, two insect
pathogenic Metarhizium species (i.e., M. robertsii (MAA) and M. acridum (MAC) [5], and two closely-related
necrotrophic fungal plant pathogens S. sclerotiorum (SSC) and B. cinerea (BCI) [28] were frequently clustered
together in different PC-based trees (Figures S1 and S2). In particular, the basidiomycete human pathogen
C. neoformans (CNE) could even be grouped with the ascomycete human pathogen C. immitis (CIM) and
its close relative Uncinocarpus reesii (URE) [29] in nuclear and mitochondrial PC-based trees (Figure S2).
Overall, similar to the observation in bacteria [30], PC-based phylogenies usually grouped fungi according
to fungal lifestyles rather than their evolutionary relationships. However, considering that the closely
related species SSC and BCI, CIM and URE, and even the yeast species are not always clustered together
in different trees, the results also implicated that the species grouped in the same lineage do not always
have more similar PC distributions than for species in different branches.
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3.3. Congruence and Discordance Relationships of Different Phylogenies

Having obtained the sequence- and PC-based phylogenies, we next conducted the similarity tests
between tree topologies by calculation of congruence indices in pairs. As a result, only protease- and
DUF/UPF-PC trees were reliably (p < 0.01) congruent than expected by chance with the phylogenomic
tree; intriguingly, the significance levels were higher than those between the whole genome PC and
sequence-based trees (Table 1 and Figure 1B). It was also intriguing to find that the function-unknown
PC-based tree was highly congruent (Icong = 1.45; p = 1.36× 10−3) with the whole genome PC phylogeny,
and the CAZy PC tree only tightly correlated (Icong = 1.71; p = 2.20 × 10−5) with the protease PC
phylogeny (Table 1). Unexpectedly, it was found that the tree generated from the highly conserved
ribosomal subunit content was incongruent to any other phylogenies. Our results suggested therefore
that the tree topological associations would vary in a case-dependent manner but reflect to some
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extent the links between different protein families. For example, the size distribution of the highly
cophylogenetic proteases and CAZy enzymes have been shown with essential roles in determining the
adaptation of fungi to different niches including hosts [24,31]. It has been found that the genes/proteins
with family size conservation evolved more slowly than those with frequent size changes [32]. In this
respect, cophylogenetic analysis between sequence- and PC-based trees might benefit the prediction of
the gene family evolutionary rates, i.e., the lower the Icong index value, the slower the evolutionary
speed. The high Icong-index values obtained between DUF/UPF and sequence or other protein family
PC-based trees suggested that these proteins were fast evolving and would play important roles in
fungal physiology with other protein families.

Table 1. Congruence tests among the sequence and selected protein family size-based trees *.

Sequence Tree Genome-Wide
Proteins Proteases CAZy ** Ribosomal

Subunits

Whole genome proteins 1.32; 0.0106
Proteases 1.45; 1.36 × 10−3 1.19; 0.0835
CAZy ** 1.19; 0.0835 1.19; 0.0835 1.71; 2.20 × 10−5

Ribosomal subunits 1.05; 0.656 1.19; 0.0835 1.05; 0.656 1.19; 0.0835
DUFs and UPFs *** 1.45; 1.36 × 10−3 1.71; 2.20 × 10−5 1.45; 1.36 × 10−3 2.11; 4.54 × 10−8 1.19; 0.0835

* The data in each cell represent the Icong and p values. ** CAZy, carbohydrate active enzymes. ***, DUF, protein
with domain unknown function; UPF, uncharacterized protein family.

We next tested the congruent relationships between sequence and subcellular PC-based trees.
It was found that, unlike the relatively low levels of protein family PC-based cophylogenetic associations
(Table 1), nine of eleven subcellular PC-based trees were significantly (p < 0.05) congruent with the
phylogenomic tree except for the vacuolar and lysosomal PC phylogenies (Table 2). In terms of
the significance level, the cell wall PC-based phylogeny was mostly similar (p = 3.56 × 10−7) to the
sequence tree (Figure 2), which was even higher than that between phylogenomic and the whole
genome PC-based trees (p = 0.0106). The cell wall PC tree had seven lineages being similar to those
grouped in the phylogenomic tree, whereas the whole genome PC tree had six similarly branched
lineages with the sequence tree; in particular, the Aspergillus and Metarhizium lineages could not be
correctly positioned like the phylogenomic tree (Figures 1 and 2). In addition, we found that the whole
genome PC tree even has a lower p value than those of the nuclear and mitochondrial PC-based trees
when compared with the sequence-based phylogeny (Table 2). Consistent with a previous finding that
the evolutionary distance between two fungal species significantly correlated with the divergence of
their cell wall proteins [33], a high level of congruence between sequence- and cell wall PC-based trees
suggested that cell wall proteins might be more highly associated with fungal speciation phylogeny
than other organelle proteins.

The tests among subcellular PC-based phylogenies indicated that, except for vacuolar and
lysosomal trees, the cophylogenetic relationships were largely congruent among different organelle
PC-based trees, among which the most highly congruent (Icong = 2.11; p = 4.54 × 10−9) relationships
were observed between the whole genome and cytoplasm trees, and between mitochondrial and
Golgi trees (Table 2). Theoretically, all organelles and their associated proteins, even dynamically
changing and networking, are functionally important for cell physiology. In particular, fungal cell wall
proteins are rapidly changing in different environments to play frontline roles during interaction with
different niches including hosts [34]. Both vacuole and lysosome are acidic compartments that can
change in shape, number, and size in different fungi [35]. Consistently, the highly variable numbers
of proteins belonging to different families were observed for these two organelles (Tables S15 and
S16), which might result in the abnormal topology of their PC trees and, therefore, the cophylogenetic
discordance with other trees. Otherwise, the varied level of cophylogenetic associations between
different subcellular PC datasets may reflect the magnitude of interactive association or networking
between different organelle proteins.
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Table 2. Congruence tests among the sequence and subcellular protein-content-based trees *.

Sequence
Tree WGP CWP NP MP CP PMP ERP GP EP VP **

Whole genome proteins (WGP) 1.32;
0.0106

Cell wall protein (CWP) 1.98; 3.56 ×
10−7

1.32;
0.0106

Nuclear protein (NP) 1.71;
2.20 × 10−5

1.58;
1.72 × 10−4

1.85;
2.80 × 10−6

Mitochondrial protein (MP) 1.58;
1.72 × 10−4

1.85;
2.80 × 10−6

1.58;
1.72 × 10−4

1.85;
2.80 × 10−6

Cytoplasmic protein (CP) 1.45;
1.36 × 10−3

2.11;
4.54 × 10−8

1.06;
0.6560

1.32;
0.0106

1.71;
2.20 × 10−5

Plasma membrane protein (PMP) 1.45;
1.36 × 10−3

1.71;
2.20 × 10−5

1.85;
2.80 × 10−6

1.58;
1.72 × 10−4

1.98;
3.56 × 10−7

1.85;
2.80 × 10−6

Endoplasmic reticulum protein (ERP) 1.32;
0.0106

1.45;
1.36 × 10−3

1.32;
0.0106

1.45;
1.36 × 10−3

1.98;
3.56 × 10−7

1.45;
1.36 × 10−3

1.85;
2.80 × 10−6

Golgi protein (GP) 1.32;
0.0106

1.58;
1.73 × 10−4

1.58;
1.73 × 10−4

1.58;
1.73 × 10−4

2.11;
4.54 × 10−8

1.58;
1.72 × 10−4

1.71;
2.20 × 10−5

1.71;
2.20 × 10−5

Extracellular protein (EP) 1.32;
0.0106

1.45;
1.36 × 10−3

1.58;
1.73 × 10−4

1.71;
2.20 × 10−5

1.85;
2.80 × 10−6

1.71;
2.20 × 10−5

1.85;
2.80 × 10−6

1.71;
2.20 × 10−5

1.58;
1.72 × 10−4

Vacuolar protein (VP) 1.19;
0.0835

1.19;
0.0835

1.06;
0.6560

1.32;
0.0106

1.45;
1.36 × 10−3

1.32;
0.0106

1.58;
1.72 × 10−4

1.32;
0.0106

1.32;
0.0106

1.45;
1.36 × 10−3

Lysosomal protein (LP) 0.92;
5.15

1.32;
0.0106

1.32;
0.0106

1.32;
0.0106

1.19;
0.0835

1.32;
0.0106

1.32;
0.0106

1.45;
1.36 × 10−3

1.19;
0.0835

1.45;
1.36 × 10−3

1.19;
0.0835

* Two row data in each cell represent the Icong (upper) and p (lower) values. The values highlighted in bold indicate the paired trees are not more congruent than expected by chance
(i.e., p > 0.05). ** abbreviations in this title row are as shown in the far left column.
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4. Conclusions

Using different fungal species as models, we report both the congruence and discordance
relationships between sequence- and PC-based phylogenies that could more or less reflect the lifestyle
and taxonomic associations between closely related fungi. However, unlike previous suggestions [8,36],
it is evident in this study that the whole genome and or separate PC-based phylogenetic analysis cannot
resolve the phylogenetic trajectory of cross-phylum fungal species. Cophylogenetic analysis of the
sequence- and PC-based trees may benefit the prediction of the magnitude of evolutionary conservation,
interactive associations, or networking between different subcellular or family of proteins. Further
analysis is still required to either convert the PC dataset into binary data for bootstrap analysis [7]
or use a likelihood method to accommodate the peculiarity of the discrete PC datasets [37]. It can be
expected that the association levels may vary when more fungal species and or additional protein
families have been included in analysis, which is worthwhile for future investigations including the
incorporation of different kingdom organisms.
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Figure S1: Phylogenetic construction of the examined fungal species based on protein-family size distribution,
Figure S2: Phylogenetic construction of the examined fungal species based on subcellular protein content, Table S1:
Information of the examined fungal species, Table S2: Pfam matrix of all proteins from each fungal species,
Table S3: Pfam matrix of proteases identified from each fungal species, Table S4: Pfam matrix of CAZy enzymes
identified from each fungal species, Table S5: Pfam matrix of ribosomal subunits identified from each fungal
species, Table S6: Pfam matrix of DUF and UPF proteins identified from each fungal species, Table S7: Pfam matrix
of cell wall proteins identified from each fungal species, Table S8: Pfam matrix of nuclear proteins from each
fungal species, Table S9: Pfam matrix of mitochondrial proteins from each fungal species, Table S10: Pfam matrix
of cytoplasmic proteins from each fungal species, Table S11: Pfam matrix of plasm membrane proteins from each
fungal species, Table S12: Pfam matrix of endoplasmic reticulum proteins from each fungal species, Table S13:
Pfam matrix of Golgi proteins from each fungal species; Table S14: Pfam matrix of extracellular proteins from each
fungal species, Table S15: Pfam matrix of vacuolar proteins from each fungal species, Table S16: Pfam matrix of
lysosomal proteins from each fungal species, Table S17: One-to-one orthologous genes identified from each fungal
species (the accessions for each species are retrieved from the respectively curated databases), Table S18: Newick
tree datasets generated from the orthologous sequences and different protein-content data.
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