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Abstract: Diffuse axonal injury (DAI) is a prevalent and serious brain injury with significant morbidity
and disability. However, the underlying pathogenesis of DAI remains largely unclear, and there
are still no objective laboratory-based tests available for clinicians to make an early diagnosis of
DAI. An integrated analysis of metabolomic data and proteomic data may be useful to identify all of
the molecular mechanisms of DAI and novel potential biomarkers. Therefore, we established a rat
model of DAI, and applied an integrated UPLC-Q-TOF/MS-based metabolomics and isobaric tag for
relative and absolute quantitation (iTRAQ)-based proteomic analysis to obtain unbiased profiling
data. Differential analysis identified 34 metabolites and 43 proteins in rat plasma of the injury group.
Two metabolites (acetone and 4-Hydroxybenzaldehyde) and two proteins (Alpha-1-antiproteinase
and Alpha-1-acid glycoprotein) were identified as potential biomarkers for DAI, and all may play
important roles in the pathogenesis of DAI. Our study demonstrated the feasibility of integrated
metabolomics and proteomics method to uncover the underlying molecular mechanisms of DAI,
and may help provide clinicians with some novel diagnostic biomarkers and therapeutic targets.
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1. Introduction

Diffuse axonal injury (DAI) is one of the most serious and complex types of brain injury and is
associated with high mortality and poor prognosis [1,2]. Epidemiological studies have found that 70%
patients with traumatic brain injury (TBI) suffer from DAI [3,4]. The underlying pathophysiological
mechanisms of widespread axonal injury in DAI are quite complex and remain largely unclear [5].
Recent studies have demonstrated that DAI is a multi-stage biological process disorder with substantial
molecular alterations and pathway dysregulations involved [5–7]. At present, there are still no objective
and reliable biomarkers for clinicians to enable early diagnosis of DAI, which results in a high rate of
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underdiagnosis and an increased disability and mortality risk [8,9]. Given these facts, there remains
an urgent need for methods of early DAI detection to facilitate its diagnosis.

The ongoing omics-based research, which holds promise as a high-throughput, noninvasive,
and cost-effective analysis tool, has been well utilized in the identification of diagnostic biomarkers,
development of novel targeted therapeutics, and exploration of pathophysiological mechanisms in
various diseases [10]. Among these, metabolomics and proteomics are the most commonly used
and powerful analytical technologies. Metabolomics technologies are focused on the analysis of the
level changes of low-molecular-weight endogenous metabolites in a cell, biofluids, or other biological
samples, while proteomics methods mainly used to identify significantly changed proteins in biological
tissue [11].

As metabolites can directly indicate the aberrant physiological status of the body, they are
generally considered to be sensitive markers of physiological activity. However, metabolites could
be influenced by various factors and have large individual differences [12]. Meanwhile, metabolomic
analysis has the limitation that it only reflects a collective “snapshot” of metabolic perturbations [12].
Our preliminary metabolomics study, based on an integrated 1H NMR and UPLC-Q-TOF/MS method,
has found several potential metabolite biomarkers of DAI [6]. However, some limitations of our
previous study were that only one time point was concerned and there was a lack of a dynamic
evaluation of the identified metabolites. In contrast to metabolomics, proteomic analysis could
identify differentially expressed proteins that directly affect the metabolic processes. However, due to
the diversity of biological samples in their physicochemical properties and the complexity of the
biochemical regulation at multiple levels, no single “omics” analysis can fully reveal the precise
picture of the system [12]. Thus, integration of multi “omics” analysis may help to acquire a more
complete picture of the changes at the molecular level involved in diseases, provide a more precise
understanding of entire biological mechanisms and may offer some novel and reliable biomarkers.
Among these, the combination of metabolomic and proteomic analysis is regarded as a powerful tool
and frequently applied in biomarker discovery and pathophysiological research, such as multiple
sclerosis [10], severe septic shock [13], and anaplastic large cell lymphoma [14].

Therefore, in this study, a well-established rat model of DAI was applied, and a combination of
UPLC-Q-TOF/MS-based metabolomic analysis and isobaric tag for relative and absolute quantitation
(iTRAQ)-based proteomic analysis was utilized with the aims of gaining a holistic view of the molecular
mechanisms of DAI and identifying early, novel and reliable biomarkers in rat plasma. Our findings
not only identified several novel potential biomarkers of DAI, but also will help to gain comprehensive
insights into the molecular mechanisms of widespread axonal damage after injury.

2. Results

2.1. Evaluation of the DAI Rat Model

Bielschowsky silver staining confirmed that our DAI animal models were established. As shown
in Figure 1, the axons in corpus callosum and internal capsule of brain samples from the injured animals
demonstrated various degrees of axonal disconnection, swellings, and axonal retraction balls (ARBs),
while those from the control animals showed no pathologic abnormalities of any kind. Bielschowsky
silver staining results confirmed that our DAI animal models were successfully established
and appropriate for further UPLC-Q-TOF/MS-based metabolomic analysis and iTRAQ-based
proteomic analysis.

2.2. Plasma Metabolic Analysis Using UPLC-Q-TOF/MS Technology

In this study, plasma samples from the injury and control groups were analyzed by UPLC-Q-TOF/MS
technology to identify potential biomarkers of DAI. Typical total ion current (TIC) chromatograms of
plasma samples from the control, 1 day and 3 day groups in both negative and positive ion modes
were shown in Figure S1.
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Figure 1. Histopathological examination of the brain tissue samples (200×). (A,D) control group;
(B,E) 1 day group; (C,F) 3 day group. The axons in corpus callosum (A–C) and internal capsule
(D–F) of brain samples from the injured rats demonstrated various degrees of swellings, disconnection,
and axonal retraction balls (ARBs), while the control animals demonstrated no pathologic abnormalities
of any kind.

Principal component analysis (PCA) analysis was carried out in this study to obtain an initial
overview of the data set. The PCA analysis result showed that the plasma samples of the injury
group were mainly separated from that of the control group (Figure S2). In addition, orthogonal
partial least squares discriminate analysis (OPLS-DA) analysis was carried out for supervised pattern
recognition. The OPLS-DA score plots showed that the 1 day group was clearly segregated from
the control group (Figure 2A,B; ESI+: R2X = 0.725, R2Y = 0.999, Q2 = 0.96; ESI−: R2X = 0.757,
R2Y = 0.99, Q2 = 0.983), and the results also revealed an appreciable separation between the 3 day
and control groups (Figure 2C,D; ESI+: R2X = 0.309, R2Y = 0.987, Q2 = 0.836; ESI−: R2X = 0.577,
R2Y = 0.999, Q2 = 0.837). Furthermore, the results of permutation tests showed no over-fitting of
the UPLC-Q-TOF/MS data indicating that the OPLS-DA model was positive and valid (Figure S3,
1 day group vs. control group, ESI+: R2 = (0.0, 0.64), Q2 = (0.0, −0.261), ESI−: R2 = (0.0, 0.632),
Q2 = (0.0, −0.436); Figure S4, 3 day group vs. control group, ESI+: R2 = (0.0, 0.988), Q2 = (0.0, −0.227),
ESI−: R2 = (0.0, 0.975) Q2 = (0.0, −0.113)). The results not only indicated the good predictive ability of
the model, but also suggested significant plasma metabolic changes occurred in rats with DAI. Based on
the OPLS-DA analysis, 15 variables (nine in positive mode and six in negative mode) with variable
importance in the projection (VIP) value > 1 and p < 0.05 were identified as potential biomarkers
in the 1 day group (Figure 3A,B) and were listed in Table S1. And based on the OPLS-DA analysis,
21 differential metabolites (13 in positive mode and eight in negative mode) were identified in the 3 day
group (Figure 3C,D; Table S2). The results of the Shapiro–Wilk test showed that the distribution of the
data was normal (Tables S1 and S2). Through comparative analysis, 34 metabolites were identified
differentially changed in at least one time point, and two metabolites, 4-Hydroxybenzaldehyde and
acetone, were identified differentially changed in both 1 day and 3 day post-injury compared with the
control. Both of the metabolites were identified by authentic standards.

A total of six within-run quality control (QC) samples were used to evaluate the repeatability of
the metabolomic analytical system. As shown in Figure S5, the overlaps of the spectral peaks of the
QC samples were within slight changes, indicating the UPLC-Q-TOF/MS system has a good stability
and repeatability on an overall view. Then eight ions from chromatographic peaks were randomly
picked and used to assess the repeatability of the method in detail (Table S3), and the result indicated
that the reproducibility was favorable.

Metabolomic pathways analysis of these significantly changed metabolites was determined
with the MetaboAnalyst tool. The result revealed that eighteen metabolic pathways were changed
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and displayed as circles in Figure 4. Among these, four marked disturbed metabolic pathways,
namely alanine, aspartate and glutamate metabolism, glycerophospholipid metabolism, arginine and
proline metabolism and beta-alanine metabolism were found to be the most relevant pathways to
DAI (Figure 4). Among the metabolites, glutamine belonged to alanine, aspartate, and glutamate
metabolism; phosphocholine and phosphatidylcholine belonged to glycerophospholipid metabolism;
glutamine and arginine belonged to arginine and proline metabolism; and 3-Aminopropionaldehyde
belonged to beta-alanine metabolism.

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  4 of 16 

 

A total of six within-run quality control (QC) samples were used to evaluate the repeatability of 

the metabolomic analytical system. As shown in Figure S5, the overlaps of the spectral peaks of the 

QC samples were within slight changes, indicating the UPLC-Q-TOF/MS system has a good stability 

and repeatability on an overall view. Then eight ions from chromatographic peaks were randomly 

picked and used to assess the repeatability of the method in detail (Table S3), and the result indicated 

that the reproducibility was favorable. 

Metabolomic pathways analysis of these significantly changed metabolites was determined with 

the MetaboAnalyst tool. The result revealed that eighteen metabolic pathways were changed and 

displayed as circles in Figure 4. Among these, four marked disturbed metabolic pathways, namely 

alanine, aspartate and glutamate metabolism, glycerophospholipid metabolism, arginine and proline 

metabolism and beta-alanine metabolism were found to be the most relevant pathways to DAI 

(Figure 4). Among the metabolites, glutamine belonged to alanine, aspartate, and glutamate 

metabolism; phosphocholine and phosphatidylcholine belonged to glycerophospholipid 

metabolism; glutamine and arginine belonged to arginine and proline metabolism; and 3-

Aminopropionaldehyde belonged to beta-alanine metabolism. 

 

Figure 2. Score plots from OPLS-DA analysis (n = 8). (A–B) control group and 1 day group; (C–D) 

control group and 3 day group. 
Figure 2. Score plots from OPLS-DA analysis (n = 8). (A,B) control group and 1 day group; (C,D) control
group and 3 day group.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  5 of 16 

 

 

Figure 3. S-plot from OPLS-DA analysis. (A–B) 1 day group; (C–D) 3 day group. 

 

Figure 4. Metabolic pathway analysis of the 34 differentially changed metabolites. The identified 

metabolic pathways were visualized and arranged according to the score based on enrichment 

analysis (y-axis) and topology (x-axis). 

2.3. Plasma Proteomic Analysis Using iTRAQ 

Within both the control and injury groups, a total of 374 proteins were identified and quantified 

with at least one unique peptide and false discovery rate (FDR) < 1%. According to the criteria of fold 

changes > 1.5 or < 0.67 and p-values < 0.05, 43 proteins exhibited significant differential expression in 

at least one time point of the injury group (Table S4). Of these, 33 proteins were identified 

significantly altered in 1 day group, and 36 proteins were identified significantly altered in 3 day 

Figure 3. S-plot from OPLS-DA analysis. (A,B) 1 day group; (C,D) 3 day group.



Int. J. Mol. Sci. 2019, 20, 922 5 of 15

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  5 of 16 

 

 

Figure 3. S-plot from OPLS-DA analysis. (A–B) 1 day group; (C–D) 3 day group. 

 

Figure 4. Metabolic pathway analysis of the 34 differentially changed metabolites. The identified 

metabolic pathways were visualized and arranged according to the score based on enrichment 

analysis (y-axis) and topology (x-axis). 

2.3. Plasma Proteomic Analysis Using iTRAQ 

Within both the control and injury groups, a total of 374 proteins were identified and quantified 

with at least one unique peptide and false discovery rate (FDR) < 1%. According to the criteria of fold 

changes > 1.5 or < 0.67 and p-values < 0.05, 43 proteins exhibited significant differential expression in 

at least one time point of the injury group (Table S4). Of these, 33 proteins were identified 

significantly altered in 1 day group, and 36 proteins were identified significantly altered in 3 day 

Figure 4. Metabolic pathway analysis of the 34 differentially changed metabolites. The identified
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(y-axis) and topology (x-axis).

2.3. Plasma Proteomic Analysis Using iTRAQ

Within both the control and injury groups, a total of 374 proteins were identified and quantified
with at least one unique peptide and false discovery rate (FDR) < 1%. According to the criteria
of fold changes > 1.5 or < 0.67 and p-values < 0.05, 43 proteins exhibited significant differential
expression in at least one time point of the injury group (Table S4). Of these, 33 proteins were identified
significantly altered in 1 day group, and 36 proteins were identified significantly altered in 3 day
group (Figure 5). Gene ontology (GO) enrichment analysis of these differentially changed proteins was
performed in terms of their cellular compartment (CC), biological process (BP), and molecular function
(MF; Figure 6A–C). The CC analysis revealed that these proteins mostly belonged to the extracellular
exosome (83.3%), extracellular space (71.4%), blood microparticle (54.8%), extracellular region (26.2%),
and cell (9.5%). For the MF, these proteins were mainly involved in serine-type endopeptidase inhibitor
activity (28.6%), endopeptidase inhibitor activity (11.9%), serine-type endopeptidase activity (11.9%),
oxygen binding (9.5%), and protease binding (9.5%). The BP analysis indicated that these proteins
were major participants in negative regulation of endopeptidase activity (35.7%), acute-phase response
(19%), inflammatory response (14.3%), complement activation, classical pathway (11.9%), innate
immune response (11.9%), and response to organic cyclic compound (11.9%). For pathway analysis,
these proteins were mainly involved in complement and coagulation cascades (34.2%), Staphylococcus
aureus infection (14.5%), primary immunodeficiency (12.5%), metabolic pathways (10.4%), phagosome
(10%), Wnt signaling pathway (8.8%), Fc gamma R-mediated phagocytosis (8.8%), and B cell receptor
signaling pathway (8.8%; Figure 6D).

Cluster analysis revealed changes in abundance in the 43 significantly altered proteins.
Heat map data showed that the changes in protein abundance observed in the 1 day group were
significantly different from those found in the 3 day group (Figure 7). In addition, STRING analysis
showed that several proteins like Alpha-1-antiproteinase (Serpina1), Kallikrein B, plasma 1 (Klkb1),
and Alpha-1-acid glycoprotein (AGP) were found to be located at the hub positions of the protein
functional interactions networks (Figure 8).



Int. J. Mol. Sci. 2019, 20, 922 6 of 15

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 16 

 

group (Figure 5). Gene ontology (GO) enrichment analysis of these differentially changed proteins 

was performed in terms of their cellular compartment (CC), biological process (BP), and molecular 

function (MF; Figure 6A–C). The CC analysis revealed that these proteins mostly belonged to the 

extracellular exosome (83.3%), extracellular space (71.4%), blood microparticle (54.8%), extracellular 

region (26.2%), and cell (9.5%). For the MF, these proteins were mainly involved in serine-type 

endopeptidase inhibitor activity (28.6%), endopeptidase inhibitor activity (11.9%), serine-type 

endopeptidase activity (11.9%), oxygen binding (9.5%), and protease binding (9.5%). The BP analysis 

indicated that these proteins were major participants in negative regulation of endopeptidase activity 

(35.7%), acute-phase response (19%), inflammatory response (14.3%), complement activation, 

classical pathway (11.9%), innate immune response (11.9%), and response to organic cyclic 

compound (11.9%). For pathway analysis, these proteins were mainly involved in complement and 

coagulation cascades (34.2%), Staphylococcus aureus infection (14.5%), primary immunodeficiency 

(12.5%), metabolic pathways (10.4%), phagosome (10%), Wnt signaling pathway (8.8%), Fc gamma 

R-mediated phagocytosis (8.8%), and B cell receptor signaling pathway (8.8%; Figure 6D). 

Cluster analysis revealed changes in abundance in the 43 significantly altered proteins. Heat 

map data showed that the changes in protein abundance observed in the 1 day group were 

significantly different from those found in the 3 day group (Figure 7). In addition, STRING analysis 

showed that several proteins like Alpha-1-antiproteinase (Serpina1), Kallikrein B, plasma 1 (Klkb1), 

and Alpha-1-acid glycoprotein (AGP) were found to be located at the hub positions of the protein 

functional interactions networks (Figure 8). 

 

Figure 5. Volcano plot. Red dots indicate represent proteins significantly up-regulated in plasma 

samples of the injury group, while green dots indicate represent proteins significantly down-

regulated in plasma samples of the injury group. 

Figure 5. Volcano plot. Red dots indicate represent proteins significantly up-regulated in plasma
samples of the injury group, while green dots indicate represent proteins significantly down-regulated
in plasma samples of the injury group.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  7 of 16 

 

 

Figure 6. GO annotation analysis and pathway analysis of the differentially expressed proteins. (A) 

cellular compartments; (B) biological process; (C) molecular function; and (D) the most enriched 

pathways. 

Figure 6. GO annotation analysis and pathway analysis of the differentially expressed proteins. (A) cellular
compartments; (B) biological process; (C) molecular function; and (D) the most enriched pathways.



Int. J. Mol. Sci. 2019, 20, 922 7 of 15

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  8 of 16 

 

 

Figure 7. The heat map of the 43 differentially expressed proteins. Red, up-regulation; blue, down-

regulation. 

Figure 7. The heat map of the 43 differentially expressed proteins. Red, up-regulation; blue,
down-regulation.

2.4. Validation of the iTRAQ-Based Proteomics Results via Western Blot Analysis

Three differentially expressed proteins, Serpina1, Klkb1, and AGP, were selected for western blot
analysis based on their high fold-changes and possible biological functions in the development of
DAI to validate the iTRAQ-based quantitative proteomics results. The western blot analysis results
supported the iTRAQ-based proteomics results by demonstrating a significantly lower expression
level of Klkb1 in the 1 day group and a significantly higher expression level in the 3 day group,
and a significantly lower expression level of Serpina1 and AGP in both of the injury groups compared
with the controls (Figure 9).
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Figure 9. Western blot validation of the three differentially expressed proteins identified by the
iTRAQ-based proteomics approach were performed using the remaining five plasma samples from
each of the groups. Significant differences among multiple groups were calculated by one-way analysis
of variance (ANOVA) followed by Tukey’s Honest Significant Difference test. * means p < 0.05 between
the control group and 1 day or 3 day group.
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3. Discussion

Early diagnosis of DAI is of great importance for the early implementation of appropriate
therapeutic interventions, which play important roles in preventing or reversing the deterioration
of axonal injuries, decreasing the mortality and morbidity rate, and obtaining a good outcome for
patients with DAI [8,9]. A number of potential biomarkers of axonal injury following TBI have
been reported in previous studies, such as tau protein, amyloid-β (Aβ) peptides and neurofilament
light polypeptide [15]. However, there are still no reliable and objective laboratory-based tests for
DAI to facilitate its diagnosis. Identifying critical metabolites and proteins as well as the involved
pathways of DAI using proteomics and metabolomics approach may offer us a better understanding
of the molecular mechanisms of axonal injuries during DAI, and may provide potential diagnostic
biomarkers. Over the past few years, our research group has focused on identifying differentially
expressed metabolites and proteins and revealing early biomarkers of DAI. Zhang et al. has found
four potential metabolite biomarkers for DAI by an integrated 1H NMR and UPLC-Q-TOF/MS-based
analytical platform, and found two potential protein biomarkers using an iTRAQ-based analytical
platform [6,7]. However, due to the diverse physicochemical properties of the biological samples
and the complicatedly pathological processes of DAI, which were involved with multiple molecular
levels, we still do not obtain a holistic view of the molecular mechanisms or definitive biomarkers
for clinical application of DAI by a single “omics” analysis alone. Thus, an integrated analysis of
UPLC-Q-TOF/MS-based metabolomics and iTRAQ-based proteomics profiling is promising and may
help to obtain a comprehensive picture of plasma after DAI, which could provide further important
insights into the pathophysiology of DAI. In the preliminary iTRAQ-based proteomics experiment,
three individual plasma samples collected from each of the three groups were equivalently pooled to
minimize biological variation [7,16]. To the best of our knowledge, this is the first study addressing this
issue using an integrated metabolomics and proteomics approach. 34 significantly changed metabolites
and 43 differentially expressed proteins were identified in rat plasma after DAI in our study.

Reliable biomarkers should have the characteristic of stable expression trends in diseases. Through
comparative analysis, acetone, and 4-Hydroxybenzaldehyde were identified significantly differentially
altered in both 1 day and 3 day post-injury, and may be used as candidate biomarkers of DAI.
Among the two potential metabolite biomarkers, acetone was significantly elevated in DAI plasma
subjects relative to the control animals. It is generally known that acetone is a product of acetyl-CoA,
and can produce ketone bodies be used as a vital source of energy for the brain under special
physiological and pathological conditions [17]. The significant up-regulation of acetone may suggest
the elevated flux from acetyl-CoA into acetoacetyl-CoA [16]. Combined with the results of remarkable
down-regulation of glucose identified in our previous study, significantly increased acetone may
imply an impaired tricarboxylic acid (TCA) cycle in mitochondria and reduced ATP synthesis after
DAI [17,18]. The present findings are consistent with the results of our previous study [6]. Previous
research has demonstrated that ketones have neuroprotective effects in various neurological diseases,
such as Parkinson’s disease, Alzheimer’s disease, epilepsy, and TBI [19,20]. Recently, Denihan’s group
applied an untargeted metabolomics technology to examine the cord blood metabolome’s response
to hypoxic-ischaemic encephalopathy (HIE) and indicated that the acetone level was associated with
the severity grades of HIE [21]. Furthermore, a previous study performed by Wang et al. showed
that acetone was changed significantly in the cerebrospinal fluid, and may be used as a biomarker
of cerebral ischemia-reperfusion injury [22]. In this study, the continuous up-regulation of acetone
demonstrates the feasibility of acetone being used as a potential biomarker. Moreover, our findings
also suggest that promoting the expression of acetone after DAI may reduce axonal injury and improve
the clinical outcome of patients with DAI.

Another selected metabolite biomarker in our study was 4-Hydroxybenzaldehyde.
4-Hydroxybenzaldehyde was significantly decreased in plasma subjects of injury group. Recent studies
indicate that 4-Hydroxybenzaldehyde plays a significant role in inhibiting the occurrence of seizure
and convulsion through its effects of antioxidation and positive modulation of GABAergic
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neuromodulation [23]. Although the detailed molecular mechanisms are still unclear, the decreased
4-Hydroxybenzaldehyde post-injury may be attributed to the persistent unconscious state of patients
with DAI.

Of the 43 differentially expressed proteins, three were screened out based on the protein–protein
interaction (PPI) analysis result and their high fold-changes and biological functions, and all were
successfully confirmed in a larger group of plasma samples by western blot analysis. Among the three
differentially expressed proteins, Serpina1 and AGP were identified as potential plasma biomarkers
for their stable expression trends in the early stage of DAI. Serpina1, an inhibitor of serine protease
and neurotrypsin, was significantly decreased in plasma subjects of injury group compared with
controls [24]. Serpina1 plays an essential anti-inflammatory role in protecting tissues from proteolytic
mechanisms [24]. Recent studies indicate that Serpina1 is associated with various diseases, such as
sporadic amyotrophic lateral sclerosis, cancers, schizophrenia, bipolar disorder, and frontotemporal
dementia [24–27]. Furthermore, a recent study by Peng et al. indicated that up-regulation of Serpina1
could suppress agrin-22 production and eventually lead to synaptic dysfunction [28]. In the present
study, the significantly down-regulated Serpina1 may play an important role in maintaining axonal
stabilization post-injury.

Another identified protein biomarker in this study was AGP, which was also markedly
down-regulated in rat plasma of injury group. AGP, also known as orosomucoid 1, is a positive acute
phase protein and has been identified to play significant roles in anti-inflammation, immunomodulation,
and vascular protection during the acute-phase response [29]. Research has shown that AGP is
evaluated in acute-phase response and has been reported as a biomarker of inflammatory diseases [30].
At present, AGP is thought to offer a certain protection against inflammation-induced tissue injury
through the inhibition of TNF-α-induced apoptosis of hepatocytes and reduced prostaglandin E2
generation, as well as inhibition of neutrophil activation [29]. Moreover, recent studies indicate that
AGP is associated with many other biological processes including maintaining the barrier function of
capillary, binding and carrying drugs and mediating the sphingolipid metabolism [31,32]. The previous
study indicates that AGP is associated with various diseases, such as cancer, liver diseases, and HIV [32].
One study demonstrated that decreasing the AGP expression after ischemic stroke could aggravate
blood-brain barrier disruption [33]. In the present study, the down-regulation of AGP may be involved
in the blood-brain barrier damage underlying DAI. In addition, the present findings suggest that
improving the AGP expression may inhibit the blood-brain barrier disruption and improve outcomes
of patients with DAI.

In research on DAI, our previous plasma proteomics study also found two proteins,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and hemopexin (Hpx) were significantly
changed in rats with DAI [7]. Combining with results of this study, we found that significantly perturbed
energy metabolism, inflammatory response, cytoskeletal disruption, and immunomodulation may all
participate in the axonal injury in DAI, which was consistent with previous studies [2,15].

There are some limitations within this study. First, because DAI is often associated with multiple
other organ injuries in clinical, the specificity of the four candidate biomarkers needs to be confirmed
by further experiments. Second, the height of the injury hammer was only set at 1.5 m in this
study, which means that we cannot ensure the four candidate biomarkers could be used to establish
a dose-response correlation to severity of the injury. Third, all of the findings in our study were based
on a DAI rat model. Therefore, future studies are needed to determine whether the four candidate
biomarkers can be extended to human patients.

Above all, this study first applied an integrated metabolomics and proteomics approach to
investigate the alterations of metabolic and protein profiles in the plasma of rats with DAI. A total of
34 differential metabolites and 43 differential proteins were screened out. Two significantly changed
metabolites (4-Hydroxybenzaldehyde and acetone) and two differentially expressed proteins (Serpina1
and AGP) were identified as potential biomarkers for DAI. In conclusion, the results of our study not
only offer further insights into the molecular mechanisms of DAI, but also may provide clinicians with



Int. J. Mol. Sci. 2019, 20, 922 11 of 15

some novel diagnostic biomarkers and therapeutic targets. Future studies are required to validate our
findings and analyze the acquired metabolomic and proteomic data deeply.

4. Material and Methods

4.1. Chemicals and Reagents

All formic acid, methanol, and acetonitrile used in this study were of HPLC grade. Formic acid and
acetonitrile were purchased from TEDIA (Fairfield, IA, USA). Methanol and authentic standards were
obtained from Sigma-Aldrich (St. Louis, MO, USA). iTRAQ Reagents Multi-plex kit was purchased
from Applied Biosystems (Foster City, CA, USA). Ultrapure water was prepared using a Milli-Q water
purification system (Millipore, Bedford, MA, USA).

4.2. Animals and Ethics Statement

A total of 35 adult male Sprague-Dawley rats with initial weights of 250–300 g were supplied
by the Chongqing Medical University Laboratory Animal Center (Chongqing, China). All rats were
housed under standard laboratory conditions with a 12-h light-dark cycle, relative humidity of
50–60% and a room temperature of 21–24 ◦C. Standard diet and water were provided ad libitum.
Before the beginning of the experiment, the animals were acclimatized to the environment for one
week. All animal procedures complied with the Guide for the Care and Use of Laboratory Animals,
and were approved by the Ethics Committee of C.Q. Medical University (project identification code:
20170126; 14 March 2017).

4.3. Models and Sample Collection

4.3.1. Experimental Model of DAI

DAI was performed on rats using an injury model adapted from Marmarou et al., which was
described in our previous studies [7,34]. Briefly, 27 randomly selected rats were subjected to
establish the DAI model. Rats were anesthetized via intraperitoneal injections of sodium pentobarbital
(100 mg/kg). After achieving anesthesia, the animal’s scalp was shaved, and a midline incision was
performed to expose the vertex of the skull. Then, a stainless steel disc was affixed to the animal’s
skull at the midline between the bregma and lambdoid sutures using dental acrylic. A hammer
(weighing 450 g) was allowed to fall freely from a height of 150 cm directly onto the stainless steel disc
fixed to the animal’s skull. Six animals died post-injury, and the mortality rate was 22.2%. The other
rats fell into a coma (5.20 ± 1.28 min) immediately post-injury and gradually regained consciousness.
16 survived rats were randomly selected for further study and assigned to two groups of eight rats
each, and sacrificed at survival periods of 1 day (n = 8) and 3 day (n = 8), respectively. The remaining
five rats were euthanized by decapitation after achieving the appropriate level of anesthesia with
sodium pentobarbital (100 mg/kg, ip). Eight sham animals underwent all the same surgical procedures
of the injured rats, but were not subjected to injury.

4.3.2. Groups

(1) Control group (n = 8).
(2) Injury group (n = 16, with two subgroups): 1 day group (n = 8) and 3 day group (n = 8).

4.3.3. Sample Collection

The blood samples were collected from the animals into EDTA-coated blood collection tubes
and kept on ice for 1 h. Then, plasma was separated from blood cells by centrifugation at 3000 rpm
for 15 min at 4 ◦C, and rapidly frozen by liquid nitrogen and stored at −80 ◦C until proteomic and
metabolic analysis. The whole brain tissue samples from the rats were immediately fixed in 10%
neutral buffered formalin, and then used for histological analysis with Bielschowsky silver staining.
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4.4. Metabolomic Analysis

The procedures for plasma sample preparation and UPLC-Q-TOF/MS analysis were reported in
our study previously [6]. Meanwhile, a QC sample was prepared by mixing equal aliquot (20 µL) from
each of the 24 plasma samples for monitoring the repeatability and stability of the UPLC-Q-TOF/MS
analytical system. Briefly, ten QC samples were injected at the beginning of the analytical batch to
ensure that the system had reached equilibrium, and then one QC sample was analyzed periodically
between every four samples. The repeatability and reliability of the analytical system were assessed
using the method reported in our previous study [6]. Raw data were firstly mean-centered and
Pareto-scaled prior to multivariate statistical analyses [35]. The normalized data sets were then
analyzed by SIMCA-P software (v14.0, Umetrics AB, Umeå, Sweden) for PCA and OPLS-DA to observe
discrimination between the DAI plasma samples and controls [36]. A cross-validation procedure and
testing with 300 permutations were performed to avoid over-fitting of the supervised OPLS-DA
model. VIP values produced in the OPLS-DA model were applied to find differential metabolites
and variables VIP > 1 were further processed for Student’s t-test. Variables with VIP > 1 and p < 0.05
were considered to be significant differential metabolites [37]. Identification of the potential metabolite
biomarkers was preliminarily carried out by their accurate mass spectra, retention time and retention
index, and further by searching online databases, including the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (http://www.genome.jp/kegg/), HMDB (http://www.hmdb.ca/) and METLIN
(http://metlin.scripps). Then, the putative identifications were verified by comparing the MS/MS
fragmentation patterns and retention time with those of authentic standard compounds. Online
MetaboAnalyst tool (http://www.metaboanalyst.ca) was used for metabolic pathways analysis of the
significantly changed metabolites.

4.5. Proteomic Analysis

4.5.1. iTRAQ-Based Proteomic Analysis

Three randomly selected plasma samples from each of the three groups were equivalently pooled,
respectively. A total of 200 µL plasma from each of the three groups was used for proteomic screening.
The procedures for plasma sample preparation and iTRAQ-based proteomic analysis were reported
in our previous study [7]. The three samples were labeled as follows: The control group sample was
labeled with iTRAQ tag 113, and the samples from the rats sacrificed at 1 day and 3 day after injury
were labeled with iTRAQ tag 116 and iTRAQ tag 118, respectively. The iTRAQ ratios and p-values
were calculated using the ABI ProteinPilot software v4.5. The threshold value was set as > 1.5 or < 0.67
fold change and p-values < 0.05. The differentially expressed proteins were functionally annotated
according to their biological processes, cellular components and molecular functions by GO annotation.
Pathway analysis of the significantly altered proteins was performed with the KEGG online database
(http://www.genome.jp/kegg/). Heat map of the significantly changed proteins was visualized using
the online Clustvis tool (https://biit.cs.ut.ee/clustvis/). PPI network analysis is useful to understand
the molecular mechanisms of various diseases from a systemic perspective. In our study, the PPI
network was mapped using the online STRING 10.5 tool (https://string-db.org).

4.5.2. Validation of Differentially Expressed Proteins

iTRAQ-based proteomics results were validated by examining the differentially expressed proteins
via Western blot analysis. Briefly, the remaining five plasma samples from each of the groups were
equivalently pooled, respectively. Total protein concentration was determined using a BCA Protein
Assay Kit (Abcam Inc., Cambridge, UK). An equal amount (50 µg) of proteins was separated by 10%
SDS-PAGE and then transferred to PVDF membranes. Next, the membranes were blocked using
5% nonfat milk for 1 h, and incubated overnight at 4 ◦C with the primary polyclonal antibodies of
anti-Serpina1 (Bioworld Technology Inc., Louis Park, MO, USA; catalog number: BS5593), anti-Klkb1
(Abcam Inc., Cambridge, UK; catalog number: ab1006), anti-AGP (Abcam Inc., Cambridge, UK;

http://www.genome.jp/kegg/
http://www.hmdb.ca/
http://metlin.scripps
http://www.metaboanalyst.ca
http://www.genome.jp/kegg/
https://biit.cs.ut.ee/clustvis/
https://string-db.org
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catalog number: ab200732), and anti-β-actin (Abcam Inc., Cambridge, UK; catalog number: ab8226;
both at 1:1000 dilution) and followed by secondary antibody of HRP-conjugated goat anti-rabbit
IgG (1:10,000 dilution; Abcam Inc, Cambridge, UK). The membrane was washed three times with
TBST. The immunoreactive signals were visualized and quantified using an ECL chemiluminescence
detection system (Amersham Biosciences Inc., Piscataway, NJ, USA). All experiments were performed
in triplicate and repeated three times, and the signals from target protein bands were normalized
against the β-actin contents.

4.6. Statistical Analysis

The experimental results were all presented as mean ± SD, and the statistical analyses were
performed using SPSS 21.0 statistical software (IBM, Armonk, NY, USA). Significant differences among
multiple groups were calculated by one-way analysis of variance (ANOVA) followed by Tukey’s
Honest Significant Difference test as a post-hoc comparison. A 2-tailed p-value less than 0.05 was
considered as statistically significant.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/4/
922/s1.
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