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Myosin light chain kinase (MLCK) induces contraction of the perijunctional apical
actomyosin ring in response to phosphorylation of the myosin light chain. Abnormal
expression of MLCK has been observed in respiratory diseases, pancreatitis,
cardiovascular diseases, cancer, and inflammatory bowel disease. The signaling
pathways involved in MLCK activation and triggering of endothelial barrier dysfunction
are discussed in this review. The pharmacological effects of regulating MLCK expression
by inhibitors such as ML-9, ML-7, microbial products, naturally occurring products, and
microRNAs are also discussed. The influence of MLCK in inflammatory diseases starts
with endothelial barrier dysfunction. The effectiveness of anti-MLCK treatment may
depend on alleviation of that primary pathological mechanism. This review summarizes
evidence for the potential benefits of anti-MLCK agents in the treatment of inflammatory
disease and the importance of avoiding treatment-related side effects, as MLCK is
widely expressed in many different tissues.
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In mammals, myosin light chain kinase (MLCK) is encoded by the mylk1 and mylk2 genes (Herring
et al., 2006). mylk2 encodes an MLCK isoform that is exclusively expressed in skeletal muscle cells
(Herring et al., 2006; Wang L. et al., 2016). Because of the lack of data on mylk2 gene coding
products, we mainly discuss mylk1 gene products, which include long chain MLCK (220 kDa),
short chain MLCK (130 kDa), and the non-catalytic carboxy-terminal (17 kDa) protein, telokin
(Chen et al., 2013; Chen C. et al., 2014; An et al., 2015). mylk1 gene coding products are expressed
in diverse cell types and tissues including muscle, platelets, and secretory and brain cells (Jin
et al., 2002). Numerous cell activities, such as contraction, adhesion, cell migration, and epithelial
barrier formation occur in a myosin regulatory light chain (MLC) phosphorylation dependent or
independent manner (Chen et al., 2013; Chen C. et al., 2014; Kim and Helfman, 2016). Abnormal
expression of MLCK has been observed in many inflammatory diseases including pancreatitis (Shi
et al., 2014), respiratory diseases (Zhou et al., 2015), cardiovascular diseases (Cheng et al., 2015),
cancer (Zhou et al., 2014), and inflammatory bowel disease (IBD) (Yi et al., 2014). The involvement
of MLCK and the MLCK signaling pathway that underlie representative inflammatory diseases is
discussed. Some diseases in which MLCK is involved are listed in Table 1.

MLCK IN RESPIRATORY DISEASES, ATHEROSCLEROSIS, AND
PANCREATITIS

In inflammatory lung disorders, damage to lung endothelial cell barrier integrity alters vascular
permeability, and alveolar flooding often results (Mao et al., 2015). Abnormal expression of
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TABLE 1 | Role of myosin light chain kinase (MLCK) in selected diseases.

Diseases MLCK changes MLCK isoform Representative References

Atherosclerosis Increased expression nmMLCK Zhu et al., 2013

Hypertension Increased activity smMLCK Cho et al., 2011

Heart injury/Heart failure Increased activity Cardiac MLCK Lin et al., 2012; Chang et al., 2013

Glaucoma Increased activity smMLCK Prayitnaningsih et al., 2016

Asthma Increased expression/Gene variant nmMLCK Zhou et al., 2015

Lung inflammation/Lung injury Increased expression /Gene variant nmMLCK Mirzapoiazova et al., 2009; Wu et al., 2011

Brain injury /Kidney injury Increased expression nmMLCK Xu et al., 2015; Droylefaix et al., 2013

Intestinal inflammation
/IBD/Barrier dysfunction

Increased expression nmMLCK Du et al., 2016; Jin and Blikslager, 2016; Xiong et al., 2016

Intestinal motility disorder Increased/Decreased expression smMLCK Chen et al., 2015

Pancreatitis Increased nmMLCK Shi et al., 2014

Prostate Cancer – nmMLCK Spans et al., 2014

Breast cancer – nmMLCK Kim and Helfman, 2016

Pancreatic cancer – nmMLCK Kaneko et al., 2002

Non-small cell lung cancer Increased nmMLCK Minamiya et al., 2005

Cervical cancer – nmMLCK Shen et al., 2002

Gastric cancer – nmMLCK Chen et al., 2016

nmMLCK, non-muscle MLCK; smMLCK, smooth muscle MLCK.

MLCK occurs in lung injury, and the MLCK inhibitor ML-7 or
deletion of the MLCK gene can attenuate lung injury (Wang
T. et al., 2016). MLCK has similar activity in asthmatic and in
lung inflammation, and variation of the MYLK gene is strongly
associated with acute lung injury and asthma susceptibility
(Wang et al., 2014, 2015; Wang T. et al., 2016).

MLCK-induced endothelial barrier dysfunction is also
involved in pancreatitis and atherosclerosis (Cheng et al.,
2015; Wang et al., 2014; Wang T. et al., 2016). Severe acute
pancreatitis is associated with high morbidity and mortality. Its
pathogenesis is not completely understood (Zerem, 2014), but
MLCK expression is significantly increased in rat models of acute
pancreatitis (Shi et al., 2014), and elevation of tumor necrosis
factor (TNF)-α in severe acute pancreatitis has been shown
to mediate MLCK-dependent regulation of the cytoskeleton,
leading to destruction of the endothelial barrier function (Shi
et al., 2014; Yu et al., 2016). The initiation and development
of atherosclerosis often leads to progressive vascular injury,
which is accompanied by endothelial dysfunction (Phinikaridou
et al., 2015). The involvement of MLCK in the natural history
of atherosclerosis has been confirmed by alleviation of vascular
injury and atherosclerosis by ML-7, an MLCK inhibitor (Cheng
et al., 2015).

MLCK IN CANCER DEVELOPMENT

Abnormal expression of MLCK has been observed in pancreatic,
lung, and prostate cancer cell lines (Tohtong et al., 2003;
Nagaraj et al., 2010; Chen et al., 2011). Rapid, dynamic
changes of the cytoskeleton are needed for invasion and
metastasis of cancer cells. MLCK-dependent phosphorylation
of cytoskeletal myosin II increases the metastatic potential of
tumor cells, and MLCK-dependent cytoskeleton rearrangement
modulates vascular endothelial barrier functions associated with

angiogenesis, which is a critical step in cancer development
(Dudek and Garcia, 2001). On the other hand, the metastatic
potential of breast cancer cells is increased by the loss of
MLCK (Kim and Helfman, 2016). Changes in cell migration and
adhesion are also characteristic early steps in inflammation but
there are few reports of MLCK regulation of inflammatory cell
migration.

MCLK IN IBD

Inflammatory bowel disease, including ulcerative colitis and
Crohn’s disease, is characterized by chronic gastrointestinal
inflammation, and is associated with significant patient
impairment and high treatment costs (Rai et al., 2015). Although
the pathogenesis of IBD remains obscure, there is evidence that
intestinal barrier dysfunction is the primary driver (Hindryckx
and Laukens, 2012; Pastorelli et al., 2015). Tight junction
dysfunction leads to damage of the intestinal barrier, which
permits passage of diverse pathogens (Jin and Blikslager, 2016).
Tight junctions consist of transmembrane proteins such as
occludins and claudins and peripheral membrane proteins,
i.e., zonula occludens proteins (Van Itallie and Anderson,
2014). Tight junctions are located in the apicolateral region of
endothelial cells and are bound to a perijunctional actomyosin
ring. MLCK-induced phosphorylation of perijunctional
actomyosin mediates tight junction loss, which can trigger
the initiation and development of IBD. The expression and
activity of MLCK is increased in human IBD and is associated
with histological evidence of disease activity (Blair et al.,
2006). Abnormal elevation of MLCK has also been observed
in experimental colitis induced by gavage administration
of dextran sulfate sodium or intracolonic administration of
trinitrobenzenesulfonic acid (Su et al., 2013; Xiong et al.,
2016).
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MLCK Activation in IBD
TNF-α is a proinflammatory cytokine that causes intestinal
tight junction barrier dysfunction, which is central to IBD
pathogenesis (Saleh et al., 2016). In IBD, TNF receptor 2 (R2)-
mediated signaling contributes to increased epithelial MLCK
expression (Su et al., 2013; Suzuki et al., 2014). In a recent
report by Al-Sadi et al. (2013), tight junction permeability
of Caco-2 cell monolayers, in an in vitro model of intestinal
epithelium, was increased by TNF-α activation of the ERK1/2
signaling pathway. Activation of the ERK1/2 pathway induced
phosphorylation of ETS domain-containing transcription factor
Elk-1. Activated Elk-1 then moved into the nucleus and bound
to the MLCK promoter, finally resulting in epithelial MLCK
expression. LIGHT (lymphotoxin-like inducible protein that
competes with glycoprotein D for herpes virus entry on T cells) is
a TNF core family member that is involved in the pathogenesis
of human IBD (Krause et al., 2014), and in cultured epithelia,
MLCK inhibition alleviated LIGHT-induced barrier loss, which
suggested that LIGHT-induced epithelial barrier loss may depend
on MLCK activation (Schwarz et al., 2007).

Increases in tight junction permeability through IL-1β–
mediated increases in MLCK expression has been demonstrated
in inflammatory diseases (Beard et al., 2014). In mesenchymal
stem cell migration, IL-1β was shown to cause an increase
in epithelial MLCK expression through activation of the
PKCd/NF-κB pathway; it also stimulated MLCK activity via the
PKCa/MEK/ERK signaling pathway (Lin et al., 2014).

IFN-γ has also been associated with activation of MLCK by
promoting adhesion and internalization of commensal bacteria
by epithelial MLCK-activated brush border fanning (Wu et al.,
2014). However, as with LIGHT-mediated regulation of MLCK,
further study of INF-γ-mediated regulation of MLCK is needed
to determine if it is direct. Signaling pathways associated
with regulation of MLCK are shown in Supplementary
Figure S1.

MLCK-Associated Signaling Pathways
That Can Trigger IBD
In IBD, MLCK-induced epithelial barrier dysfunction is triggered
by two signaling pathways. Firstly, in the gut, the epithelium
forms a barrier against pathogens in the lumen. Abnormal
expression of MLCK in inflammatory gastrointestinal diseases
leads to phosphorylation of myosin II regulatory light chain
(MLC), contraction of the actomyosin ring and increased
intestinal permeability (Yi et al., 2015). Thus, MLCK-dependent
MLC phosphorylation is an essential mechanism underlying
MLCK-induced epithelial barrier dysfunction. A second
mechanism involves MLCK-stimulated upregulation of claudin-
2 and occludin endocytosis (Su et al., 2013; Jin and Blikslager,
2016). Increased expression of claudin-2 has been associated with
intestinal epithelial barrier dysfunction (Hu et al., 2015; Krishnan
et al., 2015), as well as decreased absorption, leak flux diarrhea,
and inflammatory responses (Hu et al., 2015). Down-regulation
of occludin in IBD decreases gastrointestinal permeability, which
may disrupt the integrity of the barrier against a variety of
pathogens (Yin et al., 2015).

Potential Pathological Role of Smooth
Muscle MLCK in IBD
Smooth muscle (sm) MLCK is transcribed from the same
gene as epithelial MLCK. It is involved in the regulation of
sm contraction, and variation of smMLCK content leads to
motility disorders (Chen et al., 2015). The motility disorders
secondarily cause abnormal growth of intestinal flora, which
in turn aggravates the pathogenesis of intestinal inflammation
(Chen D. et al., 2014; Welch et al., 2014). Whether there is a direct
effect of smMLCK on inflammatory diseases needs further study.

MLCK INHIBITORS WITH POTENTIAL
PHARMACEUTICAL USE

Myosin light chain kinase has catalytic, inhibitory, and
calmodulin-binding domains (Chang et al., 2016). The activity of
the catalytic domain can be disclosed by partial tryptic digestion,
and can be blocked by MLCK inhibitors (Luck and Choh, 2011;
Chang et al., 2016). MLCK inhibitors act by competitive binding
at or near the ATP-binding site on the MLCK molecule (Saitoh
et al., 1987; Luck and Choh, 2011). MLCK has been extensively
studied in sm, but is widely distributed in animal cells and tissues.
Consequently, determining the activities of MLCK in other
tissues is critical; MLCK inhibitors are good tools for this. MLCK
inhibitors also have pharmacological potential as vasodilators and
anti-inflammatory agents. Some MLCK inhibitors, their origins
and evidence of pharmacological effect are listed in Table 2.

ML-9 and ML-7
ML-9 [1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-
diazepine] is a classical MLCK inhibitor (IC50 = 3.8 µM), which
was found to inhibit both Ca2+-calmodulin–dependent and
-independent smMLCK (Saitoh et al., 1987; Shi et al., 2007). Both
ML-9 and its synthetic derivatives are good selective inhibitors
of smMLCK (Ito et al., 2004). ML-9 has been shown to reduce
intraocular pressure in rabbit eyes (Honjo et al., 2002).

Another MLCK inhibitor, ML-7 [1-(5-iodonaphthalene-1-
sulphonyl) 1H-hexahydro 1, 4-diazepine hydrochloride], is a
membrane-permeable agent (Shi et al., 2007). Both ML-9 and
ML-7 are naphthalene sulfonamide derivatives (Shi et al., 2007).
ML-7 inhibition is more than 30-fold more potent than that of
ML-9 (IC50= 300 nM) (Shi et al., 2007). However, compared with
ML-9, specific MLCK inhibition of smMLCK and other MLCK
isoforms may be less potent (Saitoh et al., 1987). Beneficial effects
of ML-7 has been shown in many conditions including heart
ischemia/reperfusion injury (Lin et al., 2012; Zhang et al., 2015),
IBD (Cheng et al., 2015), and atherosclerosis (Cheng et al., 2015).

Microbial Product Inhibitors of MLCK
K-252a, a microbial alkaloid purified from microbial cultures,
is a non-selective inhibitor of MLCK (Nakanishi et al., 1992)
as well as other protein kinases including protein kinase C and
some cyclic nucleotide-dependent protein kinases (Nakanishi
et al., 1992). KT592 is a derivative of K-252a with increased
selectivity. Wortmannin, isolated and purified from the fungal
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TABLE 2 | Myosin light chain kinase inhibitors with potential pharmaceutical use.

Name Source Inhibited MLCK isoform Disease or condition

ML-9 Synthetic nmMLCK, smMLCK High blood pressure (Honjo et al., 2002).

ML-7 Synthetic nmMLCK, smMLCK Heart ischemia/reperfusion injury (Lin et al., 2012; Zhang et al., 2015),
IBD (Cheng et al., 2015), and atherosclerosis (Cheng et al., 2015).

K-252a Microbial culture nmMLCK, smMLCK –

KT592 Microbial culture nmMLCK, smMLCK –

Wortmannin Microbial culture NmMLCK, smMLCK –

Quercetin Natural source SmMLCK Gut hyper motility (Zhang et al., 2006)

Genistin Natural source smMLCK Intestinal hyper motility (Xiong et al., 2013)

Wogonin Natural source nmMLCK Diseases associated with the development of both inflammatory and
tumor (Huang et al., 2015)

Capsaicin Natural source smMLCK, nmMLCK Intestinal motility disorder (Chen et al., 2015)

Salvianolic acid B Natural source NmMLCK IBD (Xiong et al., 2016)

Lithium Natural source smMLCK Intestinal hyper motility (Tang et al., 2010)

The diseases or conditions in which MLCK inhibition and/or MLCK inhibitors have shown a therapeutic effect are discussed in “Diseases and condition.” nmMLCK,
non-muscle MLCK; smMLCK, smooth muscle MLCK.

strain Talaromyces wortmannin KY12420, is another microbial
product inhibitor of MLCK (Nakanishi et al., 1992), It has been
shown to decrease secretory responses in rat adrenal medullary
cells through inhibition of MLCK (Warashina, 2000) and to have
antifungal, hemorrhagic, and anti-inflammatory activity that may
not be related to inhibition of MLCK (Nakanishi et al., 1992).
The potential pharmacological effects of these inhibitors warrant
further study.

Naturally Occurring Potential Inhibitors
of MLCK
As shown in Table 2, some naturally occurring bioactive
constituents may be inhibitors of MLCK. In an in vitro system
including purified myosin and MLCK, quercetin inhibited
myosin phosphorylation. The inhibition can be blocked by the
MLCK inhibitor ML-7, indicating that quercetin may be a direct
MLCK inhibitor (Zhang et al., 2006). In an animal model
of gut motility disorder, capsaicin administration significantly
decreased MLCK expression, which also implicates MLCK as
a target for inhibition by capsaicin (Chen et al., 2015). The
inhibition in response to salvianolic acid B may be indirect;
other signaling is involved. Salvianolic acid B decreases MLCK
expression by upregulation of microRNA1 (Xiong et al., 2016).
Upregulation of microRNA-374a, microRNA-155, miR-520c-
3p, and miR-1290 has also been found to reduce MLCK
expression in various tissues (Adyshev et al., 2013; Weber
et al., 2014). Naturally occurring bioactive compounds that
act indirectly through microRNAs are an alternative inhibition
pathway. However, disease-specific pharmacological experiments
are needed to confirm the effects of potential naturally occurring
inhibitors of MLCK.

SUMMARY

This review summarizes the evidence for a role of MLCK in
inflammatory diseases, especially IBD. Abnormal expression
of MLCK is involved in diverse pathological events, mainly

by causing cytoskeletal changes that disrupt epithelial
barrier function. The effect of anti-MLCK agents in specific
inflammatory diseases depends on the extent to which
endothelial function is involved. Prevention of treatment-
related side effects is a key consideration because MLCK is
abundantly expressed in many tissues. Consideration of two
aspects of selectivity helps to anticipate and prevent side effects
of MLCK inhibitors. First is the selective inhibition of MLCK
and other protein kinases such as protein kinase C and cyclic
nucleotide-dependent protein kinase; the other is selective
inhibition of the different MLCK isoforms such as smMLCK and
nmMLCK. Potential anti-MLCK pharmaceutical agents offer a
novel insight into the treatment of inflammatory diseases that
differs from traditional anti-inflammatory therapy.
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