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Metastable microstates in electro- and magnetoencephalographic (EEG

and MEG) measurements are usually determined using modified k-means

accounting for polarity invariant states. However, hard state assignment

approaches assume that the brain traverses microstates in a discrete rather

than continuous fashion. We present multimodal, multisubject directional

archetypal analysis as a scale and polarity invariant extension to archetypal

analysis using a loss function based on the Watson distribution. With this

method, EEG/MEG microstates are modeled using subject- and modality-

specific archetypes that are representative, distinct topographicmaps between

which the brain continuously traverses. Archetypes are specified as convex

combinations of unit norm input data based on a shared generator matrix,

thus assuming that the timing of neural responses to stimuli is consistent

across subjects and modalities. The input data is reconstructed as convex

combinations of archetypes using a subject- andmodality-specific continuous

archetypal mixing matrix. We showcase the model on synthetic data and

an openly available face perception event-related potential data set with

concurrently recorded EEG and MEG. In synthetic and unimodal experiments,

we compare our model to conventional Euclidean multisubject archetypal

analysis. We also contrast our model to a directional clustering model

with discrete state assignments to highlight the advantages of modeling

state trajectories rather than hard assignments. We find that our approach

successfully models scale and polarity invariant data, such as microstates,

accounting for intersubject and intermodal variability. The model is readily

extendable to other modalities ensuring component correspondence while

elucidating spatiotemporal signal variability.

KEYWORDS

archetypal analysis, microstates, electroencephalography,

magnetoencephalography, multimodal integration, spatiotemporal variability,

directional statistics, Watson distribution

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.911034
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.911034&domain=pdf&date_stamp=2022-07-29
mailto:mmor@dtu.dk
https://doi.org/10.3389/fnins.2022.911034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.911034/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Olsen et al. 10.3389/fnins.2022.911034

1. Introduction

Brain function may be understood in terms of metastable

states of activity involving anatomically distinct brain areas

working in synchrony. Metastability refers to the brain lingering

in a state before switching to another state. In functional

magnetic resonance imaging (fMRI) literature, dynamic

functional connectivity has revealed brain connectivity states

using unsupervised machine learning methods (Cabral et al.,

2017; Preti et al., 2017), and elucidated how the activity of these

states varies following perturbations to the resting state, e.g.,

sleep (Stevner et al., 2019) or the administration of psychedelic

drugs (Lord et al., 2019; Olsen et al., 2021). However, the

frequency content in blood-oxygen-level-dependent (BOLD)

fMRI is limited to very slow oscillations (<0.1 Hz) and thus

does not allow for investigation of “real-time” brain state

transitions and complicates, for instance, the analysis of

evoked responses.

In electro- and magnetoencephalography (EEG and

MEG), metastable states of sub-second activity span, denoted

microstates, have been a research topic for many years

(Lehmann, 1971; Lehmann et al., 1987)—see Khanna

et al. (2015) and Michel and Koenig (2018) for reviews.

Rather than involving specific brain regions, microstates

are defined by whole-brain dipolar topographic maps.

Microstates may be defined in a multitude of ways, including

characterizations by principal and independent component

analysis (Skrandies, 1989; Makeig et al., 1999), modified

k-means (Pascual-Marqui et al., 1995), hidden Markov

modeling of MEG power envelopes (Quinn et al., 2018;

Coquelet et al., 2022) or agglomerative hierarchical clustering

methods (Murray et al., 2008; Khanna et al., 2014). Of

particular interest is the polarity invariance of the topographic

maps; as M/EEG signals are naturally oscillating, the same

microstate may be active although the sign of the input

data changes (i.e., maxima become minima and vice versa)

(Poulsen et al., 2018). In addition, the global scaling of the

topographic maps is usually also irrelevant—it is, rather,

the electrode activity relative to other electrodes that is

important (Van De Ville et al., 2010). The current gold

standard microstate analysis involves modified k-means

clustering of instantaneous activity maps assessed using,

e.g., global field power (Skrandies, 1990). Prototypes are

constrained to unit norm, and the angle from data points to the

prototypes is squared to account for polarity invariance. Other

interesting models include Leading Eigenvector Dynamics

Analysis (Cabral et al., 2017), which, although previously

unused in EEG modeling, models interregional coherence

by assessing the eigenvector of instantaneous coherence

maps. Eigenvectors are axially symmetric unit vectors (scale-

free) and may be modeled using diametrical clustering

(Dhillon et al., 2003) to account for polarity invariance

(Olsen et al., 2021).

The notion of meta-stability of EEGmicrostates has recently

been challenged by Mishra et al. (2020) and Dekker et al. (2021)

arguing that the brain traverses microstates in a continuous

rather than discrete fashion. Thus, models that assign data to

prototypes in an all-or-nothing fashion, such as k-means, may be

too simple. As such, there is a need for methods that model data

as traversing through continuous trajectories between states. A

solution to this problem would be to define state topographies

by extreme data points and describe brain activity as continuous

navigation in the convex hull spanned by these states. Such a

model has yet to be established for EEG and MEG microstates.

Another topic of interest in the analysis of brain function is

multimodal integration.While EEG andMEGmeasure the same

sources in the brain, i.e., synchronized postsynaptic currents

in the dendrites of cortical pyramidal neurons, the electric

potential and the normal component of the magnetic field of

a tangential current source are rotated 90◦ relative to each

other (Lopes da Silva, 2013). Furthermore, EEG and MEG

complement each other regarding radially oriented sources,

sensitivity to source depth, and tissue-specific signal attenuation.

The combination of EEG and MEG is known to improve

source localization accuracy (Sharon et al., 2007). Several

approaches to M/EEG fusion have been suggested, including

the use of Kalman filtering (Hamid et al., 2013), modeling

modality dissimilarity correlations (Cichy et al., 2016), modality-

specific error weighting using Bayesian optimization (Henson

et al., 2009), and maximum entropy on the mean framework

(Chowdhury et al., 2015). Although M/EEG integration is well-

described in the literature, multimodal microstate analysis has

not previously been explored.

Here we introduce directional archetypal analysis (DAA)

and apply it for the joint integration of simultaneously

recorded event-related potential (ERP) EEG and MEG data.

Archetypal analysis (AA) is an unsupervised learning method

for finding interpretable patterns in high-dimensional data.

AA determines extreme points, denoted archetypes, that reside

on the convex hull of the data cloud and determines how to

express the data as convex combinations of such archetypes

optimally. The determined archetypes can be considered distinct

characteristics, forming prominent corners of the data (Cutler

and Breiman, 1994). Thus, AA deviates from k-means that

determine prototypical points or centers of the data cloud.

Similarly, Hidden Markov Models, which model continuous

transitions between states, also estimate prototypes rather

than archetypes (Vidaurre et al., 2017). AA has been applied

successfully in a variety of fields, including astronomy (Chan

et al., 2003), survey and performance data (Seth and Eugster,

2016), chemistry and collaborative filtering (Mørup andHansen,

2012), bio-informatics (Thøgersen et al., 2013; Hart et al., 2015),

and neuroimaging (Mørup and Hansen, 2012; Hinrich et al.,

2016; Cona et al., 2019; Krohne et al., 2019), including for

the analysis of single-trial electroencephalography (EEG) brain

response variability (Tsanousa et al., 2015).
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While conventional AA determines archetypes based on

a least-squares loss function of the reconstruction, we here

reformulate the method to account for axially symmetric

spherical data using a distance measure derived from the

Watson distribution (Watson, 1965; Sra and Karp, 2013).

By projecting every measured data point onto a (D − 1)-

dimensional sphere (D being the number of electrodes or

magnetometers), we ensure that the decomposition is not driven

by the scale of the input data. Similarly, by employing a

statistical distribution that models diametrically opposite points

as equal, we also directly model the polarity invariance of

the input data. We demonstrate the utility of the developed

method for the joint modeling of EEG and MEG ERPs,

ensuring component correspondence while accounting for the

shared modality-wide complementary information regarding

how the extracted sources are spatiotemporally elicited in the

two modalities. We use a similar approach to Hinrich et al.

(2016) for the modeling of multisubject data utilizing a shared

archetype-generating mechanism across subjects while allowing

for subject-specific archetypes and mixing matrices. Specifically,

we conduct multimodal integration by identifying shared

archetypal temporal profiles used to generate the archetypes

while determining the modality- and subject-specific expression

of these shared temporal profiles.

In summary, we propose the DAA model accounting for

scale- and sign-invariant modeling of EEG and MEG data as

well as their joint integration, assuming the timing of the neural

responses to stimuli are consistent across EEG and MEG. Based

on the developed DAA we demonstrate:

(i) Themerits of DAA as opposed to conventional AAwhen

data resides on the unit (hyper-)sphere.

(ii) The merits of DAA as opposed to a DAA-clustering

model with hard assignments.

(iii) How DAA can be used to model microstates in evoked

response EEG and MEG data.

(iv) How DAA can be used for the joint integration of EEG

and MEG data.

The novelty of this work lies both in the development of a

new AA framework for directional statistics (DAA) as well

as a novel approach for multimodal integration of EEG and

MEG accounting for spatiotemporal variability while ensuring

component correspondence across modalities as defined by an

assumed shared timing of the responses to stimuli.

2. Methods

2.1. Data

Analysis was carried out on the openly available multimodal

face perception data set introduced by Wakeman and Henson

(2015) with concurrent EEG and MEG recordings in 19 subjects

(8 females), whom all provided written informed consent. The

study was originally approved by the Cambridge University

Psychological Ethics Committee, and the data is openly

accessible through OpenNeuro (accession number: ds000117,

version 1.0.41). Each participant completed six sessions where

they were presented with approximately 150 images of famous,

unfamiliar, or scrambled (head shape preserved but face

unrecognizable) faces. Each functional trial started with the

appearance of a fixation cross for a random duration (400–

600 ms) and then a stimulus (face or scrambled face, 800–

1,000 ms). Between stimuli, a white circle was shown for 1,700

ms. Across the experiment, participants were told to focus

on a fixation cross at the center of the screen and refrain

from blinking during stimulus presentation. All faces were

shown twice, either immediately after or following 5–15 other

stimuli (50/50 of each).

MEG and EEG data were recorded simultaneously using an

Elekta Neuromag Vectorview 306 system (Helsinki, FI) with 102

magnetometers and a 70-channel Easycap EEG cap with the

reference electrode on the nose. The common ground electrode

was placed at the left collar bone. Electrooculograms, both

vertical and horizontal, were measured using two sets of bipolar

electrodes, and similarly for electrocardiogram with electrodes

at the left lower rib and right collarbone.

2.2. Preprocessing

Data from 16 subjects (the data set authors excluded

three subjects due to poor data quality) were provided in

a maxfiltered version and were subsequently preprocessed in

Fieldtrip (Oostenveld et al., 2011) using modified processing

scripts provided by Robert Oostenveld2. Our pipeline consisted

of (1) epoching the data according to trials and conditions,

(2) rejecting epochs with EEG, MEG, or electrooculography

artifacts, (3) bandpass filtering the data between 0.5 and 40 Hz,

(4) modality-wise principal component analysis retaining the

first 50 components and subsequently subtracting the channel-

wise mean, and (5) downsampling the data from 1, 100 Hz

to 200 Hz. Finally, trials were averaged within-subject over

multiple presentations of the three stimuli: familiar, unfamiliar,

and scrambled.

2.3. Archetypal analysis

In the classic archetypal analysis, we seek a decomposition

X ≈ AS of a data matrix X ∈ R
D×N , where N ∈ N corresponds

to the number of observations and D ∈ N corresponds to the

1 https://openneuro.org/datasets/ds000117/versions/1.0.4

2 https://github.com/robertoostenveld/Wakeman-and-Henson-2015
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dimensionality (e.g., number of channels) (Cutler and Breiman,

1994). The decomposition determines a set of archetypes A =
X̃C, which are weighted combinations of the matrix X̃ that,

as introduced in Hinrich et al. (2016), may differ from the

input matrixX, e.g., through some transformation, and a mixing

matrix S. The two matrices C ∈ R
N×K and S ∈ R

K×N (where

K ∈ N corresponds to the number of archetypes to be extracted)

are used to reconstruct the data matrix, and we denote the

reconstruction X̂ = X̃CS ∈ R
D×N . In this formulation, the

archetypes are found by convex combination (weights sum to

one) of the existing data points in X̃ by matrix multiplication

with C, such that the archetypes are defined by the columns of

the matrix X̃C. Each observation in the reconstruction X̂ is then

defined in terms of a convex combination of these archetypes

given by the columns of S.

For some measure of distance between the data and

reconstructions, D(◦|◦), the problem of identifying C and S can

be formulated as:

argmin
C,S

(
D(X|X̂)

)

s.t. |c·,k|1 = 1, |s·,n|1 = 1,

C ≥ 0, S ≥ 0, (1)

where c·,k corresponds to column k in C (the k’th archetype

generator), s·,n corresponds to column n in S (the n’th

observation), | · |1 is the ℓ1-norm which is constrained to one

(i.e., sum of absolute values constrained to 1), and C, S ≥ 0

enforces non-negativity in the elements of C and S. Together,

the constraints ensure the archetypes and reconstructions are

related through convex combinations (non-negative and sum to

one). The problem is solved by alternately updatingC and S (i.e.,

alternately finding optimal archetypes for a given expression S of

the archetypes, and finding optimal expression of the archetypes

given the definition of archetypes by C). The classic Euclidean

distance measure amounts to a least squares loss,Lls, and can be

expressed using the Frobenius norm as:D(X|X̂) = ||X−X̃CS||2F .
Whereas the Euclidean AA implicitly assumes normally

distributed noise, the AA has been advanced to other types of

data sets, including binary (Bernoulli likelihood) and integer

variables (Poisson likelihood) (Seth and Eugster, 2016) as well

as ordinal responses (Fernández et al., 2021). However, no

generalization of AA in the context of directional statistics

currently exists.

2.4. Directional archetypal analysis

In the current treatment of directional archetypal analysis

(DAA), we focus on axially symmetric data as characterized by

the Watson distribution with the probability density function:

W(x|µ, κ) = cD(κ) exp(κ
(
µ
Tx

)2
), (2)

where x ∈ S
D−1 (the (D − 1)-dimensional unit hypersphere),

µ defines a mean direction, κ defines a concentration around

that mean direction, and cD(κ) is a normalization constant (see

Watson, 1965). Specifically, we consider data where a direction,

x, and its negative are equivalent (invariance to sign flip), which

corresponds to x ∈ P
D−1, where PD−1 is the (D− 1)-projective

hyperplane (Sra and Karp, 2013).

Instead of a Euclidean distance (least squares) loss, the

Watson distribution measures the squared difference in the

angle between the reconstruction and the corresponding data

point. Contrary to classic archetypal analysis, we will investigate

angular properties between observations that lie on the surface

of the unit hypersphere, i.e., if the n’th observation in the

data matrix X is denoted xn, then we can reparameterize any

observation as xn =
√

κnx̃n such that x̃n ∈ S
D−1 with

precision κn = ||xn||22. Notably, the precision κn can thereby

be absorbed in xn by scaling x̃n by
√

κn. Thereby κn can be

interpreted as the amount of precision assigned to the spherically

distributed observations according to the Watson distribution

given in (2). By optimizing with respect to the original data xn

(1), emphasis will be given to the reconstruction x̃n with high

precision κn while ensuring that the archetypes themselves are

not influenced by scale-difference in data. We further assume

that diametrically opposed x̃n are equivalent, and thus that x̃n ∈
P
D−1. For each observation, the angle (in D-dimensional space)

can be measured as the inner product of the reconstruction

(normalized to have unit l2-norm) and the data points. We

define the (unnormalized) reconstruction of xn according to the

AA model as x̂n = X̃Csn. The loss LW , over N points is then:

LW = −
N∑

n=1

(
x⊤n x̂n/||x̂n||2

)2
(3)

Note that this loss function, while inspired by the Watson

distribution, is not a density, and we do not, e.g., determine

the normalization constant. To derive update rules for the DAA

algorithm, we seek the derivative of the loss with respect to

the model parameters S and C. We define two vectors of inner

products z and q with elements zn = x⊤n x̂n and qn = x̂⊤n x̂n and

denote thematrices with the elements of z and q in their diagonal

asDz = diag (z) andDq = diag
(
q
)
, respectively. Summing over

all the squared angles between data and reconstruction can be

written as the following loss (defining V = DzDq
−1/2):

LW = V :V, (4)

where the colon operator “◦ : ◦” designates the inner product

such that for matrices A and B we have that A :B = Tr(A⊤B).
We will approach determining the scalar by matrix derivatives
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by initially working in the (total) differential form and then

converting to canonical form3. Thus, to obtain the gradient of a

scalarF(A) w.r.t a matrixA, i.e.,∇AF(A), we need to determine

a matrix B such that δF(A) = Tr
(
B⊤δA

)
= B : δA, because

then ∇AF(A) = B. The differential of LW is then:

δLW = 2V : δV = 2V : δ
(
DzDq

−1/2
)

= 2V : δDzDq
−1/2 + 2V :DzδDq

−1/2 (5)

The gradients of LW w.r.t. S and C can then be found to be:

δLW (C) = 2TV : X̃CδS = 2C⊤X̃⊤TV : δS

⇒ ∇SLW = 2C⊤X̃⊤TV (6)

δLW (S) = 2TV : X̃δCS = 2X̃⊤TVS⊤ : δC

⇒ ∇CLW = 2X̃⊤TVS⊤, (7)

where we defined T = XDq
−1/2 − X̂Dq

−3/2Dz .

For this application, we constrain X̃ to the hypersphere,

i.e., we normalize every time-point for each modality, subject,

and condition across channels. We introduce an additional

constraint on X̃C to ensure that the archetypes lie on the

same hyper-hemisphere. We can ensure this by only allowing

the archetypes to be constructed using a flipped version, X̃f

of X̃ which is projected onto a chosen hyper-hemisphere. We

determine the dominant hyper-hemisphere in the data by the

first principal component. We then negate (“flip”) each data

point if its projection onto this dominant direction is negative

and obtain the archetypes as X̃fC. We also scale the data matrix

X by its Frobenius norm (across all data points) for each subject

and modality to ensure each subject and modality has a similar

influence on the loss when considering the multisubject and

multimodal modeling described next.

2.5. Multimodal multisubject directional
archetypal analysis

Similar to how Hinrich et al. (2016) extended archetypal

analysis to multisubject data, we extend DAA to parameterize

multisubject and multimodal data sets. For modalities m =
1, . . . ,M and subjects b = 1, . . . ,B, we approximate our

observed data matrices X(m,b) as X(m,b) ≈ X̃(m,b)CS(m,b). As

such, our model contains a global archetype generator matrix C

andmodality- and subject-specificmixingmatrices S(m,b) as well

as archetypes X̃(m,b)C, while the archetypes are generated from

the same convex combination of features. The loss function in

3 See e.g., https://tminka.github.io/papers/matrix/minka-matrix.pdf .

(3) is thereby extended to multiple subjects and modalities by:

LMW = −
M∑

m=1

B∑

b=1

N∑

n=1

(
x
(m,b)⊤
n x̂

(m,b)
n /||x̂(m,b)

n ||2
)2

, (8)

where x̂
(m,b)
n = X̃(m,b)Cs

(m,b)
n and Equations (6) and (7) revised

accordingly. We ensure the unit-norm of the columns of C

and S by recasting the problem in l1-normalization invariant

variables, as introduced in Mørup and Hansen (2012). For

instance, for an element in S(m,b), s
(m,b)
k,n

, the recast parameter is

s̃
(m,b)
k,n
= s

(m,b)
k,n

/
∑

k′ s
(m,b)
k′,n . We will omit the tilde for simplicity.

We ensure non-negativity using a projected gradient method,

which simplified amounts to a parameter update based on

some step size µ and some gradient w.r.t. the distance defined

above, g
(m,b)
k,n

, as: s
(m,b)
k,n
← max

(
s
(m,b)
k,n
− µg

(m,b)
k,n

, 0
)
. For details

regarding the projected gradient procedure, we refer to Mørup

and Hansen (2012, Section 2.3).

In practice, we determine the gradient forC for every subject

and modality and subsequently sum the gradients across these.

We then update C and the step size µc. That is, we decrease

the step size with a factor 1
2 if the new summed loss is worse

than the previous one. If the new loss is improved, we slightly

increase the step size (by a factor 1.1) and end the update.

For S(m,b), the gradient is once again determined for every

subject and modality, though this time without summation

across these. The loss for every time point, modality, and subject

is computed, and corresponding elements of S(m,b) are only

updated if the new loss is lower than the previous one. Likewise,

step sizes, which are specific to sample, subject, and modality,

are increased/decreased (by the same factors as above) if the new

loss is improved/worsened compared to the previous one.

In our implementation, we compute, for every update of the

archetype generator matrix C, the matrices (X̃(m,b)C)⊤X̃(m,b)C

and X(m,b)⊤X̃(m,b)C for fast computation of D
(m,b)
z and

D
(m,b)
q . This reduces the overall time complexity updating

S(m,b) substantially to be O(MBNK), whereas the overall time-

complexity updating C isO(MBDNK).

2.6. Multimodal multisubject directional
clustering

In order to contrast the performance of the developed

DAA to conventional clustering based on directional statistics

as used in the modified k-means procedure of Pascual-Marqui

et al. (1995) we further develop a hard clustering multimodal,

multisubject clustering procedure inspired by the DAA. In

conventional clustering, either modalities and subjects need to

be modeled separately, or data merged, to ensure consistent

centroids across subjects. By defining the cluster centroids in

terms of a latent generator as in the DAA, it is possible to define

a multimodal, multisubject hard assigned clustering procedure
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by endowing the DAAmodel with hard assigned clusters, i.e., by

replacing the AA model formulation in (1) with ℓ0 constraints

on S as opposed to ℓ1 constraints. Thereby the optimization

of S changes to a k-means type assignment of observation to

centroids according to themaximally squared inner product, i.e.,

k∗ = argmin
k

[
−

(
x
(m,b)⊤
n X̂(m,b)ck/||X̂(m,b)ck||2

)2]
(9)

such that s
(m,b)
k,n
= 1 for k = k∗ and 0 otherwise.

2.7. Model comparison and consistency

We evaluated DAA and our clustering approach using the

Watson loss and conventional AA solutions across runs with

sum of squared errors (SSE). While the Watson loss is given

in (8), we assessed the least squares reconstruction error of the

Euclidean AA model as

SSE =
∑

m

∑

b

||X(m,b) − X̃(m,b)CS(m,b)||2F . (10)

To evaluate the consistency of the archetypal mixing, we

employed normalized mutual information (NMI) similarly to

Hinrich et al. (2016), since each column of S(m,b) may be

considered a probability distribution over components. For k =
1, . . . ,K archetypes and two runs r and r′, NMI is here given by:

NMI(Sr , Sr
′
) = 2MI(Sr , Sr

′
)

MI(Sr , Sr)+MI(Sr
′
, Sr
′
)

(11)

MI(Sr , Sr
′
) =

∑

k,k′
p(k, k′) log

p(k, k′)
p(k)p(k′)

(12)

p(k, k′) = 1

N

∑

k

srkns
r′
k′n. (13)

NMI gives a score between 0 and 1 and is invariant to

permutations of components. Here we compared losses and

NMI between 5 runs of each model, where each model

was compared to the preceding model. That is, comparisons

were made between models 1 − 2, 2 − 3, . . . , 5 − 1 to

avoid correcting for dependent comparisons if evaluating all

model combinations. Presented NMI values are averages across

subjects, modalities, and conditions. To minimize the effect of

local minima, each run is the best of 100 randomly initialized

models, where both C and S were initialized as rate 1

exponential random variables exp(1) normalized to the simplex.

3. Results

3.1. Three-dimensional illustration

To illustrate DAA, we applied it to four synthetic three-

dimensional data sets, two of which were defined on S
2, and

contrasted the results obtained to the classic Euclidean AA

approach and DAA modified to hard assignment, hereafter

denoted directional clustering (see Figure 1). All three models

were run in five sets of 100 random initializations of the matrices

C and S, where the best model, in terms of loss, for each of the

five runs was selected. In total, this leads to 500 model fits for

each model and each number of estimated archetypes K.

The first synthetic dataset occupies one octant of the unit

sphere with three natural corners constituting the archetypes.

While DAA determines archetypes very close to the true

archetypes and produces a convex hull on the surface of

the sphere octant, the Euclidean solution produces archetypes

further from the truth and a simplex-shaped principal convex

hull encompassing the interior of the sphere (see Figure 1A).

Directional clustering is even less flexible and locates centroids

further away from the true archetypes. Due to the binary

representation of the assignment matrix S, this solution

corresponds to clustering, i.e., defining prototypes as opposed

to archetypes. The loss curves indicate a deflection at K = 3

components (highlighted) for all three models. Whereas DAA

converges to the true solution at K = 3, Euclidean AA

and the directional clustering model show a less trivial loss

curve gradually improving by including more components (i.e.,

clusters). The same models also have very high consistency

for all component numbers. When K > 3, extra DAA

components become ambiguous and thus, model consistency

decreases for this model, indicating that high model consistency

is not necessarily equivalent to a well-performing model

reconstruction.

In the second example, data were generated occupying

two opposing octants of the unit sphere using the same true

archetypes and their diametrical opposites, reflecting polarity

invariant data (Figure 1B). The three models visualized using

three components show vastly different results—while DAA

remains able to produce a spherical principal convex hull

close to the original solution defining a polarity invariant

spherical convex hull, Euclidean AA is not able to produce a

principal convex hull that encapsulates the data, identifying two

archetypes along one direction and one archetype in the opposite

hemisphere. Upon inspecting the loss curves, the Euclidean AA

deflects at K = 6 components, i.e., double the number of

true archetypes, whereas DAA and directional clustering bend

at the expected K = 3 components. As such, Euclidean AA

requires more components to explain polarity-invariant data.

Similar to the former example, directional clustering with hard-

assignment of states provides polarity-invariant centroids rather

than data extremes defined by clusters at the interior of the
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FIGURE 1

Illustration of directional archetypal analysis (DAA) vs. its Euclidean counterpart and a directional clustering model in three dimensions, including

loss curves and normalized mutual information (NMI), which are evaluated on 5 models each being the best of 100 simulations. (A) Spherical

data simulated using three true archetypes situating on the axis corners. The solutions obtained using conventional Euclidean archetypal

analysis and directional archetypal analysis with K = 3 components and the convex hull spanned by the archetypes, as well as centroids

determined using directional clustering, are also shown. (B) Spherical data simulated with three true archetypes situating on the axis corners as

well as their diametrical opposite, i.e., polarity-invariant archetypes. (C) Non-spherical data simulated using the same three true archetypes as in

(A). (D) Data simulated with three true archetypes, of which one is the origin. Error bars represent standard error of the mean. Note that the loss

functions for the models (Watson loss and sum of squared errors, respectively) are not directly comparable but are shown on the same graph to

highlight corners in the loss indicating a potential optimal model.

spherical convex hull. Thus, for polarity invariant spherical

data, DAA successfully provides a solution that determines

archetypes defining a spherical convex hull that, through their

convex combinations defined by thematrix S, optimally span the

synthetic data points.

The third data set is simulated on the simplex spanned by the

same three archetypes as in the first example, although without

normalizing data to the sphere (Figure 1C). Both DAA, which

projects data to the sphere before modeling, and Euclidean AA

determine archetypes close to the true solution. Their loss curves

also show similar deflection at K = 3, showcasing that when

the data points are simulated on a non-spherical simplex, the

two solutions produce similar archetypes although the simplex

spanned by the DAA archetypes is spherical.

DAA and directional clustering project data points to the

sphere surface prior to modeling, which may be problematic if

the archetypes are far from the sphere surface. Especially if, in

the extreme case, one of the archetypes is the origin. This case

is exemplified in Figure 1D, where neither DAA nor directional

clustering is able to extract sensible archetypes. To summarize,
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FIGURE 2

Average mean-subtracted time-locked subject event related potentials (ERPs) after preprocessing but without normalization for the three face

perception conditions (familiar, unfamiliar, scrambled). (A) A selected electroencephalographic electrode (EEG003) located near the right

occipital lobe. (B) A selected magnetoencephalographic magnetometer (MEG2611) located near the right temporal lobe.

DAA and directional clustering may be used to model scale- and

polarity-invariant data but suffer if the underlying convex hull is

spanned by the origin.

3.2. Examination of event-related
potential subject variability

Neuroimaging data, including EEG and MEG recordings

of ERPs, carry large intra- and inter-subject variability. In

Figure 2, we examined the Wakeman and Henson (2015) data

set after pre-processing but before normalization; specifically, we

highlight the EEG electrode with the largest amplitude (EEG003,

located to the right of the occipital pole) and similarly for MEG

(MEG2611, located near the right temporal lobe). The ERPs,

which are averages of many time-locked trials within-subject,

deviate vastly between subjects. While a positive deflection

at approximately 100 ms and a stronger negative component

at approximately 170 ms are generally visible for all subjects

(as also reported in Wakeman and Henson, 2015), both scale

and morphology of the ERP tend to vary. High variability is

also visible in the post-170 ms positive deflections, and, for

example, subjects 3, 6, 9, and 16 show sufficiently high positive

deflections that they may even be considered a third ERP

component. We observe very little consistent deviation between

the three conditions (familiar, scrambled, unfamiliar). With

the added difficulty of combining two modalities that display

highly different topographies, a model that can account for

inter-subject and inter-modal variability in microstate analyses

is needed.

3.3. ERP data, unimodal

To illustrate the effects of multimodal fusion, we first

applied our algorithms to unimodal data (i.e., data coming

from a single modality) with a multisubject model. That is, we

produced separate models for only EEG data and only MEG

data. We compared our results to the multisubject AA model

by Hinrich et al. (2016) with a least-squares loss function.

To minimize the effect of local minima, we ran our models

100 times with randomly (exponentially) sampled C and S

and selected the model with the lowest loss. Figure 3 shows

average loss curves and NMI for five such runs, with error

bars representing standard error of the mean. The results show

that, for both EEG (Figure 3A) and MEG (Figure 3C), the loss

curves for all three models decrease steadily with an increasing

number of components. DAA consistently shows improved

loss compared to directional clustering with discrete state

assignment. Figures 3B,D highlights the topographical maps for

the determined archetypes for the models with the lowest loss

for K = 5 and K = 10 for the directional and Euclidean models,

respectively. The archetypes, which are averages across subjects

and conditions, are ordered according to their percentage total

occupation of the averaged archetypal mixing matrix S. Given

the shared use of sign- and scale-invariance, the archetypes
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FIGURE 3

Unimodal multisubject archetypal analysis fits using DAA, conventional Euclidean archetypal analysis, and a directional clustering model derived

from DAA using hard class assignment. (A,C) Loss curves and model consistency evaluated using NMI evaluated on 5 models, where each is the

best of 100 model fits. Error bars represent standard error of the mean. (B,D) Archetype topographical maps for the best model fits with K = 5

and K = 10 for the directional models and the Euclidean model for EEG and MEG data, respectively. Archetypes are averaged across subjects

and are ordered according to the total occupation of the archetypal mixing matrix S.
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FIGURE 4

Loss curves and NMI for multimodal, multisubject DAA and directional clustering models. (A) loss curves for the six models, including

multimodal, multisubject, multicondition DAA, a model where the three conditions are concatenated in time to enforce equal archetypes, and a

model modeling all subjects separately with no correspondence between subjects. Error bars represent standard error of the mean. (B) NMI to

inform on model consistency. Both loss curves and NMI are evaluated on 5 model fits for each model, each being the best of 100 fits.

for DAA and the clustering equivalent are similar, with only a

minor change in archetype proportion and ordering. The same

results for Euclidean AA show some archetype duplications (e.g.,

archetypes 6 and 8). The AA archetypes vary more in scale, since

this model explicitly models the scale of the data.

For both unimodal models, the NMI for the Euclidean

implementation is very high, which indicates that this model is

very stable upon selecting the best of 100 models to avoid local

minima. However, model consistency is generally high for all

three models.

3.4. ERP data, multimodal

We illustrate the multimodal, multisubject DAA results in

Figures 4–7. Once again, we performed runs with an inner loop

of 100 initializations to avoid local minima and an outer loop

of 5 to estimate run-to-run variability between best-performing

solutions. We do not include the Euclidean equivalent as the

existing code (Hinrich et al., 2016) does not support fusion of

multiple modalities.

Six models were evaluated: (1) a multimodal, multisubject,

multicondition DAA where the three conditions (familiar,

unfamiliar, scrambled) are modeled similarly to modalities and

subject, i.e., with a shared archetype-generating matrix C but

modality-, subject-, and conditions-specific archetypes X̃(m,b,c)C

and mixing matrices S(m,b,c), where c = {1, 2, 3} is conditions,
(2) a multimodal, multisubject DAA where the three conditions

were concatenated in time for each subject to enforce equal

archetypes
[
X̃(m,b,1), X̃(m,b,2), X̃(m,b,3)

]
C across conditions but

retain separate mixing matrices S(m,b,c), and (3) a model where

there is no correspondence, i.e., each subject, modality, and

condition is modeled separately with their own archetype-

generating matrix C(m,b,c). For all three mentioned models, the

corresponding model using directional clustering was evaluated.

On Figure 4, we once again observe a steadily decreasing loss

with an increasing number of components, and it is difficult

to identify a model that constitutes a sound balance between

low loss and few components. Generally, we observe lower loss

the more flexible the model is. As such, the models where all

subjects are modeled separately have a lower loss, while the

models where conditions are concatenated in time display the

highest loss. Model consistency is generally lower for the zero-

correspondence models, and as expected from our synthetic and

unimodal analysis, directional clustering consistently performs

worse in terms of loss thanDAA, withmodel consistency slightly

improved compared to DAA.

In Figure 5A, the archetype generator (C) is shown for the

best multimodal, multisubject, multicondition DAA model with

K = 5 archetypes. Since AA constrainsC to be non-negative, the

result is a sparse representation of the post-stimulus time points.

As expected, almost none of the archetypes are generated by

time points prior to the earliest ERP deflection at about 100 ms.

Subsequently, each archetype is generated by a closely located

selection of time points, each responsible for a section of the

ERP. Interestingly, the late reaction (> 600 ms) is covered by

a separate archetype, indicating that the late response contains

structure beyond the pre-100 ms time points.

Figure 5B shows the archetypal mixing matrix (S) averaged

across subjects, i.e., the soft assignments of each time-

point in the ERP to archetypes. The archetypes have been

ordered according to their activation pattern. Archetypal mixing

generally follows the pattern in the archetypal generator

with little deviation between conditions and modalities. As

expected, the prestimulus period until around 100 ms shows no
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FIGURE 5

Visualization of the best obtained fit for multimodal, multisubject, multicondition DAA with K = 5 components. (A) The subject-, modality-, and

condition-shared archetype generator matrix C with information on the specific samples from which archetypes are generated. (B) The

archetypal mixing matrix S averaged across subjects showing how samples are probabilistically allocated to archetypes. The mixing matrix has

been smoothed with a rectangular window of size 3 samples. (C) Archetype trajectory averaged across subjects based on the mixing matrix S

smoothed with a rectangular window of 10 samples as well as average archetype topographical maps.

discernible structure. To further investigate archetypal mixing,

we show the average ERP trajectory between archetypes in

Figure 5C. By arranging the K archetypes with equal angle

spacing on the unit circle in the plane, we can visualize the

trajectory using the mixing coefficients (S) for each archetype

as coordinates in this plane. Equal expression of all archetypes

will be in the middle of the plane, and if one archetype is

expressed more than others, the trajectory is dragged toward
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the corresponding archetype’s edge. The trajectory similarly

shows fast activation of archetypes 1, 2, and 3 and slower

recruitment of archetypes 4 and 5. The path from one archetype

to the next involves a general shift in the archetypal activation

probability of all other archetypes, i.e., the trajectory curves

toward the center of the trajectory space. Generally, we observe

indistinguishable trajectories between the two modalities. This

was expected since a deviation would indicate that EEG and

MEG observed different evoked responses to the same stimuli.

For themultimodal, multisubject, andmulticonditionmodel, we

observe almost no difference in archetypal trajectory between

conditions (famous, unfamiliar, scrambled).

Figure 5C also shows the archetype topographical maps

averaged across subjects. Upon visual activation, archetype

1 is activated around 100 ms post-stimulus. Archetype 1 is

represented by an expected occipital/central dipolarity for EEG

corresponding to V1 activation and a strong left/right MEG

component. The negative ERP deflection at 170 ms is seen

here as a shift from archetype 1 to 2 represented by lateral

occipital vs. frontal EEG topography. Wakeman and Henson

(2015) commented on a significantly larger ERP component

at 170 ms for familiar and unfamiliar faces vs. scrambled

faces. Spatially, the authors reported that this difference was

significant for frontal electrodes (more positive for familiar

and unfamiliar faces compared to scrambled) and lateral

occipital electrodes (more negative). Our results show that

this difference manifests itself in a stronger lateral occipital

vs. frontal activation in EEG topography for familiar and

unfamiliar conditions as opposed to scrambled, i.e., very similar

results to Wakeman and Henson (2015). This result also falls

in line with the general notion that the N170 component

corresponds to fusiform gyrus activation for face recognition

(Gao et al., 2019). While the corresponding topographic maps

for MEG show a larger frontal/occipital polarity, the distinction

between conditions is less clear. Archetype 3, which is active

at around 300 ms, is a less strong (polarity-wise) version

of archetype 2, which does not differ between conditions.

Archetype 4 is longer-lasting, dominated by parietal EEG

topography. Finally, archetype 5 once again displays strong

occipital vs. frontal activation in all three conditions. This

corresponds well with the late activation of frontal areas reported

in Wakeman and Henson (2015). Generally, we observe similar

archetype topographies as observed in the unimodal analysis

(Figure 3) with frontal/central/occipital variation in EEG maps

and left/right variation in MEG maps.

Figure 6 displays the same visualizations for the model

in which conditions have been concatenated in time to

enforce equal archetypes between conditions. The result is

a C-matrix three times the length, which in Figure 6A has

been split and stacked to compare condition effects on our

model. Interestingly, archetype 4 (red) is purely generated

by the scrambled condition (middle), and the late archetype

5 (green) is predominantly generated by the familiar and

unfamiliar condition. Archetypal mixing, visible in the mixing

matrix visualization on Figure 6B and trajectories on Figure 6C,

shows that while the initial part of the ERP displays similar

archetypal trajectory between conditions, archetype 4 is almost

exclusively visited by the scrambled condition, whereas the

familiar and unfamiliar condition visit archetypes 3 and 5.

Following fusiform face area activation (archetypes 2 and 3),

these results indicate that the familiar and unfamiliar conditions

are followed by a late, 400 ms frontal and parietal activation.

In contrast, the scrambled condition does not show the frontal

component. Smaller differences are present between the familiar

and unfamiliar condition seen late, at about 550–600ms, evident

by the unfamiliar condition being dominated by archetype 5

to a greater extent than the familiar condition, especially for

the EEG modality.

As previously mentioned, subject variability is high in

this data set (Figure 2). The present model accounts for both

intermodal and intersubject variability, and accordingly, we

can further explore subject variability in the trajectory plots

and archetypes of the multimodal, multisubject, multicondition

model (see Figure 7). Evidently, subject variability is higher in

archetypal mixing than in the archetypes. This makes sense since

the archetypes are directly computed from the same convex

combinations of the input data. As such, the variability in input

data is propagated to the archetypes.

Most of the subjects follow an archetypal trajectory pattern

that starts centrally and, approximately 100 ms after stimulus,

travels to archetype 1, and then quickly onto archetype 2-5 in a

circular pattern. However, some conditions for some subjects fall

outside this pattern (see, once again, subjects 3, 6, and 9). The

scrambled condition does not appear to be the cause of these

deviations. Likewise, there is little visible difference between

trajectories for EEG and MEG.

4. Discussion

Wehave presented the directional archetypal analysis (DAA)

for scale- and polarity-invariant modeling of brain microstates

and demonstrated its utility in modeling both unimodal and

multimodal M/EEG ERP data from a visual perception task.

We validated our models on synthetic data, compared results to

the conventional Euclidean AA model, and showed that DAA,

unlike Euclidean AA, can efficiently characterize antipodally

symmetric, spherical data. Our unimodal analyses showed that

DAA loss as a function of the number of components (K)

saturated earlier when compared to its Euclidean counterpart,

although loss functions are not directly comparable. Notably,

Euclidean AA potentially computes archetypes corresponding

to the dipole counterpart of other archetypes. We further

observed that the Euclidean AA was more affected by the

scale of the input data. The scale of the learned archetypes

were inherently equal for DAA but the Euclidean AA

produces archetypes with highly varying scales. However, if

the underlying convex hull generating the data are obscured
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FIGURE 6

Visualization of the best obtained fit for multimodal, multisubject DAA with K = 5 components, where the three conditions have been

concatenated in time for all subjects and modalities prior to modeling to enforce equal archetypes. (A) The subject- and modality-shared

archetype generator matrix C with information on the specific samples from which archetypes are generated. The matrix has been split into

three parts corresponding to the three conditions and subsequently stacked for visualization purposes. (B) The archetypal mixing matrix S

averaged across subjects showing how samples are probabilistically allocated to archetypes. The mixing matrix has been smoothed with a

rectangular window of size 3 samples. (C) Archetype trajectory averaged across subjects based on the mixing matrix S smoothed with a

rectangular window of 10 samples as well as average archetype topographical maps.

by the projection onto the sphere, i.e., by including the origin

as an archetype, the directional models cannot viably model

the data.

We contrasted DAA to a clustering model that constrain the

archetypal mixing matrix S to hard assignment, corresponding

to a multimodal and multisubject extension of the modified
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FIGURE 7

Subject, modality, and condition-specific archetypal trajectories and archetypes for the best multimodal, multisubject DAA model in terms of

loss with K = 5 components. The matrix S has been smoothed with a rectangular window of size 30 samples for visualization purposes. The

figures are ordered by subjects, arranged from left to right.
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k-means procedure (Pascual-Marqui et al., 1995). Our synthetic

example showed that a clustering model might be suitable for

polarity invariant data, although it determines prototypes, or

centroids, defining typical points. In contrast, DAA identifies

archetypes constituting representative, extremal points of the

data set. This clustering model is akin to conventional brain

microstate analyses, which employ a polarity-invariant k-

means approach allowing component correspondence while

accounting for spatiotemporal variability. While such a model

is useful, it also heavily simplifies the notion of brain

states to be a one-at-a-time phenomenon. This approach

has recently been challenged by Mishra et al. (2020) who

suggested that the brain traverses microstates in a continuous

rather than discrete pattern. Our proposed DAA approach

is a potential solution to this problem by determining

microstates based on archetypes rather than prototypes and

estimating a (continuous) mixing matrix based on the

archetypes. With the added flexibility, we also observed

that our model leads to improved loss compared to the

corresponding clustering formulation highlighting how the

model representation provides more detailed characterizations

of the data.

DAA is readily extended to both multisubject and

multimodal modeling. Here, we approached the problem

by estimating a shared archetype generator matrix C and

subject and modality-specific archetype mixing matrix S(m,b).

Importantly, the archetypes X̃(m,b)C themselves are subject and

modality-specific since they are constructed through convex

combinations of the input data. In our analyses of ERP data

from several conditions (familiar, scrambled, unfamiliar),

we extended this approach to also account for conditions.

As such, each condition was treated as a new subject to get

subject, modality, and condition-specific archetypes and mixing

matrices. Our model (Figure 5) showed some variation between

conditions observed in an archetype active at approximately

200 ms with stronger bilateral occipital vs. frontal polarity for

familiar and unfamiliar compared to scrambled faces. These

results were in line with a previous study on the same data set

(Wakeman and Henson, 2015) and are also consistent with the

general N170 ERP peak representing fusiform gyrus activation

specific for face recognition (Gao et al., 2019). Another solution

to having multiple conditions is to concatenate these over time

and thus allow the archetype generator (C) to be driven by

specific condition(s) and not necessarily the same time points

across conditions. This approach showed a clear distinction

between scrambled and the two face conditions. Specifically,

one of the five archetypes was purely generated and visited

by the scrambled condition, while two others were mostly

generated and visited by the familiar and unfamiliar conditions.

Larger frontal activation in face conditions has been observed

previously on the same data set (Wakeman and Henson, 2015;

Quinn et al., 2018).

By having a shared archetype-generator matrix C across

subjects, modalities, and conditions, we implicitly assume

that the timing of the neural response to stimuli is the

same. This assumption is valid across modalities since these

were acquired simultaneously and thus measured the same

underlying response. Similarly, it would be expected that the

timing is similar for multiple stimuli for the same subject;

however, the assumption of zero latency might not be valid

across subjects. One solution to this problem is to employ

an even more flexible model that does not assume any

correspondence between subjects, modalities, or conditions. As

highlighted in Figure 4, such a model would lead to improved

loss. However, it is much more difficult to establish component

correspondence and infer population-level archetypes and

archetypal trajectory behavior. We expect that future work may

look into developing latency-invariant models inspired by shift-

invariant decompositions (Mørup et al., 2008). The zero-latency

assumption currently limits the extension of our framework to

continuous data, such as resting-state. Similarly, multimodal

fusion with vastly different modalities, such as fMRI, which

usually measures slow blood-oxygen response to stimuli, and

EEG or MEG would violate the assumption of equal timing of

the neural response.

A multisubject AA framework, first presented in Hinrich

et al. (2016), allows us to account for subject variability,

which we know is present in the data set under consideration

(see Figure 2). Figure 7 displays the estimated subject-specific

archetypes and trajectories and shows that generally, the subject

variability manifests itself in archetypal trajectories. Archetype

topographies generally also vary across subjects, however, not to

the same degree. This highlights the importance of accounting

for spatiotemporal variability.

In our analyses on real data, we did not observe a corner

point, or clear bend, in the loss curves that would otherwise

indicate a potential optimal number of archetypes for any of the

evaluated models. Future work may consider cross-validation

for model selection. Specifically, we believe that a split-half

setup, in which trials are randomly split into two groups prior

to preprocessing, where one group is used for training the

model and the other for evaluating model loss, is favorable.

When the number of trials is high, split-half ensures all subjects

and conditions are represented in both groups and high SNR

in the corresponding averages while avoiding the excessive

computational demands of, e.g., K-fold cross-validation.

Archetypal analysis is generally prone to local minima, a

characteristic we also observed in our analyses. All presented

loss curves were averages of 5 runs, each the best of 100

different initializations. This higher number of initializations

also affected the presented Euclidean AA results (i.e., Figures 1,

3). Generally, we observed that model consistency for DAA

was slightly improved by increasing the number of models in

the inner loop from 20 to 100, while for conventional AA,
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model consistency was generally lower than DAA for 20 models

in the inner loop and very high for 100 models. While we

did not present these results, we argue that all AA models,

whether directional or not, benefit from evaluating multiple

initializations. For 100 runs in the inner loop, especially for the

synthetic data set, Euclidean AA showed higher NMI than DAA,

which shows that the robustness of DAA may be somewhat

challenged. While it has been shown that the optimization of

C and S individually is convex for a least-squares loss function,

this property breaks down for the proposed Watson equivalent

due to the normalization term projecting the reconstruction to

the sphere. As a result, we hypothesize that the reduced DAA

robustness compared to least-squares for 100 runs could be a

consequence of the optimization landscape being more prone to

local minima issues.

Here we initialized our models by random sampling

from an exponential distribution. Previous studies have shown

that initializing C as carefully selected samples through the

FurthestFirst (Cutler and Breiman, 1994) or the improved

FurthestSum (Mørup and Hansen, 2012), may lead to improved

convergence speed. However, over multiple initializations,

random initialization has been shown to lead to lower losses

(Krohne et al., 2019). Further studies could evaluate the effect

of initialization to potentially decrease the number of estimated

models needed to ensure robustness of the obtained results.

Directional archetypal analysis and clustering assume that

data resides on a (unit) hypersphere. In our case, the

dimensionality of the hypersphere corresponds to the number

of electrodes and magnetometers, respectively. AA, including

DAA, allows for the archetypes X̃C to be constructed from

a data matrix X̃ potentially different from the original

data matrix X. Here, we constrained each sample of the

input data X̃(m,b) to unit l2-norm, while X was normalized

by the Frobenius norm of all samples across all subjects,

conditions, and modalities, to ensure that these were given

similar influence on the model. Normalization of X̃ by the

l2-norm was our approach to scale and polarity invariant

modeling of microstates. Optimization of C and S occurred

with a loss function of the reconstruction (using x̃n) to the

original, unnormalized data xn. In this way, the squared

magnitude of the data, interpreted as the precision parameter

κ absorbed by xn, enabled DAA to emphasize regions with

high SNR when defining the archetypes. This is similar to how

conventional microstate analysis procedures typically restrict

the analysis to regions of high global field power (Poulsen et al.,

2018).

In conclusion, we have introduced directional archetypal

analysis for (1) modeling of scale and polarity invariant

data, (2) fusion of multiple modalities, and (3) incorporating

subject variability in archetypes and archetypal mixing.

Our model represents an approach to modeling brain

microstates without assuming hard assignment of states

to samples that accounts for spatiotemporal variability of

the brain’s response to stimuli while preserving component

correspondence.

Data availability statement

Publicly available datasets were analyzed in this study. The

code for DAA as well as the hard assignment multimodal

multisubject clustering procedure and further information

regarding the experiments are available at https://github.com/

anders-s-olsen/DirectionalArchetypalAnalysis. The data may be

freely downloaded at https://openneuro.org/datasets/ds000117/

versions/1.0.4.

Ethics statement

The studies involving human participants were reviewed

and approved by Cambridge University Psychological Ethics

Committee. The patients/participants provided their written

informed consent to participate in this study.

Author contributions

AO and RH: methodology, software, validation, formal

analysis, data curation, visualization, writing—original draft,

and writing—review and editing JH: conceptualization,

methodology, supervision, and writing—review and

editing. KM: methodology, supervision, and writing—

review and editing. MM: conceptualization, formal analysis,

methodology, project administration, software, supervision,

writing—original draft, and writing—review and editing.

All authors contributed to the article and approved the

submitted version.

Funding

Through RH, this work was partly funded by the Innovation

Fund Denmark (IFD, grant number: 9065-00077B). MM was

supported by Ingeborg and Leo Dannins scholarship for

scientific research.

Conflict of interest

Author RH is employed by WS Audiology.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict of

interest.

Frontiers inNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2022.911034
https://github.com/anders-s-olsen/DirectionalArchetypalAnalysis
https://github.com/anders-s-olsen/DirectionalArchetypalAnalysis
https://openneuro.org/datasets/ds000117/versions/1.0.4
https://openneuro.org/datasets/ds000117/versions/1.0.4
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Olsen et al. 10.3389/fnins.2022.911034

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Cabral, J., Vidaurre, D., Marques, P., Magalhães, R., Silva Moreira, P., Miguel
Soares, J., et al. (2017). Cognitive performance in healthy older adults relates to
spontaneous switching between states of functional connectivity during rest. Sci.
Rep. 7. 1–13. doi: 10.1038/s41598-017-05425-7

Chan, B. H., Mitchell, D. A., and Cram, L. E. (2003). Archetypal
analysis of galaxy spectra. Monthly Notices R. Astron. Soc. 338, 790–795.
doi: 10.1046/j.1365-8711.2003.06099.x

Chowdhury, R. A., Zerouali, Y., Hedrich, T., Heers, M., Kobayashi, E., Lina,
J. M., et al. (2015). MEG-EEG information fusion and electromagnetic source
imaging: from theory to clinical application in epilepsy. Brain Topogr. 28, 785–812.
doi: 10.1007/s10548-015-0437-3

Cichy, R. M., Pantazis, D., and Oliva, A. (2016). Similarity-based fusion of MEG
and fMRI reveals spatio-temporal dynamics in human cortex during visual object
recognition. Cereb. Cortex 26, 3563–3579. doi: 10.1093/cercor/bhw135

Cona, G., Kocillari, L., Palombit, A., Bertoldo, A., Maritan, A., and Corbetta,
M. (2019). Archetypes of human cognition defined by time preference for reward
and their brain correlates: an evolutionary trade-off approach. Neuroimage 185,
322–334. doi: 10.1016/j.neuroimage.2018.10.050

Coquelet, N., De Tiége, X., Roshchupkina, L., Peigneux, P., Goldman, S.,
Woolrich, M., et al. (2022). Microstates and power envelope hidden Markov
modeling probe bursting brain activity at different timescales. Neuroimage 247,
118850. doi: 10.1016/j.neuroimage.2021.118850

Cutler, A., and Breiman, L. (1994). Archetypal analysis. Technometrics 36, 338.
doi: 10.1080/00401706.1994.10485840

Dekker, M. M., Franca, A. S., Panja, D., and Cohen, M. X. (2021). Characterizing
neural phase-space trajectories via principal louvain clustering. J. Neurosci.
Methods 362, 109313. doi: 10.1016/j.jneumeth.2021.109313

Dhillon, I. S., Marcotte, E. M., and Roshan, U. (2003). Diametrical clustering
for identifying anti-correlated gene clusters. Bioinformatics 19, 1612–1619.
doi: 10.1093/bioinformatics/btg209

Fernández, D., Epifanio, I., and McMillan, L. F. (2021). Archetypal analysis for
ordinal data. Inform. Sci. 579, 281–292. doi: 10.1016/j.ins.2021.07.095

Gao, C., Conte, S., Richards, J. E., Xie, W., and Hanayik, T. (2019). The
neural sources of N170: understanding timing of activation in face-selective areas.
Psychophysiology 56, e13336. doi: 10.1111/psyp.13336

Hamid, L., Aydin, U., Wolters, C., Stephani, U., Siniatchkin, M., and Galka, A.
(2013). “MEG-EEG fusion by Kalman filtering within a source analysis framework,”
in Proceedings of the Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, EMBS (Osaka). doi: 10.1109/EMBC.2013.6610626

Hart, Y., Sheftel, H., Hausser, J., Szekely, P., Ben-Moshe, N. B., Korem, Y., et al.
(2015). Inferring biological tasks using Pareto analysis of high-dimensional data.
Nat. Methods 12, 233–235. doi: 10.1038/nmeth.3254

Henson, R. N., Mouchlianitis, E., and Friston, K. J. (2009). MEG and EEG
data fusion: Simultaneous localisation of face-evoked responses. Neuroimage 47,
581–589. doi: 10.1016/j.neuroimage.2009.04.063

Hinrich, J. L., Bardenfleth, S. E., Roge, R. E., Churchill, N. W., Madsen, K.
H., and Morup, M. (2016). Archetypal analysis for modeling multisubject fMRI
data. IEEE J. Select. Top. Signal Process. 10, 1160–1171. doi: 10.1109/JSTSP.2016.25
95103

Khanna, A., Pascual-Leone, A., Michel, C. M., and Farzan, F. (2015). Microstates
in resting-state EEG: current status and future directions. Neurosci. Biobehav. Rev.
49, e114163. doi: 10.1016/j.neubiorev.2014.12.010

Khanna, A., Pascual-Leone, A., and Farzan, F. (2014). Reliability of resting-
state microstate features in electroencephalography. PLoS ONE 9, e0114163.
doi: 10.1371/journal.pone.0114163

Krohne, L. G., Wang, Y., Hinrich, J. L., Moerup, M., Chan, R.
C., and Madsen, K. H. (2019). Classification of social anhedonia
using temporal and spatial network features from a social cognition

fMRI task. Hum. Brain Mapp. 40, 4965–4981. doi: 10.1002/hbm.
24751

Lehmann, D. (1971). Multichannel topography of human alpha
EEG fields. Electroencephalogr. Clin. Neurophysiol. 31, 439–449.
doi: 10.1016/0013-4694(71)90165-9

Lehmann, D., Ozaki, H., and Pal, I. (1987). EEG alpha map series: brain
micro-states by space-oriented adaptive segmentation. Electroencephalogr. Clin.
Neurophysiol. 67, 271–288. doi: 10.1016/0013-4694(87)90025-3

Lopes da Silva, F. (2013). EEG and MEG: relevance to neuroscience. Neuron 80,
1112–1128. doi: 10.1016/j.neuron.2013.10.017

Lord, L. D., Expert, P., Atasoy, S., Roseman, L., Rapuano, K., Lambiotte,
R., et al. (2019). Dynamical exploration of the repertoire of brain
networks at rest is modulated by psilocybin. Neuroimage 199, 127–142.
doi: 10.1016/j.neuroimage.2019.05.060

Makeig, S., Westerfield, M., Jung, T. P., Covington, J., Townsend, J., Sejnowski,
T. J., et al. (1999). Functionally independent components of the late positive
event-related potential during visual spatial attention. J. Neurosci. 19, 2665–2680.
doi: 10.1523/JNEUROSCI.19-07-02665.1999

Michel, C. M., and Koenig, T. (2018). EEG microstates as a tool for studying the
temporal dynamics of whole-brain neuronal networks: a review. Neuroimage 180,
577–593. doi: 10.1016/j.neuroimage.2017.11.062

Mishra, A., Englitz, B., and Cohen, M. X. (2020). EEG
microstates as a continuous phenomenon. Neuroimage 208, 116454.
doi: 10.1016/j.neuroimage.2019.116454

Mørup, M., and Hansen, L. K. (2012). Archetypal analysis for machine learning
and data mining. Neurocomputing 80, 54–63. doi: 10.1016/j.neucom.2011.06.033

Mørup, M., Hansen, L. K., Arnfred, S. M., Lim, L.-H., and Madsen, K. H. (2008).
Shift-invariant multilinear decomposition of neuroimaging data. Neuroimage 42,
1439–1450. doi: 10.1016/j.neuroimage.2008.05.062

Murray, M. M., Brunet, D., and Michel, C. M. (2008). Topographic
ERP analyses: a step-by-step tutorial review. Brain Topogr. 20, 249–264.
doi: 10.1007/s10548-008-0054-5

Olsen, A. S., Lykkebo-Valløe, A., Ozenne, B., Madsen, M. K., Stenbæk, D.
S., Armand, S., et al. (2021). Psilocybin modulation of dynamic functional
connectivity is associated with plasma psilocin and subjective effects. medRxiv
[Preprint]. doi: 10.1101/2021.12.17.21267992

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J. M. (2011).
FieldTrip: Open source software for advanced analysis of MEG, EEG, and
invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869.
doi: 10.1155/2011/156869

Pascual-Marqui, R. D., Michel, C. M., and Lehmann, D. (1995). Segmentation
of brain electrical activity into microstates; model estimation and validation. IEEE
Trans. Biomed. Eng. 42, 658–665. doi: 10.1109/10.391164

Poulsen, A. T., Pedroni, A., Langer, N., and Hansen, L. K. (2018). Microstate
eeglab toolbox: an introductory guide. bioRxiv [Preprint]. doi: 10.1101/289850

Preti, M. G., Bolton, T. A., and Van De Ville, D. (2017). The dynamic
functional connectome: state-of-the-art and perspectives. Neuroimage 160, 41–54.
doi: 10.1016/j.neuroimage.2016.12.061

Quinn, A. J., Vidaurre, D., Abeysuriya, R., Becker, R., Nobre, A. C., and
Woolrich, M. W. (2018). Task-evoked dynamic network analysis through Hidden
Markov Modeling. Front. Neurosci. 12, 603. doi: 10.3389/fnins.2018.00603

Seth, S., and Eugster, M. J. (2016). Probabilistic archetypal analysis.Mach. Learn.
102, 85–113. doi: 10.1007/s10994-015-5498-8

Sharon, D., Hämäläinen, M. S., Tootell, R. B., Halgren, E., and Belliveau,
J. W. (2007). The advantage of combining MEG and EEG: comparison
to fMRI in focally stimulated visual cortex. Neuroimage 36, 1225–1235.
doi: 10.1016/j.neuroimage.2007.03.066

Frontiers inNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnins.2022.911034
https://doi.org/10.1038/s41598-017-05425-7
https://doi.org/10.1046/j.1365-8711.2003.06099.x
https://doi.org/10.1007/s10548-015-0437-3
https://doi.org/10.1093/cercor/bhw135
https://doi.org/10.1016/j.neuroimage.2018.10.050
https://doi.org/10.1016/j.neuroimage.2021.118850
https://doi.org/10.1080/00401706.1994.10485840
https://doi.org/10.1016/j.jneumeth.2021.109313
https://doi.org/10.1093/bioinformatics/btg209
https://doi.org/10.1016/j.ins.2021.07.095
https://doi.org/10.1111/psyp.13336
https://doi.org/10.1109/EMBC.2013.6610626
https://doi.org/10.1038/nmeth.3254
https://doi.org/10.1016/j.neuroimage.2009.04.063
https://doi.org/10.1109/JSTSP.2016.2595103
https://doi.org/10.1016/j.neubiorev.2014.12.010
https://doi.org/10.1371/journal.pone.0114163
https://doi.org/10.1002/hbm.24751
https://doi.org/10.1016/0013-4694(71)90165-9
https://doi.org/10.1016/0013-4694(87)90025-3
https://doi.org/10.1016/j.neuron.2013.10.017
https://doi.org/10.1016/j.neuroimage.2019.05.060
https://doi.org/10.1523/JNEUROSCI.19-07-02665.1999
https://doi.org/10.1016/j.neuroimage.2017.11.062
https://doi.org/10.1016/j.neuroimage.2019.116454
https://doi.org/10.1016/j.neucom.2011.06.033
https://doi.org/10.1016/j.neuroimage.2008.05.062
https://doi.org/10.1007/s10548-008-0054-5
https://doi.org/10.1101/2021.12.17.21267992
https://doi.org/10.1155/2011/156869
https://doi.org/10.1109/10.391164
https://doi.org/10.1101/289850
https://doi.org/10.1016/j.neuroimage.2016.12.061
https://doi.org/10.3389/fnins.2018.00603
https://doi.org/10.1007/s10994-015-5498-8
https://doi.org/10.1016/j.neuroimage.2007.03.066
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Olsen et al. 10.3389/fnins.2022.911034

Skrandies, W. (1990). Global field power and topographic similarity. Brain
Topography, 3(1). doi: 10.1007/BF01128870

Skrandies, W. (1989). Data reduction of multichannel fields: global
field power and principal component analysis. Brain Topogr. 2, 73x96-80.
doi: 10.1007/BF01128845

Sra, S., and Karp, D. (2013). The multivariate watson distribution: maximum-
likelihood estimation and other aspects. J. Multivariate Anal. 114, 256–269.
doi: 10.1016/j.jmva.2012.08.010

Stevner, A. B., Vidaurre, D., Cabral, J., Rapuano, K., Nielsen, S. F.,
Tagliazucchi, E., et al. (2019). Discovery of key whole-brain transitions and
dynamics during human wakefulness and non-REM sleep.Nat. Commun. 10, 1035.
doi: 10.1038/s41467-019-08934-3

Thøgersen, J. C., Mørup, M., Damkiær, S., Molin, S., and Jelsbak, L.
(2013). Archetypal analysis of diverse Pseudomonas aeruginosa transcriptomes
reveals adaptation in cystic fibrosis airways. BMC Bioinformatics 14, 279.
doi: 10.1186/1471-2105-14-279

Tsanousa, A., Laskaris, N., and Angelis, L. (2015). A novel single-trial
methodology for studying brain response variability based on archetypal analysis.
Expert Syst. Appl. Int. J. 42, 8454–8462. doi: 10.1016/j.eswa.2015.06.058

Van De Ville, D., Britz, J., and Michel, C. M. (2010). EEG microstate
sequences in healthy humans at rest reveal scale-free dynamics. Proc.
Natl. Acad. Sci. U.S.A. 107, 18179–18184. doi: 10.1073/pnas.10078
41107

Vidaurre, D., Smith, S. M., and Woolrich, M. W. (2017).
Brain network dynamics are hierarchically organized in time. Proc.
Natl. Acad. Sci. U.S.A. 114, 12827–12832. doi: 10.1073/pnas.17051
20114

Wakeman, D. G., and Henson, R. N. (2015). A multi-subject, multi-
modal human neuroimaging dataset. Sci. Data 2, 1–10. doi: 10.1038/sdata.
2015.1

Watson, G. S. (1965). Equatorial distributions on a sphere. Biometrika 52, 193.
doi: 10.2307/2333824

Frontiers inNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fnins.2022.911034
https://doi.org/10.1007/BF01128870
https://doi.org/10.1007/BF01128845
https://doi.org/10.1016/j.jmva.2012.08.010
https://doi.org/10.1038/s41467-019-08934-3
https://doi.org/10.1186/1471-2105-14-279
https://doi.org/10.1016/j.eswa.2015.06.058
https://doi.org/10.1073/pnas.1007841107
https://doi.org/10.1073/pnas.1705120114
https://doi.org/10.1038/sdata.2015.1
https://doi.org/10.2307/2333824
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Combining electro- and magnetoencephalography data using directional archetypal analysis
	1. Introduction
	2. Methods
	2.1. Data
	2.2. Preprocessing
	2.3. Archetypal analysis
	2.4. Directional archetypal analysis
	2.5. Multimodal multisubject directional archetypal analysis
	2.6. Multimodal multisubject directional clustering
	2.7. Model comparison and consistency

	3. Results
	3.1. Three-dimensional illustration
	3.2. Examination of event-related potential subject variability
	3.3. ERP data, unimodal
	3.4. ERP data, multimodal

	4. Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


