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Deep brain stimulation (DBS) is a clinical intervention for the treatment

of movement disorders. It has also been applied to the treatment of

psychiatric disorders such as depression, anorexia nervosa, obsessive-

compulsive disorder, and schizophrenia. Psychiatric disorders including

schizophrenia, bipolar disorder, and major depression can lead to psychosis,

which can cause patients to lose touch with reality. The ventral tegmental

area (VTA), located near the midline of the midbrain, is an important

region involved in psychosis. However, the clinical application of electrical

stimulation of the VTA to treat psychotic diseases has been limited, and

related mechanisms have not been thoroughly studied. In the present study,

hyperlocomotion and stereotyped behaviors of the mice were employed

to mimic and evaluate the positive-psychotic-like behaviors. We attempted

to treat positive psychotic-like behaviors by electrically stimulating the VTA

in mice and exploring the neural mechanisms behind behavioral effects.

Local field potential recording and in vivo fiber photometry to observe the

behavioral effects and changes in neural activities caused by DBS in the VTA

of mice. Optogenetic techniques were used to verify the neural mechanisms

underlying the behavioral effects induced by DBS. Our results showed that

electrical stimulation of the VTA activates local gamma-aminobutyric acid

(GABA) neurons, and dopamine (DA) neurons, reduces hyperlocomotion, and

relieves stereotyped behaviors induced by MK-801 (dizocilpine) injection.

The results of optogenetic manipulation showed that the activation of the

VTA GABA neurons, but not DA neurons, is involved in the alleviation of

hyperlocomotion and stereotyped behaviors. We visualized changes in the

activity of specific types in specific brain areas induced by DBS, and explored
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the neural mechanism of DBS in alleviating positive psychotic-like behaviors.

This preclinical study not only proposes new technical means of exploring the

mechanism of DBS, but also provides experimental justification for the clinical

treatment of psychotic diseases by electrical stimulation of the VTA.

KEYWORDS

deep brain stimulation, psychosis, ventral tegmental area, GABA neurons, preclinical
study

Introduction

The clinical application of deep brain stimulation (DBS),
a neurosurgical procedure commonly used to treat movement
disorders such as Parkinson’s disease, tremor, and dystonia,
has been one of the most important advances in clinical
neuroscience in the last two decades (Montgomery and Baker,
2000; Udupa and Chen, 2015; Pycroft et al., 2018). DBS is
also increasingly being used to treat psychiatric disorders such
as obsessive-compulsive disorder, depression, anorexia nervosa,
and schizophrenia (Kopell et al., 2004; Kuhn et al., 2010;
Holtzheimer and Mayberg, 2011; Graat et al., 2017), but the
neural mechanism underlying the effects of treatment remains
unclear, which has limited the extension of DBS to other brain
regions.

Psychosis is an abnormal condition of the mind that
results in losing contact with reality. It can be caused by
schizophrenia, bipolar disorder, psychotic depression (Sachdev,
1998; Keck et al., 2003; Craddock et al., 2005; Read et al., 2005;
DeBattista et al., 2006; Schatzberg et al., 2014), trauma, sleep
deprivation, and drugs such as cannabis and methamphetamine
(Meyer and Meyer, 2009; Leboyer et al., 2012; Jones et al.,
2014; Waters et al., 2018). The main symptoms include
hallucinations and delusions (Haddock et al., 1999; Morrison,
2001; Freeman and Garety, 2003; Garety et al., 2005; Schultze-
Lutter et al., 2012). The preferred treatment for psychosis is
antipsychotic medication (Seeman, 2002; Davis et al., 2003;
Lieberman et al., 2005). However, due to poor target-specificity,
antipsychotics can cause many metabolic side effects, such as
obesity, hyperlipidemia, and hyperglycemia (Alvarez-Jimenez
et al., 2008; Patel et al., 2009). Owing to its excellent specificity,
DBS has been gradually applied in the treatment of clinical
psychiatric disorders (Kopell et al., 2004). Previous studies
have reported that local electrical stimulation of the nucleus
accumbens (NAc), the lateral habenula (LHb), and the anterior
cingulate cortex (ACC) in patients diagnosed with schizophrenia
can alleviate the positive and cognitive symptoms (Kuhn et al.,
2011; Ma and Leung, 2014; Nucifora et al., 2019; Corripio et al.,
2020; Roldán et al., 2020; Wang et al., 2020; Germann et al.,
2021). Additional potentially relevant brain areas remain to
be explored.

The ventral tegmental area (VTA) is an important brain
region involved in the onset and etiology of psychosis
(D’Ardenne et al., 2008; Cohen et al., 2012; Lammel et al., 2012;
Morales and Margolis, 2017). According to clinical imaging data,
compared to healthy individuals, the activity of the VTA in
patients with psychiatric disorders is significantly lower (Lisman
et al., 2010; Hadley et al., 2014; Rausch et al., 2014; Rice et al.,
2016; Yamashita et al., 2016; Giordano et al., 2018; Sotoyama
et al., 2021). Therefore, in clinical studies, this area has also been
included among the candidate brain regions for the treatment
of psychiatric disorders by electrical stimulation (Georgiev
et al., 2021). For example, stimulating the VTA in patients can
effectively relieve the frequency and severity of headaches in
patients with chronic headache (Miller et al., 2016; Akram et al.,
2017; Vyas et al., 2019). Gazit et al. (2015) found that DBS of the
VTA reduced depression-like behaviors in rats. However, there
are limited clinical and experimental studies using electrical
stimulation in the VTA in the treatment of psychotic symptoms.
Therefore, in the present study, we attempted to treat positive
psychotic-like behaviors by electrically stimulating the VTA in
mice and illustrating the precise working mechanism.

Materials and methods

Animals

The care and use of animals were conducted in strict
accordance with institutional guidelines and governmental
regulations. All mice were maintained under a reversed 12-h
/12-h day/night cycle at 22–25◦C with ad libitum access to
rodent food and water in environmentally controlled conditions.
The mice used in the experiments were adult (8–15 weeks)
C57BL/6 male mice (Shanghai Model Organisms), Vgat-ires-cre
knock-in mice (Stock No. 028862) and DAT-ires-cre knock-in
mice (Stock No. 006660; Jackson Laboratory, Bar Harbor, ME).
The engineered mice were both maintained on a C57BL/6J
genetic background.

All experiments involving mice were carried out in
accordance with the US National Institutes of Health Guide for
the Care and Use of Animals under an Institutional Animal
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Care and Use Committee approved protocol and Association
for Assessment and Accreditation of Laboratory Animal Care
approved Facility at the ShanghaiTech University.

Viral injection, fiber optics, and DBS
electrode implantation

After the mice were deeply anesthetized with isoflurane,
they were placed on a stereoscopic positioning instrument. The
eyes were coated with aureomycin eye cream, and the scalp
was cut open. Then, the skull surface was wiped with 3%
hydrogen peroxide to remove the fascia from the skull surface.
The Bregma point and Lambda point were used to adjust the
mouse head to the horizontal position. A small window with
a diameter of 300–500 microns was opened at the location of
viral injection and fiber implantation. According to the brain
atlas, the ML range of the VTA is ±0.2–1.2 mm. Since both
electrical stimulation and illumination stimulation act on the
neurons within a certain range, we chose ±0.5 and ±0.7 mm,
which are closer to the center, as the experimental coordinates.
The viral injection rate was 300 nl/min. AAV2/9-hsyn-DIO-
GCaMP6(m) was injected unilaterally for fiber photometry
[Anterior–Posterior (AP), −3.10 mm; Medial–Lateral (ML),
±0.5 mm; and Dorsal-Ventral (DV), −4.25 mm, Fiber
tip: −4.10]. rAAV-EF1a-DIO-hChR2(H134R)-mCherry/rAAV-
EF1a-DIO-eNpHR3.0-mCherry was injected bilaterally for
optogenetic experiments [Anterior–Posterior (AP), −3.10 mm;
Medial–Lateral (ML), ±1.15 mm; and Dorsal-Ventral (DV),
−4.25 mm, Fiber tip: −4.06]. For bilateral viral injection in
the VTA, the syringe was angled 8◦ laterally to avoid the
central sinus. After the viral injection, the apparatus remained
in place for at least 10 min. Then, the fiber (200-micron inner
diameter, NA = 0.37), the DBS electrodes (Coated Platinum-
Iridium Wire, 76.2-micron inner diameter, Cat No. 777000,
A-M system, USA), and the in vivo LFP electrodes (PFA-
Coated Stainless Steel Wire, 75-micron, Cat No. 791000, A-M
system, USA) were slowly implanted into the VTA unilaterally or
bilaterally [Anterior–Posterior (AP), −3.10 mm; Medial–Lateral
(ML), ±0.5 mm; and Dorsal-Ventral (DV), −4.00 mm]. Then
the optical fiber, DBS electrodes, in vivo LFP electrodes,
and skull were fixed with dental cement. After the dental
cement was completely dried, the mice were removed from
the positioning instrument and placed on an electric blanket.
After the mice fully recovered, they were put back into the
feeding cage.

Fiber photometry recording

GCaMp6m expressed in VTA DA and GABA neurons
using DAT-ires-cre and Vgat-ires-cre mice through intra-VTA
injection of AAV2/9-hsyn-DIO-GCaMP6m. Following AAV-
DIO-GCaMP6m viral injection, an optical fiber (200 µm outer

diameter, 0.37 numerical aperture; Anilab) was placed in a
ceramic ferrule and inserted toward the VTA through the
craniotomy. Mice were individually housed for at least 2 weeks
to recover. Fluorescence signals were acquired with a fiber
photometry system equipped with a 488 nm excitation laser,
505–544 nm emission filter, and a photomultiplier tube (R3896,
Hamamatsu). The analog voltage signals were digitized at 100 Hz
and recorded by a Power 1401 digitizer and Spike2 software
(CED, Cambridge, UK). An optical fiber (RJPSF2, Thorlabs)
with an integrated rotary joint preventing fiber damage from the
animal movement was used to guide the light between the fiber
photometry system and the implanted optical fiber. The laser
power was adjusted at the tip of the optical fiber to the low level
of 20–40 µW, to minimize bleaching.

For the fiber photometry experiments, the analysis methods
were as follows. Photometry data were exported to MATLAB
R2020b mat files from Spike2 for further analysis. We segmented
the data based on behavioral events within individual trials.
The event time was recorded manually at every point of the
stimulation. We derived the values of fluorescence change
(∆F/F) by calculating (F − F0)/F0, where F0 is the baseline
fluorescence signal averaged over a 5 s-long control time
window. ∆F/F values were presented with average plots to
illustrate the signal changes trial by trial. To calculate the average
response and decrease the duration of ∆F/F values, we first
segmented the data based on the behavioral events and baseline
phase. Then we calculated the average calcium signal both in
baseline and event phases.

The evaluation of positive psychotic-like
behaviors in mice

Hyperlocomotion and stereotyped behaviors are thought to
evaluate positive psychotic symptoms in mice (Eichler et al.,
1980; Angermeyer and Matschinger, 2004; Morrens et al., 2006;
van den Buuse, 2010; Forrest et al., 2014; Schubart et al., 2014;
Compton et al., 2015; Svoboda et al., 2015; Kaufmann et al., 2018;
Ma and Guest, 2018; Dahlén et al., 2021).

Locomotion was obtained through the open field test.
Animals were placed in the center zone of a 40 × 40 × 40 cm
open field chamber in a room with dim light. A video camera
positioned directly above the chamber was used to record the
movement of each test mouse. An automated video-tracking
system was controlled by MATLAB R2018b. The total distance
traveled during the session was tracked and further analyzed.

Stereotyped behaviors were rated off-line by a trained
observer who was blind to the treatment. Criteria for scoring
the intensity of stereotyped behaviors mainly followed a previous
study (Sams-Dodd, 1996) with some slight modifications,
which are as follows. (0): Immobility, little or no movement.
(1): Normal activity and occasional forward movement. (2):
Activity accompanied by repeated exploration. (3): Continuous
forward exploration. (4): Repeatedly raising and shaking the
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head or spinning the body. (5): A quick shake of the head,
circling, or dorso-ventral movements of the head (usually while
standing still). The score assigned for each behavioral category
was determined as the highest level of stereotyped behaviors
consistently observed during the rating period, which time ratio
is over 50%.

During the open field test, mice were first injected
intraperitoneally with 0.3 mg/kg MK-801. Thirty minutes later,
local electrical stimulation was started at 60 µs, 130 Hz, and
100 µA for 1 min. The analysis indexes, hyperlocomotion, and
stereotyped behaviors of the mice were recorded for 1 min
before, during, and after electrical stimulation respectively.

Optogenetic light delivery and protocols

Vgat-ires-cre mice were used for the experiments. rAAV-
EF1a-DIO-hChR2(H134R)-mCherry and rAAV-EF1a-DIO-
eNpHR3.0-mCherry were injected into the VTA. Two optical
fibers were implanted above the VTA. After 3 weeks of virus
expression, the experiments were carried out. First, the mice
were allowed to adapt to the open field for 10 min. For mice
expressing eNpHR3.0, a 555-nm yellow light laser was delivered
continuously for 180 s. Light intensity was calculated to be
about 10 mW. The interval between the two stimulations
was 10–15 min. For mice expressing ChR2, first, we injected
0.3 mg/kg MK-801 and then placed the animal in the open
field environment. Twenty minutes later, we began to activate
the neurons with a 473-nm blue light laser delivered at 20 Hz
in 15 ms pulses for 180 s. Light intensity was calculated to be
about 10 mW. The interval between the two stimulations was
10–15 min.

DBS stimulation delivery and protocols

DBS stimulation: electrical current (60 µs, 100 µA, 130 Hz).
Electrical stimulator: STG4002, Germany.
In our study, the current polarity is bipolar stimulation.

There are two electrodes on each side of the VTA, which are
connected to the positive and negative poles of the stimulator
respectively. The metal electrode at 0.5 mm of the tip of the
electrode is exposed and the rest is covered by an insulating layer.
One electrode serves as the cathode while another serves as the
anode.

In vivo recording of LFPs

Mice were unilaterally implanted with a 75-µm stainless-
steel electrode (Cat No. 791000, A-M system, USA) in the
VTA (AP: −3.10 mm from Bregma, ML: ± 0.7 mm from the
midline, DV: −4.0 mm from meninx). They were anesthetized

with isoflurane for the implantation procedure (3% for induction
3%, 1.5% for maintenance) and allowed to recover for 1 week
after surgery. Recording signals (low-pass filter: 1–100 Hz) were
digitized by the Ephyslab System (Thinker Tech Nanjing Biotech
Co. Ltd.) at 30 kHz, and then resampled at 1 kHz for the LFP
analysis.

During the recording process, LFPs of the VTA neurons
were recorded under normal conditions as a baseline value.
MK-801 (0.3 mg/kg), which takes 30 min to exert its effects,
was intraperitoneally injected into the mice as a pharmacological
model of psychosis. The LFPs of the VTA in the last 5 min
of the 30 min post-administration period were recorded as the
pathogenic values under pathological conditions. Next, the VTA
was stimulated with a 60 µs wave width, 130 Hz, and 100 µA
current for 1 min. After the stimulation stopped, LFPs were
recorded for 5 min as the therapeutic value. Finally, MATLAB
R2020b was used for statistical analysis. Target oscillations
(gamma: 25–100 Hz, Delta: 1–4 Hz, Theta: 4–8 Hz, Alpha:
8–12 Hz, Beta: 12–25 Hz) were classified based on previous
studies.

The videos were recorded simultaneously with a camera
and the LFP data were analyzed using MATLAB R2018b. The
recorded LFPs were filtered by a 50 Hz notching filter to
remove the powerline artifact. The target oscillations (gamma:
25–100 Hz, Delta: 1–4 Hz, Theta: 4–8 Hz, Alpha: 8–12 Hz, Beta:
12–25 Hz) were divided according to previous studies. Raw data
were transformed by Spike2 software (CED, Cambridge, UK)
initially, then analyzed by using MATLAB R2018b. In order to
avoid current disturbance due to DBS stimulation, the headstage
of the LFP was removed from the mice as soon as the stimulation
was over. The normalized power was defined as the power value,
with every point divided by the mean of the baseline (before MK-
801) groups.

Immunohistochemistry

To verify the expression of adeno-associated viral functional
proteins, we performed immunohistochemistry of tyrosine
hydroxylase in the VTA. The mice were deeply anesthetized
through the abdominal cavity with pentobarbital (100 mg/kg),
and then saline was perfused through the heart. After most
blood was drained out, 4% paraformaldehyde (PFA) was used
for fixation. To better fix the brain tissue, the head was removed
and soaked in 4% PFA at room temperature overnight. The brain
was removed the next day, post-fixed overnight in 4% PFA at
4◦C, and transferred to 30% sucrose in 0.1 M PBS, pH 7.4 for
24–48 h. Coronal sections (20 µm) containing the VTA were
cut on a cryostat (Leica CM3050S). The slides were washed with
0.1 M PBS, pH 7.4, incubated in blocking buffer (0.3% Triton
X-100, 5% bovine serum albumin in 0.1 M PBS, pH 7.4) for
an hour, and then with primary antibodies (rabbit anti-tyrosine
hydroxylase antibody, 1:1,000; Invitrogen) in blocking buffer
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overnight at 4◦C. After washing three times with 0.1 M PBS,
pH 7.4, the sections were incubated with donkey anti-rabbit
IgG H&L (fluor-488 or fluor-594; 1:1,000; Abcam) secondary
antibody at room temperature for 2 h. DAPI (4’,6-diamidine-
2-phenindoles) staining was used to identify the cell bodies.
Finally, 10% glycerin was used to seal the slides. Fluorescent
images were collected using a confocal microscope (Zeiss 800).

Quantification and statistical analysis

Data analysis

The data from brain sections were processed with ImageJ
software. All statistical analyses were performed with GraphPad
Prism 7.0 or MATLAB R2018b. The type of statistical analysis in
our study is one-way ANOVA. Data were considered statistically
significant when p < 0.05, “ns” means no significance.
Asterisks denote statistical significance (*p < 0.05; **p < 0.01;
***p < 0.001; and ****p < 0.0001). No statistical methods
were used to predetermine the sample size. Unless otherwise
indicated, values are reported as the mean ± SEM.

The list of key resources is detailed in Table 1.

Results

DBS of the VTA alleviates
hyperlocomotion and stereotyped
behaviors caused by MK-801 injection in
mice

Hyperlocomotion and stereotyped behaviors, which are
recognized as positive symptoms in animal models of psychosis,
were chosen as the measurement indicators. Mice were first
injected intraperitoneally with 0.3 mg/kg MK-801. Thirty
minutes later, local electrical stimulation was started at 60 µs,

130 Hz, and 100 µA for 1 min (Figures 1A,B). The behavioral
results showed that compared to the condition before and after
the stimulation, hyperlocomotion and stereotyped behaviors of
the mice recorded in 1 min were significantly reduced during
electrical stimulation (Figure 1C). This part of the work showed
that local electrical stimulation of the VTA can alleviate MK-801-
induced positive psychotic-like behaviors in mice, which lays a
foundation for the clinical application of this treatment in the
future.

DBS of the VTA reverses the local LFPs
caused by MK-801 injection

To observe changes in the VTA before and after electrical
stimulation, we first used Local Field Potential (LFP) recordings
to record changes in VTA population neuronal activity. Bilateral
symmetrical DBS and LFP electrodes were implanted into the
VTA, and the mice were assessed after 2 weeks of recovery
(Figures 2A,B).

Target oscillations (gamma: 25–100 Hz, Delta: 1–4 Hz,
Theta: 4–8 Hz, Alpha: 8–12 Hz, Beta: 12–25 Hz) were classified
based on previous studies. Statistical results showed significant
differences in theta- and alpha-frequency waves before and
after electrical stimulation of the VTA (Figures 2C–E). Theta-
and alpha-frequency waves have been extensively studied in
the context of motor control, and the present study further
illustrated the important role of the VTA in motor gating. These
results indicated that local electrical stimulation of the VTA can
reverse the effects of MK-801 on the electrical activity of VTA
neurons.

DBS of the VTA activates VTA DA and
GABA neurons

To verify the effects of DBS on VTA neurons, we used
in vivo fiber photometry to observe the Ca2+ activity of VTA

TABLE 1 Key resources table.

Reagent or resource Source Identifier

Antibodies
Rabbit polyclonal anti-TH Invitrogen Cat# p21962
Bacterial and Virus Strains
AAV2/9-hsyn-DIO-GCaMP6m Taitool Bioscience N/A
AAV2/9-EF1a-DIO-mCherry Taitool Bioscience N/A
rAAV-EF1a-DIO-hChR2(H134R)-mCherry BrainVTA N/A
rAAV-EF1a-DIO-eNpHR3.0-mCherry BrainVTA N/A
Chemicals, Peptides, and Recombinant Proteins
(+)-MK 801 (Dizocilpine) TOCRIS Cat. No. 0924
Experimental Models: Organisms/Strains
DAT-ires-cre Jackson Laboratory Stock No. 006660
Vgat-ires-cre Jackson Laboratory Stock No. 028862
C57BL/6 mice Shanghai Model Organisms N/A
Software and Algorithms
MATLAB R2018b MathWorks https://www.mathworks.com/
GraphPad Prism 7 GraphPad Software https://www.graphpad.com/
FIJI (ImageJ) NIH https://imagej.nih.gov/ij/
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FIGURE 1

DBS of the VTA alleviates hyperlocomotion and stereotyped behaviors in mice. (A) Schematic of the DBS equipment and the DBS electrode
location. (B) White dashed lines indicate the location of the DBS electrode above the VTA. Scale bar, 300 µm. TH, tyrosine hydroxylase. (C)
The locomotor activity was quantified in an open field, in the presence or absence of DBS after intraperitoneal injection of MK-801. Deep brain
stimulation of the VTA could decrease the hyperlocomotion and stereotyped behaviors caused by the MK-801 injection. *p < 0.05, **p < 0.01,
****p < 0.0001, ns: no significance. One-way ANOVA. All error bars represent ±SEM. N = 9 mice.

neurons in real-time. Because the VTA contains 60%–65%
DA neurons, 30%–35% GABA neurons, and 2%–3% glutamate
(Glu) neurons, we selected DA and GABA neurons for
further study.

We labeled GCaMp6m in VTA DA (Figures 3A,B) and
GABA (Figures 4A,B) neurons through intra-VTA injection of
AAV2/9-hsyn-DIO-GCaMP6m in DAT-ires-cre and Vgat-ires-
cre mice, respectively. MK-801 was intraperitoneally injected
into mice as a pharmacological model of psychosis. The
fiber recording results showed that the VTA GABA and DA
neurons were rapidly activated when the electricity was turned
on. Thus, these neurons showed continuous activation during
electrical stimulation (Figures 3C and 4C). These findings

further describe the effects of DBS on VTA local neurons from
another perspective.

Bidirectional regulation of VTA GABA
neurons, rather than DA neurons,
modulates positive psychotic-like
behaviors

According to the behavioral and fiber recording results
described above, activation of VTA neurons mediated by
DBS plays a crucial role in the regulation of hyperlocomotion
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FIGURE 2

DBS of the VTA reverses the local LFPs caused by MK-801 injection. (A) Left: schematic of the DBS equipment and the field potential recording
system. Right: schematic of in vivo electrophysiological electrode and DBS electrode implantation. (B) Left: actual view of the two electrodes
on the head of a mouse. Right: white dashed lines indicate the location of the DBS electrode and electrophysiological electrode above the
VTA. Scale bar, 300 µm. TH, tyrosine hydroxylase. (C) Example LFP trace of the mouse before MK-801 injection (i.p.), after MK-801 injection,
and after DBS stimulation. (D,E) Quantification of average normalized Delta, Theta, Alpha, Beta, and Gamma band power in the VTA. Theta and
alpha oscillation showed significant differences between the MK-801 injection and DBS stimulation. For all figures: one-way ANOVA with Tukey’s
multiple comparisons test, *p < 0.05; **p < 0.01; ns, no significance. N = 8 mice. All error bars represent ±SEM.

Frontiers in Human Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2022.945912
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#articles
https://www.frontiersin.org


Lu et al. 10.3389/fnhum.2022.945912

VTA

AAV2/9-hsyn-DIO-GCaMP6(m)

Deep brain stimulation
PMT

Laser

preAmP ACQ

stimulator

Fiber  recording

MK-801 Injection DBS

30 min

A

B

C

0 200 400 600 800
-20
-10
0
10
20
30

Time (s) -10

0

10

20

 F
/F

 (%
)

DBSPre After

 F
/F

 (%
) *  *

*

DAPI    TH   GCaMP6

DBS electrode  
optic fiber

VTA

DAT-ires-cre

DAT-ires-cre

FIGURE 3

DBS of the VTA activates VTA DA neurons. (A) Left: schematic of the DBS equipment and the fiber photometry system. Right: schematic of viral
injection, fiber implantation, and DBS electrode implantation in DAT-ires-cre mice. (B) Left: actual view of the electrode and the fiber on the
head of a DAT-ires-cre mouse. Right: successful expression of GCaMP6m in VTA DA neurons. White dashed lines indicate the location of the
DBS electrode and fiber above the VTA. The image shows GCaMP6m+ cell bodies (green) and TH+ neurons (red) in DAT-ires-cre mice. Scale bar,
300 µm. TH, tyrosine hydroxylase. (C) GCaMP6m signals from VTA DA neurons show that DBS of the VTA activates VTA DA neurons. *p < 0.05,
one-way ANOVA. All error bars represent ±SEM. n = 5 mice.
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FIGURE 4

DBS of the VTA activates VTA GABA neurons. (A) Left: schematic of the DBS equipment and the fiber photometry system. Right: schematic of
viral injection, fiber implantation, and DBS electrode implantation in Vgat-ires-cre mice. (B) Left: actual view of the electrode and the fiber on the
head of a Vgat-ires-cre mouse. Right: successful expression of GCaMP6m in VTA GABA neurons. White dashed lines indicate the location of the
DBS electrode and fiber above the VTA. The image shows GCaMP6m+ cell bodies (green) and TH+ neurons (red) in Vgat-ires-cre mice. Scale
bar, 300 µm. TH, tyrosine hydroxylase. (C) GCaMP6m signals from VTA GABA neurons show that DBS of the VTA activates VTA GABA neurons
immediately and they remain active for a period of time after the stimulus has stopped. *p < 0.05, **p < 0.01; ns, no significance. one-way
ANOVA. All error bars represent ±SEM. n = 5 mice.
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FIGURE 5

Optogenetic manipulation of VTA DA neurons. (A) Schematic of virus injection and fiber implantation above the VTA in DAT-ires-cre mice. (B)
Successful expression of eNpHR3.0-mCherry in VTA DA neurons and optical fiber implantation above the VTA. The image shows eNpHR + cell
bodies (red) and TH+ neurons (green) in DAT-ires-cre mice. Scale bar, 20 µm. TH, tyrosine hydroxylase. Right: quantification of expression of
TH in eNpHR-positive neurons in the VTA of DAT-ires-cre mice (n = 3 sections per animal from five animals). (C) Left: the movement speed in
response to 180 s photo inhibition of VTA DA neurons in DAT-ires-cre mice; middle: quantification of movement speed before, during, and after
VTA DA photoinhibition. *p < 0.05, **p < 0. 01, ***p < 0.001; ns, no significance. one-way ANOVA. All error bars represent ±SEM. n = 5 mice;
right: quantification of the stereotyped behavior scores before, during, and after VTA DA photoinhibition. **p < 0.01, ∗∗∗p < 0.001, one-way
ANOVA. All error bars represent ±SEM. n = 5 mice. (D) Schematic of viral injection and fiber implantation above the VTA in DAT-ires-cre mice.
(E) Successful expression of hChR2 (H134R)-mCherry in VTA DA neurons and optical fiber implantation above the VTA. The image shows hChR2
+ cell bodies (red) and TH+ neurons (green) in DAT-ires-cre mice. Scale bar, 20 µm. TH, tyrosine hydroxylase. Right: quantification (pie chart) of
expression of TH in hChR2-positive neurons in the VTA of DAT-ires-cre mice (n = 3 sections per animal from five animals). (F) Left: the movement
speed in response to 10 mW, 20 Hz, 180 s photoactivation of VTA DA neurons in DAT-ires-cre mice after intraperitoneal injection of MK-801.
Middle: quantification of the movement speed before, during, and after VTA DA photoactivation. *p < 0.05, one-way ANOVA. All error bars
represent ± SEM. n = 5 mice; right: quantification of the stereotyped behavior scores before, during, and after VTA DA photoactivation. One-way
ANOVA. All error bars represent ±SEM, n = 5 mice.
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FIGURE 6

Optogenetic manipulation of VTA GABA neurons. (A) Schematic of viral injection and fiber implantation above the VTA in Vgat-ires-
cre mice. (B) Successful expression of eNpHR3.0-mCherry in VTA GABA neurons and optical fiber implantation above the VTA. The
image shows eNpHR + cell bodies (red) and TH+ neurons (green) in Vgat-ires-cre mice. Scale bar, 20 µm. TH, tyrosine hydroxylase.
Right: quantification (the pie chart) of expression of TH in eNpHR-positive neurons in the VTA of Vgat-ires-cre mice (n = 3 sections
per animal from five animals). (C) Left: the movement speed in response to 180 s photoinhibition of VTA GABA neurons in Vgat-ires-
cre mice; middle: quantification of movement speed before, during, and after VTA GABA photoinhibition. ****p < 0.0001, one-way

(Continued )
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FIGURE 6

Continued
ANOVA. All error bars represent ±SEM. n = 12 mice; right:
quantification of the stereotyped behavior scores before, during,
and after VTA GABA photoinhibition. *p < 0.05, ****p < 0.0001,
one-way ANOVA. All error bars represent ±SEM. n = 12 mice.
(D) Schematic of viral injection and fiber implantation above the
VTA in Vgat-ires-cre mice. (E) Successful expression of hChR2-
mCherry in VTA GABA neurons and optical fiber implantation
above the VTA. The image shows hChR2 + cell bodies (red)
and TH+ neurons (green) in Vgat-ires-cre mice. Scale bar,
20 µm. TH, tyrosine hydroxylase. Right: quantification (pie
chart) of expression of TH in hChR2-positive neurons in the
VTA of Vgat-ires-cre mice (n = 3 sections per animal from
five animals). (F) Left: the movement speed in response to 10 mW,
20 Hz 180 s photoactivation of VTA GABA neurons in Vgat-
ires-cre mice after intraperitoneal injection of MK-801. Middle:
quantification of the movement speed before, during, and after
VTA GABA photoactivation. *p < 0.05, one-way ANOVA. All error
bars represent ±SEM. n = 5 mice; right: quantification of the
stereotyped behavior scores before, during, and after VTA GABA
photoactivation. **p < 0.01, one-way ANOVA. All error bars
represent ±SEM, n = 5 mice.

and stereotyped behaviors in mice. However, the VTA
primarily contains two types of neurons: DA and GABA.
The type of neuron that plays a major role in this process
remains to be explored. To verify the behavioral functions of
DA and GABA neurons, we used optogenetic technology
to analyze their respective roles. First, we injected the
cre-dependent virus, rAAV-EF1a-DIO-eNpHR3.0-mCherry,
into the VTA and implanted a fiber above the VTA of
DAT-ires-cre mice (Figures 5A,B). After 3 weeks of
expression, optogenetic inhibition and OFT behavioral tests
were performed. The results showed that the optogenetic
inhibition of VTA DA neurons significantly reduced
locomotion in mice (Figure 5C). Similarly, we injected
the cre-dependent virus rAAV-EF1a-DIO-hChR2(H134R)-
mCherry into the VTA and implanted a fiber above the
VTA of DAT-ires-cre mice (Figures 5D,E). After 3 weeks
of expression, the mice were injected intraperitoneally
with MK-801 (0.3 mg/kg), and 30 min later, optogenetic
activation and OFT behavioral tests were conducted. The
results showed that optogenetic activation of VTA DA
neurons did not significantly affect hyperlocomotion and
stereotyped behaviors in mice caused by MK-801 injection
(Figure 5F).

Next, we performed the same optogenetic procedure in
Vgat-ires-cre mice (Figures 6A,B,D,E). The results showed that
optogenetic inhibition of VTA GABA neurons significantly
increased hyperlocomotion and stereotyped behaviors in mice,
while optogenetic activation of the VTA GABA neurons
could effectively reverse the hyperlocomotion and stereotyped
behaviors induced by MK-801 (Figures 6C,F). These results
indicated that VTA GABA neurons, rather than DA neurons,
play a crucial role in the modulation of positive psychotic-like
behaviors. Combined with the previous behavioral results

and recording results of DBS in the VTA, we concluded
that activation of VTA GABA neurons is the DBS target
for alleviating positive psychotic-like behaviors caused by
MK-801.

Discussion

By utilizing DBS, local field potential recording, and in vivo
fiber recording, we found that electrical stimulation of the VTA
can relieve positive psychotic-like behaviors caused by MK-801
injection. Fiber recording and optogenetic results showed that
the activation of VTA GABA neurons, rather than DA neurons,
is involved in the cessation of psychotic behaviors mediated by
DBS in the VTA.

Local electrical stimulation of the VTA can reduce
hyperlocomotion and stereotyped behaviors in mice (Figure 1),
suggesting that the VTA can be used as a candidate brain
region for the treatment of positive symptoms of psychosis.
Recently, researchers used 10 electrodes to map the brain activity
of patients with major depression. They implanted a nerve
stimulation device that triggered tiny electrical pulses in the
ventral striatum region when high activity levels were detected
in the amygdala. After a period of treatment, the depressive
symptoms were effectively controlled (Scangos et al., 2021). Such
a strategy can also be imitated in studies on DBS treatment for
psychotic symptoms. According to clinical imaging data, the
activity of the VTA and its connectivity to other areas in patients
with psychiatric disorders are significantly lower than that in
healthy controls (Lisman et al., 2010; Hadley et al., 2014; Rausch
et al., 2014; Rice et al., 2016; Yamashita et al., 2016; Giordano
et al., 2018; Sotoyama et al., 2021).

The VTA is believed to be involved in reward, motivation,
addiction, sleep, and manic behavior (D’Ardenne et al., 2008;
Cohen et al., 2012; Lammel et al., 2012; Morales and Margolis,
2017). In recent years, VTA GABA neurons have been
increasingly studied in addition to VTA DA neurons (Lee et al.,
2001; Brown et al., 2012; Cohen et al., 2012; Tan et al., 2012;
van Zessen et al., 2012; Bocklisch et al., 2013; Yoo et al., 2016;
Yu et al., 2021; Lowes et al., 2021). Yu et al. (2021) found that
dysfunction of the VTA GABA neurons can lead to manic-like
behaviors in mice, while activation of these neurons can induce
sedation in mice, which is partly consistent with our conclusion.
Therefore, it is reasonable to speculate that DBS in the VTA can
also play a therapeutic role in manic symptoms in patients with
manic or bipolar disorders by activating GABA neurons in the
VTA. In addition, electrical stimulation of the VTA activates
VTA DA neurons (Figure 3), which can project and release
dopamine to other brain regions, such as the nucleus accumbens
(NAc) and the prefrontal cortex (PFC), and may also relieve
depression through this mechanism, since activation of VTA
DA neurons has previously been reported to have antidepressant
effects (Tye et al., 2013).
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Many theories have been proposed to explain the mechanism
of DBS’s therapeutic effects, such as neuronal activity inhibition
theory, synaptic inhibition theory, decoupling theory, and neural
network functional reorganization theory (Montgomery and
Gale, 2008; Miocinovic et al., 2013; Herrington et al., 2016).
In our study, although electrical stimulation of the VTA
could activate both VTA GABA and DA neurons (Figures 3
and 4), only the activation of the VTA GABA neurons was
found to underlie the behavioral effects (Figures 5 and 6).
Anatomically, VTA GABA neurons not only interact with
local DA neurons, but also have long and dense projections
to other brain regions, such as the lateral hypothalamus,
NAc, and ventral pallidum (Brown et al., 2012; Taylor
et al., 2014; Breton et al., 2019). We suspect that the long
projections initiated from the VTA GABA neurons facilitated
the antipsychotic effects caused by electrical stimulation of the
VTA, which is like a master controller of the brain and body
motor activity.

In conclusion, electrical stimulation of the VTA could
activate VTA GABA neurons to suppress the positive symptoms
of psychosis. This preclinical study not only provides a new
methodological perspective on the mechanism by which DBS
exerts its therapeutic effects but also proposes a potentially novel
clinical treatment for psychotic diseases by electrical stimulation
of the VTA.
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