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ABSTRACT
Interstitial lung diseases (ILDs), which can arise from a 
broad spectrum of distinct aetiologies, can manifest as 
a pulmonary complication of an underlying autoimmune 
and connective tissue disease (CTD-ILD), such as 
rheumatoid arthritis-ILD and systemic sclerosis (SSc-
ILD). Patients with clinically distinct ILDs, whether CTD-
related or not, can exhibit a pattern of common clinical 
disease behaviour (declining lung function, worsening 
respiratory symptoms and higher mortality), attributable 
to progressive fibrosis in the lungs. In recent years, the 
tyrosine kinase inhibitor nintedanib has demonstrated 
efficacy and safety in idiopathic pulmonary fibrosis (IPF), 
SSc-ILD and a broad range of other fibrosing ILDs with 
a progressive phenotype, including those associated 
with CTDs. Data from phase II studies also suggest 
that pirfenidone, which has a different—yet largely 
unknown—mechanism of action, may also have activity 
in other fibrosing ILDs with a progressive phenotype, in 
addition to its known efficacy in IPF. Collectively, these 
studies add weight to the hypothesis that, irrespective 
of the original clinical diagnosis of ILD, a progressive 
fibrosing phenotype may arise from common, underlying 
pathophysiological mechanisms of fibrosis involving 
pathways associated with the targets of nintedanib 
and, potentially, pirfenidone. However, despite the early 
proof of concept provided by these clinical studies, very 
little is known about the mechanistic commonalities and 
differences between ILDs with a progressive phenotype. 
In this review, we explore the biological and genetic 
mechanisms that drive fibrosis, and identify the missing 
evidence needed to provide the rationale for further 
studies that use the progressive phenotype as a target 
population.

INTERSTITIAL LUNG DISEASES AND THE 
CURRENT TREATMENT LANDSCAPE
Interstitial (or diffuse parenchymal) lung diseases 
(ILDs) represent a large, heterogeneous group of 
several hundred generally rare pulmonary pathol-
ogies, some of which are associated with significant 
morbidity and mortality.1–4 They are characterised 
by damage to the lung parenchyma and mediated 
by varying degrees of inflammation and fibrosis.5 
ILDs may arise from a broad spectrum of distinct 
aetiologies, both known and unknown. They can 
manifest as a pulmonary complication of an under-
lying connective tissue disease (CTD-ILD, such as 
rheumatoid arthritis (RA-ILD)6–8 and systemic scle-
rosis (SSc-ILD)9–11), as a result of environmental 
exposure to antigens (eg, chronic hypersensitivity 

pneumonitis)12 13 or due to unknown cause/s, 
as typified by idiopathic pulmonary fibrosis 
(IPF).1 14 15 Patients with clinically distinct ILDs 
have different comorbidities and treatment profiles, 
and are heterogeneous in both their clinical course 
and pathophysiology. Nevertheless, a variable 
proportion of patients within each ILD subgroup 
can have a similar clinical lung phenotype char-
acterised by declining lung function, worsening 
respiratory symptoms and health-related quality of 
life, and higher mortality. In recent literature, these 
have been termed ‘progressive fibrosing ILDs’, or 
‘fibrosing ILDs with a progressive phenotype’ (in 
this review, we use the latter term).16

Phase II and III clinical trials have established 
the efficacy and safety of the antifibrotic drugs 
pirfenidone17 18 and nintedanib19 20 for the manage-
ment of IPF (the archetypal ILD with a progressive 
phenotype), and both drugs are now approved for 
the treatment of IPF.21 22 In the phase III SENSCIS 
trial, nintedanib proved efficacious in reducing the 
annual rate of decline in forced vital capacity (FVC) 
versus placebo in patients with SSc-ILD.23 Post hoc 
analyses showed no heterogeneity in the treatment 
effect of nintedanib compared with placebo on the 
rate of FVC decline in subgroups defined by the 
presence or absence of ground-glass opacities.24 
Nintedanib was subsequently approved by the US 
Food and Drug Administration and the European 
Medicines Agency for the treatment of SSc-ILD in 
September 2019 and April 2020, respectively.25 26

Most recently, results from the phase III 
INBUILD study have shown that nintedanib is also 
efficacious in treating a pooled group of patients 
who have fibrosing ILDs with a progressive pheno-
type (consisting of several clinically distinct disease 
categories, including CTD-ILDs), by reducing the 
annual rate of decline in lung function after 52 
weeks of treatment.16 Of particular interest for 
rheumatologists are the proportions of patients 
in the nintedanib arm of INBUILD who have 
ILDs of autoimmune origin (24.7% in total): RA 
(12.7%), SSc (6.9%), mixed CTD (2.1%) and other 
autoimmune-related ILDs (3.0%). Subgroup anal-
yses have indicated consistent efficacy across these 
autoimmune subgroups;27 however, since INBUILD 
was not powered to assess efficacy by subgroup, 
the conclusions that can be drawn regarding the 
efficacy of nintedanib in individual autoimmune 
diseases are limited. For patients with unclassifiable 
ILD with a progressive phenotype, pirfenidone may 
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have some clinical benefit. In one phase II study, mean change in 
FVC% predicted in patients with a range of unclassifiable idio-
pathic interstitial pneumonias, or interstitial pneumonia with 
autoimmune features (IPAF) showing a progressive fibrosing 
phenotype, was lower over 24 weeks in those who received 
pirfenidone compared with placebo (in this study, progression 
was defined as >10% fibrosis on high-resolution CT (HRCT) 
within the previous 12 months, and an annual decline in FVC 
predicted ≥5%); however, the planned statistical model could 
not be applied to these primary endpoint data.28 In a sepa-
rate phase II study, which was terminated early due to futility 
based on an interim analysis, patients with progressive forms of 
fibrotic ILD (annual decline in FVC predicted ≥5%) had a lower 
decline in FVC% predicted over 48 weeks when taking pirfeni-
done compared with placebo (after imputation of missing data). 
However, a major limitation of this study was its small sample 
size (collagen-vascular disease-ILD (n=37), fibrotic non-specific 
interstitial pneumonia (NSIP) (n=27), chronic hypersensitivity 
pneumonitis (n=57) and asbestos-related lung fibrosis (n=6)), 
and the full results have not yet been published.29

The immunosuppressive agents cyclophosphamide (CYC) and 
mycophenolate mofetil (MMF) have also been evaluated in SSc-
ILD. In one study, CYC showed beneficial effects on lung func-
tion compared with placebo after 1 year of treatment, although 
these mostly dissipated after 2 years.30 In a subsequent trial, 2 
years of treatment with MMF did not significantly change the 
primary FVC endpoint compared with 1 year of CYC, though 
FVC improved in both groups, and MMF was better tolerated.31 
The anti-interleukin (IL)-6 receptor antibody tocilizumab has 

been evaluated in patients with SSc and demonstrated preser-
vation of lung function in a phase II study,32 although a phase 
III trial did not meet its primary modified Rodnan Skin Score 
endpoint.33 The tyrosine kinase inhibitor imatinib is approved 
for the treatment of chronic myeloid leukaemia and targets the 
Bcr-Abl/c-Abl, a kinase downstream of transforming growth 
factor-β (TGF-β) signalling.34 Imatinib also inhibits the platelet-
derived growth factor (PDGF) receptor tyrosine kinase and 
has been evaluated in small open-label studies in SSc-ILD,35 36 
although no large randomised trials have been conducted and its 
efficacy is unclear.

Collectively, these trial results suggest that common fibrotic 
pathways in patients progressing to end-stage lung disease 
(involving the targets of nintedanib and, potentially, pirfeni-
done) may exist. The mechanisms of action of nintedanib and 
pirfenidone may therefore shed some light on the pathways 
involved in disease pathogenesis. Nintedanib is a small molecule 
tyrosine kinase inhibitor that targets receptor tyrosine kinases 
involved in fibrosis, including those for PDGF, fibroblast growth 
factor (FGF), vascular endothelial growth factor (VEGF) and 
TGF-β, as well as non-receptor kinases involved in inflamma-
tion and proliferation (Src family kinases), and activation and 
polarisation of macrophages (colony-stimulating factor-1).37 38 
Nintedanib also inhibits the proliferation of vascular cells39 and 
modulates fibroblast activity.40 The molecular mechanism of 
pirfenidone is not fully understood, but in preclinical models it 
reduces bleomycin-induced lung fibrosis in mice.41 Pirfenidone 
inhibits stress-activated kinases42 and modulates expression of 
several growth factors, as well as cytokines that are thought to 
be relevant to fibrosis, including TGF-β, PDGF, stromal cell-
derived factor/C-X-C ligand 12 (SDF-1a/CXCL12) and tumour 
necrosis factor-α. It may also reduce fibroblast proliferation 
and alveolar macrophage activation, and modulate extracel-
lular matrix (ECM) deposition.43 44 Known and possible targets 
for the antifibrotic action of nintedanib and pirfenidone are 
shown in figure 1, although the relative weight or importance 
of specific pathways in different ILDs cannot reliably be made 
based on the current level of evidence. This review appraises 
current pathobiological concepts of fibrosis in ILDs exhibiting a 
progressive fibrosing phenotype, with a particular focus on some 
of the ILDs most commonly encountered by the rheumatologist, 
including ILDs associated with SSc, RA, inflammatory myopathy 
and Sjögren’s syndrome.

Fibrosing CTD-ILDs with a progressive phenotype
Although IPF is the archetypal ILD with a progressive pheno-
type, a proportion of patients with non-IPF ILDs experience a 
disease course similar to that seen in IPF.45 ILDs in which patients 
are at risk of developing a progressive fibrosing phenotype 
include chronic hypersensitivity pneumonitis, idiopathic NSIP 
(iNSIP), CTD-associated ILDs (including RA, SSc, mixed CTD, 
Sjögren’s syndrome (though rarely) and inflammatory myop-
athies), pneumoconiosis (eg, asbestosis), drug-induced ILDs, 
unclassifiable ILDs, pulmonary sarcoidosis, and rare ILDs, such 
as pleuroparenchymal fibroelastosis (PPFE).13 16 28 46 47 However, 
the proportion of patients who develop a progressive fibrosing 
phenotype varies by disease, and for many ILDs, the incidence 
is not known.

The term ‘progressive’ has been used for a long time in clinical 
and research settings; however, definitions of progression in the 
context of the fibrotic phenotype have varied and there are no 
definitive criteria. Most recently, the INBUILD study used a defi-
nition of progression based on fulfilment of ≥1 of the following 

Figure 1  Known and proposed targets for the antifibrotic actions 
of nintedanib and pirfenidone. CSF, colony-stimulating factor-1; CXCL, 
C-X-C ligand; PDGF, platelet-derived growth factor; TGF, transforming 
growth factor; TNF, tumour necrosis factor; SDF, stromal cell-derived 
factor; VEGF, vascular endothelial growth factor.
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criteria for progression of ILD within a 24-month period (despite 
management with standard treatments, excluding nintedanib or 
pirfenidone): relative decline in FVC predicted ≥10%; rela-
tive decline in FVC predicted ≥5–<10% with either worsened 
respiratory symptoms or increased extent of fibrosis on chest 
HRCT; or a combination of worsened respiratory symptoms 
and an increased extent of fibrosis on HRCT. This definition 
did appear to enrich for patients with progressive disease in the 
overall population, as demonstrated by the decline in patients in 
the placebo arm.16 However, small patient numbers and the lack 
of a comparator group without enrichment criteria mean it is 
not possible to draw definite conclusions regarding enrichment 
in certain subgroups, including the CTD-ILDs.

In our review of the literature, we found only a small 
number of studies that included patients that would meet the 
INBUILD inclusion criteria of a progressive phenotype. These 
studies, which include SSc-ILD, RA-ILD, ILD associated with 
inflammatory myopathy (polymyositis and dermatomyositis), 
and Sjögren’s syndrome-ILD, are summarised in table  1 and 
reviewed in further detail elsewhere.48 Although these studies 
give an approximate indication of the proportion of patients 
who may develop a progressive fibrosing phenotype in certain 
ILDs, further longitudinal studies are needed to expand the 
evidence base.

In patients with certain ILDs, a specific radiographic pattern 
of fibrosis (usual interstitial pneumonia, UIP) identified by 
HRCT is often associated with more rapid disease progression 
compared with other fibrotic patterns. This association has been 
observed in patients with a range of ILDs, including IPF, chronic 
hypersensitivity pneumonitis, RA-ILD45 49–53 and, though rarely, 
sarcoidosis.54 In patients with SSc-ILD, the most common pattern 
of fibrosis on HRCT is NSIP.55 However, radiographic patterns 
appear not to be related to a progressive fibrosing phenotype in 
SSc-ILD,56 indicating that while fibrosing ILDs with a progres-
sive phenotype share some similarities, differences also exist. 
In CTD-ILDs, NSIP is generally the most frequently observed 
pattern (with the exception of RA).

Biological mechanisms driving progressive pulmonary fibrosis
Broadly, fibrosis is characterised by the overgrowth, stiffening 
and/or scarring of tissues due to excess deposition of ECM 
components, notably collagen.57 In fibrotic lung diseases, repet-
itive cycles of alveolar epithelial injury and attempted repair are 
thought to lead to the gradual destruction of functional lung 
parenchyma and its replacement by increasing deposits of non-
functional connective tissue (fibrosis). This loss of functional 

alveoli due to sustained fibrosis leads to respiratory insufficiency 
and early mortality.58 59

In addition to epithelial lung injury, other forms of initial 
lung injuries (depending on the disease) might contribute to 
progression of the fibrotic phenotype. These include cellular 
and/or humoral autoimmunity (as in all CTD-ILDs, but to 
a varying degree),55 endothelial cell dysfunction (as in SSc or 
asbestosis),60–62 granuloma formation (as in sarcoidosis)63 or 
alveolar macrophage activation (as in asbestosis).64 For some 
ILDs, the initiating event may be hard to identify, such as in 
RA, where infections, cigarette-smoking, mucosal dysbiosis, 
immune response (including autoantibodies against citrulli-
nated proteins), host genetics and premature senescence have 
all been proposed to play a role.55 65–67 Chronic microaspiration 
secondary to gastro-oesophageal reflux, a common complica-
tion of SSc due to oesophageal motor dysfunction, can lead to 
persistent alveolar epithelial injury, potentially accelerating the 
progression of lung fibrosis.68 Moreover, the increased negative 
intrathoracic pressure during inspiration caused by lung fibrosis 
may aggravate gastro-oesophageal reflux in a vicious circle.68

Following the injury, wound-healing responses are induced. 
If sustained and dysregulated, pathological fibrogenesis then 
occurs, whereby the rate of new collagen synthesis exceeds the 
rate of collagen degradation, culminating in the accumulation 
of collagen over time.57 The principal cellular mediators of 
fibrosis, regardless of the initial injury, are collagen-secreting 
myofibroblasts.57

Both the innate and adaptive immune system contribute 
towards the development of fibrosis. This is mediated by cellular 
and humoral components, underpinning the rationale for immu-
nomodulatory therapies.69 Preclinical studies have identified 
profibrotic (Th2, Th17), antifibrotic (Th1, Th22 and γδ-T) and 
pleiotropic (Tregs and Th9) T cells as mediators of fibrosis,69 
and the profibrotic action of PD-1+ CD4+ T cells (targetable 
by currently available immunomodulatory therapies) has been 
specifically demonstrated in models of pulmonary fibrosis asso-
ciated with IPF and sarcoidosis.70 B cells also play a role, having 
been detected at higher levels in the lungs of patients with IPF, 
RA-ILD and Sjögren’s syndrome, among others.71 72 Other 
innate immune cells implicated in the process of fibrosis include 
neutrophils and macrophages, the profibrotic effects of which 
are mediated via secretion of TGF-β, PDGF and IL-6.69 73 Blood 
monocytes are recruited to the lung during the fibrotic process, 
where they have been shown in both IPF and SSc to differentiate 
into fibrocytes74 75 and into myofibroblasts in SSc.76 Macrophages 
can undergo polarisation to become either ‘proinflammatory’ 

Table 1  Studies including patients that would meet the INBUILD criteria for progression

ILD subtype Study size Proportion of patients with a progressive phenotype

SSc-ILD n=695 ~33% of patients with DLco pred <50% within 3 years of the onset of Raynaud’s phenomenon121

Limited cutaneous SSc n=326 Worsening of ILD (>10% decline in FVC from baseline to second visit) observed in 19.9% of patients at 24 months 
follow-up122

RA-ILD n=167* 14% of patients with FVC <50% pred at diagnosis, increasing to 22% after 5 years; 29% of patients with DLco <40% 
pred at diagnosis, increasing to 40% after 5 years8

Inflammatory myopathy-associated ILD n=107 Worsening of pulmonary symptoms, deterioration on HRCT, and decline in lung function (≥10% in FVC or ≥15% in DLco) 
observed in 15.9% of patients (despite therapy), after a median 34 months of follow-up (range 4–372 months)89

Sjögren’s syndrome-associated ILD n=18† 5 patients (28%) had a decline in FVC pred of ≥10% or a decline in DLco pred of ≥15%, despite immunosuppression 
(median follow-up: 38 months)123

*167 patients encountered in clinical practice and referred for multi-specialty evaluation in a tertiary care centre (potential centre bias: severe cases are more often encountered 
at a specialised centre).
†18 patients selected over a 13-year period.
DLco, diffusing capacity of the lung for carbon monoxide; FVC, forced vital capacity; HRCT, high-resolution CT; ILD, interstitial lung disease; pred, predicted; RA, rheumatoid 
arthritis; SSc, systemic sclerosis.
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classical M1 macrophages, which secrete proinflammatory and/
or profibrotic cytokines (IL-1β, IL-8, IL-10 and CXCL13), or 
‘profibrotic’ alternative M2a macrophages, which secrete profi-
brotic cytokines (CCL22, PDGF-BB and IL-6).69 73 Neutrophils 
have pleiotropic effects within the fibrotic milieu, including 
the secretion of elastase and matrix metalloproteinases, which 
degrade ECM and activate accumulation of ECM driven by 
TGF-β.69 Neutrophil extracellular traps play a key role in the 
development of fibrosis, having been detected in close proximity 
to alpha-smooth muscle actin-expressing fibroblasts in biopsies 
from patients with fibrotic ILD.77 Finally, mast cells are increased 
in fibrotic areas of alveolar parenchyma in patients with a range 
of fibrotic lung diseases, with strong evidence for important bidi-
rectional interactions between mast cells and myofibroblasts in 
fibrotic tissues.78

Our current understanding is that immune cells are profi-
brotic, though there is mounting preclinical and clinical evidence 
that the composition of the inflammatory infiltrate determines its 
fibrotic activity, and that some immune/inflammatory cells may 
even exert direct antifibrotic effects depending on the local envi-
ronment.79 80 T cells, for example, have been shown to inhibit 
fibroblast-to-myofibroblast differentiation in vitro through the 
secretion of inhibitory prostaglandins.81 Adoptive transfer of 
splenic Treg cells has been shown to attenuate bleomycin-induced 
lung fibrosis in vivo,82 and global impairment of CD4+CD25+-
FOXP3+ Treg cells has been found to correlate strongly with 
disease severity in IPF, suggesting a role for Tregs in the fibrotic 
process.83 B cells may also contribute to the formation of an anti-
fibrotic ‘shield’, acting as regulators of polymorphonuclear cells 
and restraining the ability of these cells to cause ILD.84 Gene 
knockout studies have identified a gene in B cells that appears to 
regulate lung fibrosis.85 Interestingly, in an experimental model 
of cardiac fibrosis, engineered T cells targeting the Fibroblast 
activation protein protected against cardiac fibrosis,86 providing 
proof of principle for the development of immunotherapeutic 
drugs for the treatment of fibrotic disorders.

Several humoral mediators also play a role in fibrogenesis. 
IL-13 is known to stimulate differentiation of lung fibroblasts to 
myofibroblasts via c-Jun N-terminal kinase-signalling, whereas 
IL-17 acts in concert with TGF-β-mediated pathways to 
promote pulmonary fibrosis. TGF-β itself promotes epithelial-
to-mesenchymal transition, induces fibrosis through canonical 
and non-canonical pathways such as mitogen-activated protein 
kinase, extracellular signal-regulated kinases and PI3K/Akt 
signalling, and modulates fibroblast differentiation into myofi-
broblasts that drive ECM accumulation. PDGF is known to 
activate and promote ECM gene expression in fibroblasts, and 
CCL2 may increase fibrocyte recruitment and differentiation 
into fibroblasts (in addition to its role in monocyte chemo-
taxis). In some ILDs, antibodies may play a key role. In SSc, for 
example, anti-topoisomerase I antibodies are associated with 
the presence and severity of ILD at baseline.11 87 In RA-ILD, IgA 
anti-citrullinated protein antibodies (ACPAs) (commonly found 
in synovial and articular sites) have been identified in sputum 
from individuals at risk of RA, suggesting that the lung may be 
the primary site of ACPA generation.55 The presence of anti-
Sjögren’s-syndrome-related antigen A antibodies is a predis-
posing factor for ILD in patients with Sjögren’s syndrome.88 In 
myositis-associated ILD, however, one study found no correla-
tion between the deterioration of ILD and the presence of 
antinuclear antibodies, anti-Jo-1 antibodies or anti-PM-Scl anti-
bodies.89 While an association between antibodies and certain 
forms of ILDs has been identified, a causal pathogenetic rela-
tionship has not.

Little is known about how the mechanisms of fibrosis differ 
across distinct ILDs, and even less is known about whether 
progressive fibrosis is driven by a different set of mediators 
than non-progressive fibrosis. The most studied ILDs from 
a mechanistic perspective are IPF and SSc-ILD. Common to 
both diseases are activation of macrophages with a similar 
chemokine expression profile (M2 profibrotic phenotype), 
and similar T-cell profiles (Th2-increased Tregs, Th22, Th17, 
increased ratio of CD4 to CD8 T cells).90 However, the B-cell 
profiles of patients with IPF and SSc-ILD differ, as do their 
T-cell chemokine profiles (IL-4, IL-5, IL-10 and IL-17 for IPF, 
and IL-4, IL-5, IL-6, IL-10, IL-13 and IL-22 for SSc-ILD).90 In 
particular, IL-6 is known to play a key role in SSc by increasing 
collagen production through fibroblast stimulation, myofibro-
blast differentiation and inhibiting the secretion of metallo-
proteinase.91 In one study, serum IL-6 levels appeared to be 
predictive of early disease progression in patients with mild 
(FVC >70%) SSc-ILD,92 yet were not in another study of SSc-
ILD,93 and CXCL4 has also been correlated with the presence 
and progression of lung fibrosis in SSc.94 In RA-ILD, as in 
IPF and SSc-ILD, Th-17-cell-mediated immunity is involved 
in pathogenesis (the IL-17 receptor is upregulated in both 
RA-ILD and IPF).55 66 In addition, lung tissue from individ-
uals with RA-ILD has substantially greater numbers of B cells 
and CD4+ T cells than lung tissue from individuals with idio-
pathic UIP, implying that immune dysregulation might be more 
prevalent in RA-ILD than in idiopathic UIP.95 Biomarkers of 
fibrosis could provide an important clue, but to date no serum 
biomarker has been identified as a sufficiently robust prog-
nostic marker to justify its use in clinical practice. In studies in 
lung transplantation, it has also been shown that the concen-
trations of PDGF, FGF-2, VEGF and colony-stimulating 
factor-1 were significantly increased in lungs with progressive 
ILDs, including IPF, SSc-ILD and other ILDs, compared with 
donor lungs.96

Genetic mechanisms driving progressive pulmonary fibrosis
Certain genetic mutations are implicated in the aetiology of 
ILDs. Mutations in telomere-related genes (TERT, TERC, 
RTEL1, PARN, TINF2, NAF1 and DKC1) have been associ-
ated with a broad range of ILDs, including IPF, iNSIP, RA-ILD, 
acute interstitial pneumonia, cryptogenic organising pneu-
monia, chronic hypersensitivity pneumonitis and PPFE.97–99 
Telomeres are distal regions of chromosomes associated with 
specific protein complexes, which protect the chromosome 
against degradation and aberration. It is believed that loss 
of function in the telomerase complex may influence the 
turnover and healing of alveolar epithelial cells after an 
initial damaging stimulus, thereby triggering fibrosis.100 In 
support of this, mice with defective telomere homeostasis 
develop spontaneous pulmonary fibrosis or are more suscep-
tible to injury.100 101 Telomere dysfunction in type II alveolar 
epithelial cells (mediated by deletion of the telomere shel-
terin protein TRF1) is also sufficient to cause lung fibrosis 
in mice.102 Conversely, vector-induced telomerase expression 
has shown therapeutic effects in a mouse model of pulmonary 
fibrosis, indicating that telomerase activation may represent 
an effective treatment for pulmonary fibrosis provoked by 
or associated with short telomeres.103 Telomerase activators 
have also shown activity in preclinical models of fibrosis.104 
In patients with ILDs, significantly shortened telomeres have 
been found, and these have been linked to defective immu-
nity105–107 (the shortest telomeres are found in patients with 
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IPF).108 However, it is important to note that not all individ-
uals with mutations in telomere-related genes will necessarily 
have short telomeres or develop ILD.97 In RA-ILD, coding 
region mutations in the genes RTEL1 and TERT lead to telo-
mere shortening and onset of RA-ILD at a younger age.99 In 
hypersensitivity pneumonitis, short telomere length has been 
associated with extent of fibrosis, histopathological features 
of UIP, and reduced survival, suggesting shared pathobi-
ology with IPF.109 Beyond these associations, however, no 
studies to our knowledge have exposed a direct link between 
specific telomere-related genotypes and progressive (or non-
progressive) fibrosis.

Another gene implicated in some forms of ILD is the mucin 
5B gene (MUC5B). A common variant in the promoter region 
of this gene (rs35705950) has been associated with an increase 
in IPF susceptibility and overall mortality.110–113 Similar associ-
ations have also been observed in patients with RA-ILD,65 110 as 
well as in hypersensitivity pneumonitis109 and IPAF,114 but not 
in SSc-ILD,115 myositis-associated ILD116 or sarcoidosis,117 again 
highlighting not only the similarities but also the differences 
between ILDs.

Most of the available genetic data come from studies in IPF, 
but risk alleles in other genes have also been identified for a range 
of non-IPF ILDs, primarily in RA-ILD, and chronic hypersensi-
tivity pneumonitis.118 Currently, it is not clear whether specific 
genetic risk factors predispose certain individuals to develop a 
progressive fibrosing phenotype. If confirmed through longitu-
dinal studies, genetic markers might help to identify those most 
at risk of progression.

Furthermore, epigenetic mechanisms play a key role in 
biological processes at the level of chromatin structure and 
organisation, including DNA methylation, post-translational 
modifications of histone tails and non-coding RNA. Under 
physiological conditions, the epigenome ultimately determines 
the silencing or activation of gene expression in a temporally 
coordinated way, and its dysregulation contributes to a variety 
of human diseases, including IPF.119 Epigenetics may explain 
the profibrotic effect of ageing as a condition, or environmental 
factors such as tobacco smoke or inhaled air pollution in IPF, and 
other fibrotic conditions such as RA-ILD.120

SUMMARY
In recent years, phase III clinical trials have demonstrated the 
efficacy and safety of new classes of drugs in slowing disease 
progression in patients with IPF (nintedanib and pirfeni-
done), and SSc-ILD (nintedanib). Results from recent phase 
III clinical trials have now shown that nintedanib can slow the 
progression of ILD (as measured by FVC decline) in patients 
with a broad range of fibrosing ILDs with a progressive pheno-
type, including those associated with CTDs. Available data for 
pirfenidone in the treatment of clinically distinct ILDs with 
a progressive phenotype come from phase II trials in which, 
despite some positive endpoints, the primary endpoints were 
not met. Though not powered to detect efficacy by disease 
subgroup, these trials add weight to the hypothesis that in 
a number of clinically distinct ILDs, a progressive fibrosing 
phenotype may arise from common, underlying mecha-
nisms of fibrosis, irrespective of the original clinical trigger 
or association. However, to date, this hypothesis has only 
been proven for the targets of nintedanib and partially for 
the targets of pirfenidone. This review found little evidence 
for other common pathways in progressive fibrosing ILDs, 
mostly because of the lack of appropriate studies. Thus, 

there is currently insufficient preclinical support for other 
treatment studies using the progressive phenotype as a target 
population. To identify common and distinct pathways, high-
throughput genomics, proteomics and metabolomics studies 
using adequate lung tissue from patients with the progressive 
phenotype of different aetiologies are urgently needed. These 
analyses may then provide the preclinical rationale for addi-
tional, specific targeted therapies to support the novel and 
important concept of using the progressive fibrosing pheno-
type as a common target population in clinical studies.
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