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ABSTRACT Bacteriophages (phages) have been proposed as alternative therapeu-
tics for the treatment of multidrug-resistant bacterial infections. However, there are
major gaps in our understanding of the molecular events in bacterial cells that con-
trol how bacteria respond to phage predation. Using the model organism Enterococ-
cus faecalis, we used two distinct genomic approaches, namely, transposon library
screening and RNA sequencing, to investigate the interaction of E. faecalis with a vir-
ulent phage. We discovered that a transcription factor encoding a LytR family re-
sponse regulator controls the expression of enterococcal polysaccharide antigen
(epa) genes that are involved in phage infection and bacterial fitness. In addition, we
discovered that DNA mismatch repair mutants rapidly evolve phage adsorption defi-
ciencies, underpinning a molecular basis for epa mutation during phage infection.
Transcriptomic profiling of phage-infected E. faecalis revealed broad transcriptional
changes influencing viral replication and progeny burst size. We also demonstrate
that phage infection alters the expression of bacterial genes associated with intra-
and interbacterial interactions, including genes involved in quorum sensing and
polymicrobial competition. Together, our results suggest that phage predation has
the potential to influence complex microbial behavior and may dictate how bacteria
respond to external environmental stimuli. These responses could have collateral ef-
fects (positive or negative) on microbial communities, such as the host microbiota,
during phage therapy.

IMPORTANCE We lack fundamental understanding of how phage infection influences
bacterial gene expression and, consequently, how bacterial responses to phage infection
affect the assembly of polymicrobial communities. Using parallel genomic approaches,
we have discovered novel transcriptional regulators and metabolic genes that influence
phage infection. The integration of whole-genome transcriptomic profiling during phage
infection has revealed the differential regulation of genes important for group behaviors
and polymicrobial interactions. Our work suggests that therapeutic phages could more
broadly influence bacterial community composition outside their intended host targets.

KEYWORDS bacteriophages, Enterococcus, antibiotic resistance, transposons,
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Enterococcus faecalis is a member of the healthy human intestinal microbiota (1). E.
faecalis is also a pathobiont that rapidly outgrows upon antibiotic-mediated intes-

tinal dysbiosis to cause disease. E. faecalis is associated with nosocomial sepsis, endo-
carditis, surgical-site, urinary tract, and mixed bacterial infections (2, 3). Since the 1980s,
enterococci have been evolving extensive drug resistance, including resistance to
vancomycin and “last-line-of-defense” antibiotics (4–10). In addition, E. faecalis can
disseminate antibiotic resistance traits to diverse bacteria, including other clinically
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relevant pathogens (11–17). There is an urgent need for new therapeutics that target
drug-resistant enterococci.

Bacteriophages (phages) are viruses that infect bacteria. Phages are being consid-
ered for the treatment of multidrug-resistant (MDR) bacterial infections, including
enterococcal infections. Recent studies have demonstrated the potential for phage-
based therapies against systemic and biofilm-associated enterococcal infections (18–
22). The decolonization of intestinal MDR E. faecalis may be achieved through the
action of phage predation which selects for cell wall variants that are rendered sensitive
to antibiotic therapy (23). However, a potential barrier to the widespread use of phage
therapy against E. faecalis is the development of phage resistance. To confront this
issue, we must understand the molecular mechanisms used by phages to infect E.
faecalis and how E. faecalis overcomes phage infection to become resistant. Only then
can this biology be exploited to develop phage therapies that mitigate the risk of
developing phage resistance.

The study of phage-bacterium interactions has provided key insights into phage
infection that could lead to the development of novel antibacterial therapies. Phages
replicate in bacteria by hijacking the host cellular machinery to produce phage prog-
eny. To exploit host cell resources, many phages encode auxiliary proteins which are
not directly involved in phage genome replication or particle assembly but can
modulate bacterial physiology to favor phage propagation (24, 25). The characteriza-
tion of phage auxiliary proteins may yield tools for curtailing bacterial infections.
Additionally, the discovery of phage-modulated host pathways could reveal potential
therapeutic targets. Our understanding of bacterial cellular responses during phage
infection is limited to transcriptomic analyses in Gram-negative bacteria, whereas
Gram-positive genera are understudied (26–31). Therefore, to fill this gap and further
define the molecular underpinnings of enterococcal-phage interactions, we have taken
a global genomics approach to identify enterococcal factors critical for productive
infection by the lytic phage VPE25 (32). To identify bacterial genes essential for VPE25
infection, we screened a low-complexity transposon (Tn)-mutant library of E. faecalis
OG1RF for phage resistance (33). In addition to the VPE25 receptor (32), transposon
sequencing revealed novel E. faecalis genes necessary for phage adsorption and
optimum intracellular phage DNA replication and transcription. To gain deeper insights
into the physiological response of E. faecalis during phage infection, we used temporal
transcriptomics of a VPE25 infection cycle. Transcriptomics revealed that VPE25 infec-
tion altered the expression of diverse genes involved in protein translation, metabo-
lism, bacterial community sensing, virulence, and biofilm formation. Our work shows
that E. faecalis reprograms transcription toward stress adaptation in response to phage
infection. This suggests that phages may impact the behavior of bacteria in polymi-
crobial communities, including bystanders that are not the intended targets of phage
therapy.

RESULTS
Transposon sequencing identifies novel genes involved in phage infection of E.

faecalis. To identify genetic determinants that confer phage resistance in E. faecalis, an
E. faecalis OG1RF transposon library consisting of 6,829 unique mutants was screened
by sequence-defined mariner technology transposon sequencing (SMarT Tn-Seq) (33).
A total of 107 CFUs of a logarithmically growing E. faecalis Tn-Seq library pool was
plated on solid medium in the absence or presence of phage VPE25 at a multiplicity of
infection (MOI) of 0.1. Cells from the input library prior to plating and cells plated onto
plates containing no phage were used as controls. Tn insertions in E. faecalis genomic
DNA were sequenced as described by Dale et al. (33). Sequencing reads were mapped
to the E. faecalis OG1RF genome to identify bacterial mutants with altered phage sensi-
tivity. The relative abundance of 22 E. faecalis mutants was enriched (adjusted P value of
�0.05; log2 fold change, �0) in the presence of VPE25 relative to cultures that lacked phage
and the input library (see Table S1 in the supplemental material; Fig. 1A). Five of the 22
phage-resistant enriched mutants harbored Tn insertions in OG1RF_10588 (Table S1;
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Fig. 1A), which was previously identified to encode the VPE25 receptor Phage Infection
Protein of E. faecalis (PipEF) (32). This indicates that the Tn mutant library is an appropriate
tool for the discovery of genes involved in phage infection of E. faecalis.

To gain further insight into the genetic factors that influence E. faecalis susceptibility to
VPE25, we analyzed several Tn mutants, including OG1RF_10820 (lytR), OG1RF_10951
(cscK), OG1RF_12241 (lysR), OG1RF_12435, and three enterococcal polysaccharide antigen
(Epa)-associated genes, OG1RF_11715 (epaOX), OG1RF_11714, and OG1RF_11710. (Ta-
ble S1; Fig. 1A). epaOX and OG1RF_11714 are both annotated as glycosyltransferases. We
renamed OG1RF_11714 epaOX2 as it resides downstream of epaOX. We have designated
OG1RF_11710 as epaOY based on its homology to epaY (EF2169) in E. faecalis V583.

The epa genes encode proteins involved in the formation of a cell surface-associated
rhamnose-containing polysaccharide (34). We and others have previously demon-
strated that enterococcal phages unrelated to VPE25 utilize Epa to adsorb and infect E.
faecalis (23, 35–37). Initial work from our group showed that mutation of the VPE25
receptor PipEF prevented VPE25 DNA entry into E. faecalis V583; yet, phages could still
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FIG 1 Transposon mutant library screening reveals E. faecalis genes important for productive phage
infection. (A) Volcano plot demonstrating that phage challenge alters the abundance of select mutants
from an E. faecalis OG1RF Tn library pool compared with phage VPE25-naive E. faecalis controls (false
discovery rate, 0.05). Phage resistant/tolerant mutants of interest that are enriched upon phage exposure
are highlighted as follows: pipEF-Tn (green), epa-Tn (yellow), mutS-Tn (gray), OG1RF_10820-Tn (purple),
cscK-Tn (light blue), and OG1RF_12241-Tn (brown). (B) Phage VPE25 resistance phenotypes of an isogenic
epa deletion strain or epa-specific Tn mutants serially diluted onto THB agar plates with or without
5 � 106 PFU/ml of VPE25. (C) Infection efficiency of VPE25 is reduced in the �pipEF and epa mutants
compared with the wild type (n.d. indicates no detected plaques). (D) VPE25 efficiently adsorbs to
wild-type E. faecalis OG1RF and an isogenic �pipEF deletion strain but not to the various epa mutants.
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adsorb to receptor mutants (32), suggesting that the factors that promote phage
infection via surface adsorption remained to be identified. Here, we show that either an
in-frame deletion of epaOX (38) or Tn insertions in epaOX, epaOX2, and epaOY confer
phage resistance to VPE25, similar to the pipEF receptor mutant (Fig. 1B). Mutations in
pipEF, epaOX, and epaOX2 abolished VPE25 infection, while disruption of epaOY signif-
icantly reduced phage susceptibility, as determined by efficiency of plating assays
(Fig. 1C). To assess the role of Epa during VPE25 infection, we investigated the ability
of VPE25 to adsorb to wild-type E. faecalis, the epaOX deletion mutant, or the three epa
Tn insertion mutants. Both the wild-type and the pipEF mutant strain adsorbed signif-
icantly larger amounts of VPE25 than the epa mutants (Fig. 1D). Together, these data
indicate that epa-derived cell wall modifications contribute to VPE25 infection by
promoting surface adsorption. This is consistent with previous observations in other
lactic acid bacteria showing phage infection is a two-step process; first, phages must
reversibly bind to a cell wall polysaccharide, followed by the committed initiation of
DNA ejection into the cell (39–41).

In addition to epa genes, several Tn mutants whose roles during phage infection were
unknown were enriched on VPE25-containing agar compared with uninfected controls
(Table S1; Fig. 1A), and this included OG1RF_10820-Tn, cscK-Tn, and OG1RF_12241-Tn.
OG1RF_10820 encodes a putative LytR response regulator. Orthologs of this protein control
multiple cellular processes, including virulence, extracellular polysaccharide biosynthesis,
quorum sensing, competence, and bacteriocin production (42). OG1RF_12241 is a homolog
of the hypR (EF2958) gene of E. faecalis strain JH2-2 and encodes a LysR family transcrip-
tional regulator. HypR regulates oxidative stress through the ahpCF (alkyl hydroperoxide
reductase) operon conferring increased survival in mouse peritoneal macrophages (43, 44).
Finally, CscK is a fructose kinase that converts fructose to fructose-6-phosphate for entry
into glycolysis (45). Considering that these genes had never previously been shown to be
associated with phage infection, we asked how Tn disruption of these genes influenced
phage sensitivity using a time course phage infection assay. In the presence of phages, the
optical density of the Tn mutants OG1RF_10820-Tn (lytR), cscK-Tn, and OG1RF_12241-Tn
(lysR) was constant over time, whereas the growth of the wild type and the pipEF receptor
mutant declined or increased over the course of infection, respectively (Fig. 2A and B).
Complementation of the Tn mutants with wild-type alleles restored phage susceptibility
without altering their growth in the absence of phages (see Fig. S1A, B, and C in the
supplemental material). To further investigate this phage tolerance phenotype, we asked
whether these mutants harbored a defect in phage production. Assessment of the number
of phage particles produced during infection showed that OG1RF_10820-Tn (lytR), cscK-Tn,
and OG1RF_12241-Tn (lysR) strains produced 10-fold lower phage particles than the
wild-type strain (Fig. 2C), indicating that the Tn mutants have a defect in phage burst
size. In the absence of phage, wild-type, �pipEF, OG1RF_10820-Tn (lytR), cscK-Tn, and
OG1RF_12241-Tn (lysR) strains showed similar growth kinetics (Fig. 2D), indicating that
these mutations do not impair growth in laboratory media. These data show that deficien-
cies in transcriptional signaling and metabolism have a strong impact on lytic phage
production in E. faecalis.

Since we observed that OG1RF_10820-Tn, cscK-Tn, and OG1RF_12241-Tn (lysR)
mutants had a reduced phage burst, releasing fewer viral particles relative to the wild
type, we queried the status of viral transcription and replication in these mutants.
Whole-genome transcriptomic analysis of phage-infected E. faecalis OG1RF cells indi-
cated that the VPE25 genes orf76, orf111, and orf106 are highly expressed throughout
the course of phage infection (see Table S2A in the supplemental material). However,
the transcripts of these genes were less abundant in the Tn mutants OG1RF_10820-Tn
(lytR), cscK-Tn, and OG1RF_12241-Tn (lysR) (see Fig. S2A in the supplemental material).
Additionally, phage DNA replication is delayed in these Tn insertion mutants, as judged
by significantly lower copy numbers of phage DNA relative to the wild-type strain
(Fig. S2B). These data indicate that OG1RF_10820-Tn (lytR), cscK-Tn, and OG1RF_12241-Tn
(lysR) mutants restrict VPE25 DNA replication by increasing the phage latent period,
resulting in reduced phage particle production.
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Mutation of OG1RF_10820 (lytR) alters epa variable gene expression, nega-
tively impacting phage infection. To further assess the roles of the OG1RF_10820
(lytR), cscK, and OG1RF_12241 (lysR) genes during VPE25 infection, we performed phage
adsorption assays with these strains. OG1RF_10820-Tn (lytR), which harbors a Tn-
disrupted lytR response regulator gene, adsorbed 40% less phage than the wild-type
control (Fig. 3A). Of the three Tn mutants, this was the only mutant that adsorbed less
phage than the wild-type control. LytR type response regulators have been implicated
in the biosynthesis of extracellular polysaccharides, including alginate biosynthesis in
Pseudomonas aeruginosa (42, 46, 47). Since phage adsorption of E. faecalis is facilitated
by Epa, we measured epa gene expression in the OG1RF_10820-Tn (lytR) background.
The epa locus consists of core genes (epaA to epaR) that are conserved in E. faecalis,
followed by a group of strain-specific variable genes that reside downstream of the core
genes (37, 48). The expression of epa variable genes epaOX, epaOX2, and epaOY were
reduced in the absence of OG1RF_10820 (lytR) during logarithmic and stationary-phase
growth (Fig. 3B). In contrast, OG1RF_10820 (lytR) disruption did not alter the expression
of core epa genes (see Fig. S3 in the supplemental material). Collectively, these results
indicate that mutation of the lytR homolog hinders optimum binding of VPE25 by
downregulating epa variable genes, thereby modifying the polysaccharide decoration
of the core Epa structure (49).
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Hypermutator strains defective in mismatch repair facilitate the acquisition of
phage resistance in E. faecalis. Transposon mutant OG1RF_12435-Tn, with an inser-
tion in the DNA mismatch repair (MMR) gene mutS, was significantly overrepresented
during VPE25 infection (Table S1; Fig. 1A). The MMR genes mutS and mutL correct
replication-associated mismatch mutations (50). We discovered that VPE25-mediated
lysis of the mutS-Tn-E (OG1RF_12435-Tn carrying the empty plasmid pAT28) and
mutL-Tn-E (OG1RF_12434-Tn carrying the empty plasmid pAT28) mutants closely re-
sembled wild-type lysis kinetics for �4 hours postinfection and released similar num-
bers of phage particles (Fig. 4A and B). However, these mutator strains eventually
started to recover and escape infection, suggesting that the mutator phenotype gives
rise to phage resistance (Fig. 4A). Introduction of the wild-type mutS and mutL genes
cloned into plasmid pAT28 (mutS-Tn-C and mutL-Tn-C) restored the wild-type phage
susceptibility phenotype (Fig. 4A). In the absence of phage, the wild-type, mutL-Tn, and
mutS-Tn strains grew similarly, suggesting that hypermutator strains do not harbor
growth defects in vitro (Fig. 4C).

To confirm that the mutS-Tn and mutL-Tn strains accumulate phage-resistant iso-
lates during phage exposure, we performed phage infection assays using colonies of
mutS-Tn and mutL-Tn grown overnight on agar plates in the absence and presence of
VPE25. Consistent with our previous data, all mutS-Tn and mutL-Tn mutant colonies
selected from agar plates lacking phage were initially phage sensitive, and over time
became phage resistant (see Fig. S4A and C in the supplemental material). In contrast,
the mutL-Tn and mutS-Tn colonies acquired from the phage-containing plates were
phage resistant and had similar growth kinetics to the pipEF receptor mutant in the
presence of VPE25 (Fig. S4A and C). All isolates grew similarly in the absence of phage
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FIG 3 Mutation of a lytR homolog downregulates the expression of epa variable genes, leading to
decreased VPE25 adsorption. (A) Phage adsorption assay showing that the OG1RF_10820-Tn (lytR)
mutant strain is defective for VPE25 attachment relative to the wild-type strain. (B) Disruption of
OG1RF_10820 (lytR) leads to reduced expression of three epa variable genes, namely, epaOX (top), epaOX2
(middle), and epaOY (bottom). The data are represented as the fold change of normalized mRNA
compared with wild type during both logarithmic (1 h) and stationary-phase (4 h) growth. The data show
the average of three biological replicates � the standard deviation. *P � 0.01, **P � 0.001 by unpaired
Student’s t test.
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(Fig. S4B and D). To gain insight into the basis of acquired phage resistance in the
mismatch repair mutant backgrounds, we compared the phage adsorption profiles of
the different strains. The mutL-Tn and mutS-Tn mutants that were not preexposed to
VPE25 adsorbed phage at 70% to 80% efficiency, whereas mutL-Tn and mutS-Tn
colonies chosen from phage-containing agar plates displayed a severe phage adsorp-
tion defect (Fig. S4E and F). Our data show that phage treatment leads to the selection
and growth of phage adsorption-deficient isolates from mutL-Tn and mutS-Tn mutator
cultures, most likely through mutations in epa variable genes. This also suggests that
epa variable genes may be a hot spot for mutation in E. faecalis.

VPE25 infection drives global gene expression changes in E. faecalis. To study
temporal changes in E. faecalis gene expression during phage infection, we infected
logarithmically growing E. faecalis with VPE25 at an MOI of 10. The cell density of
infected E. faecalis cultures was comparable to the uninfected control cultures during
the first 10 min of infection (Fig. 5A). Between 10 and 20 min postinfection, the VPE25
burst size increased as the cell density of the infected culture declined (Fig. 5A and B).
VPE25 particle numbers plateaued 30 min postinfection, and there was no significant
increase in phage output between 30 and 50 minutes of infection (Fig. 5B).

To investigate the transcriptional response of E. faecalis during VPE25 infection, we
collected cells at several time points during distinct phases of the VPE25 infection cycle
and performed RNA sequencing (RNA-Seq). Samples were collected at 10, 20, and 40
minutes postinfection, representing the early, middle, and late phase of the VPE25
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infection cycle, respectively (Fig. 5A and B). Although phage replication peaks at 20
minutes, there is a modest reduction of the optical density at 600 nm (OD600) between
20 and 40 minutes, indicating that some cells in the culture may be more resistant to
phage infection. Hierarchical clustering of differentially expressed E. faecalis genes
during VPE25 infection compared with uninfected controls revealed unique gene
expression patterns at each time point (Fig. 6A and B; Table S2B). Gene expression
patterns grouped into three distinct clusters that correlated with the early, middle, and
late stages of phage infection (Fig. 6A and B). Phages rely on host cell resources for the
generation of viral progeny. Gene Ontology (GO) and KEGG enrichment analysis
showed that phage infection influenced numerous E. faecalis metabolic pathways,
including amino acid, carbohydrate, and nucleic acid metabolism (Table S2B).

Approximately 54% of the E. faecalis genome was differentially expressed (P � 0.05)
relative to uninfected controls, with 692 downregulated and 731 upregulated genes
over the course of phage infection (see Fig. S5A and C in the supplemental material).
A total of 37 of the 692 downregulated genes were repressed throughout the course
of phage infection and are broadly categorized as ribosome biogenesis and bacterial
translation genes (Fig. S5B; Table S2C), indicating that VPE25 modulates host protein
biogenesis to prevent bacterial growth and promote viral replication. In contrast,
expression of 110 genes belonging to DNA repair pathways, amino acyl-tRNA biosyn-
thesis, and carbohydrate metabolism were significantly upregulated throughout the
phage infection cycle (Fig. S5D; Table S2D). The induction of DNA stress response genes
suggests that E. faecalis cells activate DNA defense mechanisms to counteract phage-
driven DNA damage.

Next, we assessed the transcriptome of VPE25 during infection. The VPE25 genome
encodes 132 open reading frames (ORFs). We detected the differential expression of
these ORFs by comparing the average read counts of individual genes at 10, 20, and
40 min relative to the start of infection (0 min). Hierarchical clustering grouped differ-
entially expressed genes into early and late genes based on their distinct temporal
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expression patterns. The transcripts of 78 early genes, including those predicted to be
involved in nucleotide biosynthesis and replication, accumulated during the first 10 min
of infection (see Fig. S6A in the supplemental material; Table S2A). In contrast, late
genes encoding phage structural components, DNA packaging, and host cell lysis were
induced by 40 min of infection (Fig. S6A; Table S2A). Approximately 90 genes (68% of
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FIG 6 Global transcriptomic profile of E. faecalis OG1RF in response to VPE25. (A) Hierarchical clustering of differentially expressed E.
faecalis transcripts at 10, 20, and 40 min post-VPE25 infection compared with uninfected controls from each time point. R1 and R2
designate two independent biological replicates. The transcripts broadly cluster into early (green), middle (blue), and late (magenta)
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the VPE25 genome) annotated as hypothetical in the VPE25 genome were expressed
during the early or late phase of infection (Fig. S6A; Table S2A), indicating that the
majority of actively transcribed genes during VPE25 infection have no known function.

Phage infection modulates E. faecalis genes involved in group interactions. Our
transcriptomic data indicate that VPE25 infection causes a shift in the expression
pattern of genes involved in pathways unrelated or peripheral to host metabolism and
macromolecule biosynthesis (Fig. S5B and D). Most notably, we observed that phage
infection led to a significant reduction in the expression of fsr quorum sensing genes
and in the induction of type VII secretion system (T7SS) genes (Fig. S6B).

The E. faecalis fsr quorum sensing system is critical for virulence and biofilm
formation in different animal models, including mouse models of endocarditis and
peritonitis (51–55). The fsr quorum sensing system is comprised of the fsrA, fsrBD, and
fsrC genes (56–58). fsrA encodes a response regulator that is constitutively expressed.
fsrBD and fsrC encode the accessory protein, pheromone peptide, and the membrane
histidine kinase required for functional quorum sensing-regulated gene expression in E.
faecalis. Quantitative real-time PCR (qPCR) confirmed that fsrBD and fsrC are repressed
throughout VPE25 infection, with the strength of repression increasing over time
(Fig. 7A). There was a negligible impact on fsrA mRNA levels (Fig. 7A), consistent with
its behavior as a constitutively expressed gene. qPCR analysis revealed several Fsr-
controlled genes to be differentially expressed during phage infection. Fsr-dependent
virulence factors, including gelE, sprE, OG1RF_10875 (EF1097), and OG1RF_10876
(EF1097b) genes (59), were all significantly downregulated during phage infection
relative to uninfected controls (Fig. 7A and B). The fsr regulon is also an activator and
repressor of several metabolic pathways (60). Our data demonstrate that the levels

0min 10min 20min 40min

R
el

at
iv

e
un

its
(F

ol
d

ch
an

ge
)

A B

C

0

5

10

15

20

25

R
el

at
iv

e
un

its
(F

ol
d

ch
an

ge
)

OG1R
F_1

11
00

OG1R
F_1

11
01

OG1R
F_1

11
04

OG1R
F_1

11
09

OG1R
F_1

111
5

OG1R
F_1

11
05

D

0

0.5

1.0

1.5

fsr
A

fsr
BD

fsr
C

gelE sp
rE

OG1R
F_1

02
96

OG1R
F_1

02
97

OG1R
F_1

08
76

OG1R
F_1

08
75

R
el

at
iv

e
un

its
(F

ol
d

ch
an

ge
)

1.2

0.8

0.4

0

0

0.5

1.0

1.5

2.0

2.5

eu
tB

eu
tC

eu
tH

R
el

at
iv

e
un

its
(F

ol
d

ch
an

ge
)

**
*

*
*

*

*
*

*

*
*

**

**

***

**

**

**

**

**
**

**

** **
**

**

*

**
**

*

**

**

*

**

**

*
*

*

* *

*

*

*

*

*
*

*

*

**

** **

FIG 7 Quantitative PCR confirms altered expression of bacterial quorum sensing and T7SS genes during
VPE25 infection. mRNA transcript levels of quorum sensing regulon genes, including fsr regulatory genes
(A), fsr-induced genes (B), and fsr-repressed genes (C) are differentially expressed during VPE25 infection.
(D) Progression of the lytic cycle induces the expression of T7SS genes. Expression is the fold change
relative to untreated samples at the same time points. Data represent the average of three repli-
cates � the standard deviation. *P � 0.01 to 0.0001 and **P � 0.00001 by unpaired Student’s t test.

Chatterjee et al. ®

March/April 2020 Volume 11 Issue 2 e03120-19 mbio.asm.org 10

https://mbio.asm.org


of Fsr-activated genes involved in the phosphotransferase sugar transport system
(OG1RF_10296 and OG1RF_10297) are reduced, whereas negatively regulated
genes in the fsr regulon, such as eutB, eutC, and eutH genes involved in ethanol-
amine utilization, are derepressed during VPE25 infection (Fig. 7B and C). These data
suggest that VPE25 attenuates the FsrABDC system, consequently impacting E.
faecalis virulence and metabolism.

Divergent forms of the T7SS (also known as the Ess/Esx system) are widely distrib-
uted in Gram-positive bacteria, and the T7SS has been extensively studied in the
actinobacterium Mycobacterium tuberculosis (61–66). To date, enterococcal T7SS loci
remain uncharacterized. Consistent with our transcriptomic data (Fig. S6B), we ob-
served that phage infection induces genes in the E. faecalis T7SS locus, including
OG1RF_11100 (esxA), OG1RF_11101 (essA), OG1RF_11104 (essB), OG1RF_11105 (essC1),
OG1RF_11109, and OG1RF_11115 (essC2) (Fig. 7D). The esxA and OG1RF_11109 genes
encode potential WXG100 domain-containing effector and LXG-domain toxin proteins,
respectively. The secretion of T7SS factors is dependent on the EssB transmembrane
protein and FtsK/SpoIIIE ATPases encoded by the essC1 and essC2 genes. The T7SS in
Gram-positive bacteria is involved in immune system activation, apoptosis of mamma-
lian cells, bacterial cell development and lysis, DNA transfer, and bacterial interspecies
interactions (62, 67–77).

Similar to other phage-bacterium interaction studies (26, 28–30, 78), we investigated
the transcriptional response of E. faecalis during VPE25 infection using a high MOI (MOI,
10) to increase the probability of phage infection and minimize transcriptional noise
from uninfected bacterial cells. However, a lower MOI (MOI, 1) is sufficient to alter the
expression profile of at least a subset of quorum sensing and T7SS genes (Fig. S6C).
Additionally, administration of VPE25 (MOI, 10) to the phage-resistant E. faecalis strain
�pipEF did not alter mRNA levels of fsr quorum sensing or T7SS genes (Fig. S6D),
suggesting that successful phage infection is essential to modulate the expression of
these bacterial genes. To investigate whether phage-mediated expression of fsrABDC
and the T7SS genes are VPE25 specific, we examined the expression patterns of a
subset of these genes in E. faecalis when infected with the PipEF-independent lytic
phage NPV-1, which shares little genetic similarity to phage VPE25 (2.4% pairwise
nucleotide identity across its genome). mRNA levels of fsrB and sprE were reduced,
whereas expression of the T7SS genes were elevated during NPV-1 infection (Fig. S6E),
suggesting that phage-specific control of quorum sensing and T7SS expression are not
restricted to VPE25 infection. Together, these findings indicate that phage infection of
E. faecalis has the potential to influence bacterial adaptation in polymicrobial commu-
nities or during mixed bacterial species infections.

DISCUSSION

Characterizing bacterial responses to phage infection is important for understand-
ing how phages modulate bacterial physiology and will inform approaches toward
effective phage therapies against MDR bacteria. Commonly used approaches to identify
phage-resistant bacteria often yield information restricted to phage receptors and/or
adsorption mechanisms. While useful, these approaches often overlook more subtle
interactions that drive the efficiency of phage infection and phage particle biogenesis.
Additionally, these approaches provide minimal information on how bacteria sense and
respond to phage infection. These are important gaps in knowledge considering the
heightened interest in utilizing phages as clinical therapeutics against difficult-to-treat
bacterial infections. To begin to address these knowledge gaps we have studied the
model Gram-positive commensal and opportunistic pathogen E. faecalis when infected
with its cognate lytic phage VPE25. We have discovered several novel bacterial factors
that are indispensable for efficient VPE25 infection of E. faecalis. In addition, we have
uncovered key insights into the molecular events that are triggered in E. faecalis cells
during phage infection. Importantly, our work shows that E. faecalis alters the expres-
sion of genes associated with environmental sensing and group interactions during
phage infection. Such a response may have unexpected consequences in polymicrobial
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communities, and our work sets the stage for studying how phage therapies may
impact nontarget bacteria in the microbiota.

Tn-Seq identified numerous E. faecalis genes that govern VPE25 susceptibility.
Mutations in epa variable genes conferred VPE25 resistance by preventing phage
adsorption, similar to other E. faecalis phages (23, 35–37). We discovered that phage
infection of mismatch repair gene mutants results in the emergence of phage adsorp-
tion deficiencies; thus, the mismatch repair system likely fails to correct DNA damage
of epa genes during phage infection. This suggests that epa genes may be a hot spot
for mutation. Tn-Seq also enabled the discovery of the LytR-domain transcription factor
encoded by OG1RF_10820 (lytR) as a regulator of epa variable locus gene expression
(Fig. 3B). Considering an epa mutant strain of E. faecalis is defective in colonization and
outgrowth during antibiotic selection in the intestine (23), we believe that future
investigation of LytR-mediated regulation of epa and potentially other genomic loci
could guide the development of effective therapeutics to control E. faecalis colonization
and infections.

In this work, we have discovered bacterial metabolic and oxidative stress response
genes that are important for phage infection. Decreased phage replication coupled
with lower burst size of VPE25 in the fructose kinase mutant (cscK) suggests that VPE25
relies on host carbohydrate metabolism to support viral progeny formation. The
reliance of VPE25 on host CscK for viral propagation is corroborated by RNA-Seq data
showing broad induction of bacterial host carbohydrate metabolism genes during
VPE25 infection. Furthermore, we observed that VPE25 lytic growth leads to a gradual
rise in the OG1RF_12241 (lysR) transcripts which encode the LysR homolog HypR, a
regulator of oxidative stress. Phage infection enhanced the transcript levels of three
other oxidative stress response genes, including OG1RF_10348, OG1RF_10983, and
OG1RF_11314 encoding superoxide dismutase (sodA), NADH peroxidase (npr), and
catalase (katA), respectively (Table S2B). In Campylobacter jejuni, mutations in the
LysR-regulated gene ahpC, as well as sodB and katA, resulted in reduced plaquing
efficiency by the phage NCTC 12673 (27). We hypothesize that phage tolerance during
hypersensitivity to oxidative stress could be detrimental to E. faecalis and targeting
such pathways could be used to control E. faecalis colonization.

Our data indicate that putative T7SS genes are activated in response to phage
infection. Although E. faecalis T7SS remains poorly characterized, the Staphylococcus
aureus T7 system has been demonstrated to defend cells against neutrophil assault and
enhance epithelial cell apoptosis and is critical for virulence (68, 69, 79, 80). Additionally,
S. aureus T7SS maintains membrane homeostasis and is involved in the membrane
stress response (69, 81). The finding that E. faecalis T7SS genes are induced in response
to two different phages suggests phage-mediated membrane damage may lead to
elevated T7SS gene expression. Finally, the S. aureus T7SS nuclease toxin EsaD contrib-
utes to interspecies competition through growth inhibition of rival strains lacking the
EsaG antitoxin (77). The impact of S. aureus T7SS on rival strains and the presence of
T7SS genes in environmental isolates (82, 83) suggest a pivotal role of this secretion
system in shaping microbial communities.

In contrast to the T7SS, the bacterial population-associated quorum sensing fsr locus
was repressed during VPE25 infection in E. faecalis. Gram-negative bacteria can escape
phage invasion by quorum sensing-mediated downregulation of phage receptor ex-
pression or activation of clustered regularly interspaced short palindromic repeats
(CRISPR)-Cas immunity (84–87). The fsr regulon does not include the receptor (pipEF),
epa genes necessary for phage adsorption, or CRISPR-Cas. However, the fsr system does
contribute to biofilm formation that could potentially deter phage infection (55, 88).
VPE25 infection may attenuate fsr-mediated biofilm formation to favor the continued
infection of neighboring planktonic cells. On the other hand, phage genomes have
been shown to carry enzymes that degrade quorum sensing molecules or anti-CRISPR
genes to evade host defense strategies (89, 90). Although such anti-host accessory
genes are not evident in the VPE25 genome, it is possible that phage-carrying hypo-
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thetical genes influence E. faecalis quorum sensing and dictate molecular events that
favor phage production.

Integration of global transcriptomics and transposon library screening of VPE25-
infected E. faecalis has revealed new insights into our understanding of phage-host
interactions in enterococci. Together, our results emphasize the importance of epa
gene regulation, carbohydrate metabolism, and the oxidative stress response in suc-
cessful phage predation. Furthermore, contributions of VPE25 on E. faecalis fsr and T7SS
genes involved in inter- and intrabacterial interactions suggest that phage therapy
could impact microbial community dynamics in patients undergoing treatment, and
such an outcome should be considered for the development of phage-based thera-
peutics.

MATERIALS AND METHODS
Bacteria and bacteriophages. All bacteria and phages used in this study are listed in Table S3 in the

supplemental material. E. faecalis strains were grown with aeration on Todd-Hewitt broth (THB) or THB
agar at 37°C. Escherichia coli was grown on Lennox L broth (LB) with aeration or on LB agar at 37°C. The
following antibiotic concentrations were added to media for selection of E. coli or E. faecalis: 25 �g/ml
fusidic acid, 50 �g/ml rifampin, 750 �g/ml spectinomycin, and 20 �g/ml chloramphenicol. Phage sensi-
tivity assays were performed on THB agar supplemented with 10 mM MgSO4. Phages used for all
experiments were purified by cesium chloride gradient separation as described previously (32).

Transposon library screen. A total of 108 CFUs of the E. faecalis OG1RF pooled transposon library
was inoculated into 5 ml of THB and grown with aeration to an optical density of 600 nm (OD600) of 0.5.
A total of 107 CFUs of the library was spread onto a THB agar plate (10 replicates) containing 10 mM
MgSO4 in the absence and presence of 106 PFUs of VPE25 (MOI, 0.1). After overnight (O/N) incubation
at 37°C, bacterial growth from the control and phage-containing plates was resuspended in 5 ml of
phosphate-buffered saline (PBS). Genomic DNA was isolated from the input library and from three
biological replicates of phage-exposed and unexposed samples using a ZymoBIOMICS DNA miniprep kit
(Zymo Research), following the manufacturers protocol.

Phage sensitivity and burst kinetic assays. O/N cultures of E. faecalis were subcultured to a starting
OD600 of 0.025 in 25 ml of THB. When the bacterial culture reached mid-logarithmic phase (OD600, �0.5),
10 mM MgSO4 and VPE25 (MOI of 0.1 or 10) were added. OD600 was monitored for �7 h. To investigate
if phage progeny were produced and released from the bacterial cells upon VPE25 infection, 250 �l of
culture was collected at different time points over the course of infection and thoroughly mixed with 1/3
volume of chloroform. The aqueous phase-containing phages was separated from the chloroform by
centrifugation at 24,000 � g for 1 min, and the phage titer was determined using a THB agar overlay
plaque assay. Data are presented as the average of three replicates with �/	 standard deviation.

Phage infection time course. O/N cultures of E. faecalis were subcultured to a starting OD600 of
0.025 in 50 ml of THB. When the bacterial culture reached mid-logarithmic phase (OD600, �0.5), 10 mM
MgSO4 and VPE25 (MOI of 10) were added. A total of 4 ml of cell suspension was pelleted from the
uninfected and infected cultures after 0, 10, 20, and 40 minutes after VPE25 treatment. The pellets were
washed with 4 ml of PBS three times, followed by a wash with 2 ml RNAlater (Invitrogen), and RNA
isolation was performed as described above.

Further experimental details can be found in the supplemental Materials and Methods (Text S1).
Data availability. The RNA-Seq reads associated with this study have been deposited at the

ArrayExpress database at EMBL-EBI under accession number E-MTAB-8546. Tn-Seq reads have been
deposited at the European Nucleotide Archive under accession number PRJEB35492.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TEXT S1, PDF file, 0.2 MB.
FIG S1, PDF file, 0.6 MB.
FIG S2, PDF file, 0.5 MB.
FIG S3, PDF file, 0.4 MB.
FIG S4, PDF file, 1.1 MB.
FIG S5, PDF file, 0.4 MB.
FIG S6, PDF file, 1.7 MB.
TABLE S1, XLSX file, 0.1 MB.
TABLE S2, XLSX file, 0.2 MB.
TABLE S3, PDF file, 0.2 MB.
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