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Combined treatment of Nimotuzumab and rapamycin
is effective against temozolomide-resistant human
gliomas regardless of the EGFR mutation status
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Abstract

Background: The treatment of glioblastoma multiforme (GBM) is an unmet clinical need. The 5-year survival rate of
patients with GBM is less than 3%. Temozolomide (TMZ) remains the standard first-line treatment regimen for gliomas
despite the fact that more than 90% of recurrent gliomas do not respond to TMZ after repeated exposure. We have also
independently shown that many of the Asian-derived glioma cell lines and primary cells derived from Singaporean
high-grade glioma patients are indeed resistant to TMZ. This issue highlights the need to develop new effective anti-cancer
treatment strategies. In a recent study, wild-type epidermal growth factor receptor (WtEGFR) has been shown to phosphorylate
a truncated EGFR (known as EGFRVIII), leading to the phosphorylation of STAT proteins and progression in gliomagenesis.
Despite the fact that combination of EGFR targeting drugs and rapamycin has been used before, the effect of
mono-treatment of Nimotuzumalb, rapamycin and combination therapy in human glioma expressing different types
of EGFR is not well-studied. Herein, we evaluated the efficacy of dual blockage using monoclonal antibody against
EGFR (Nimotuzumab) and an mTOR inhibitor (rapamycin) in Caucasian patient-derived human glioma cell lines, Asian
patient-derived human glioma cell lines, primary glioma cells derived from the Mayo GBM xenografts, and primary
short-term glioma culture derived from high-grade glioma patients.

Methods: The combination effect of Nimotuzumab and rapamycin was examined in a series of primary human glioma
cell lines and glioma cell lines. The cell viability was compared to TMZ treatment alone. Endogenous expressions of EGFR
in various GBM cells were determined by western blotting.

Results: The results showed that combination of Nimotuzumab with rapamycin significantly enhanced the therapeutic
efficacy of human glioma cells compared to single treatment. More importantly, many of the Asian patient-derived
glioma cell lines and primary cells derived from Singaporean high-grade gliomas, which showed resistance to TMZ, were
susceptible to the combined treatments.

Conclusions: In conclusion, our results strongly suggest that combination usage of Nimotuzumab and rapamycin exert
higher cytotoxic activities than TMZ. Our data suggest that this combination may provide an alternative treatment for
TMZ-resistant gliomas regardless of the EGFR status.
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Background

The EGER signaling system is an attractive target for
therapeutic intervention. EGFR gene amplification and
overexpression account for approximately 40%-60% of
GBMs [1,2]. In a report by Heimberger and colleagues,
42.6% of GBM patients failed to express EGFR, 25.9%
had an overexpression of wtEGFR and 31.5% expressed
a specific EGFR mutant (EGFRVIII, also known as EGFR
type III, de2-7, AEGFR) [2]. In a subsequent study, 46%
of GBMs lack EGFR [3]. Of note, EGFRVIII expression
in GBM is frequently associated with amplification and
co-expression of the wtEGFR [4]. Elevated levels of
EGEFR or EGFRVIII expression confer enhanced cell pro-
liferation and invasion [5]. Given the high frequency of
EGEFR dysregulation, inhibiting EGFR signaling pathway
appears to be a promising and rational therapeutic strat-
egy for attenuating GBM growth.

Nimotuzumab is a humanized monoclonal antibody
that targets the extracellular domain of EGFR and inhibits
the binding of EGF ligands [6]. It has been extensively
used in various solid tumors such as esophageal carcin-
oma [7], pancreatic cancer [8] and glioma [9,10]. Nimotu-
zumab has been shown to increase the sensitivity of
radioresistant cancer stem cells when used in combination
with radiation [11] and prolonged the survival of patients
with concurrent radiochemotherapy treatment [12]. Hy-
peractivation of downstream phosphatidylinositol 3-kinase
(PI3K)/AKT/mammalian target of rapamycin (mTOR)
pathway is another common occurrence of human glioma
[13,14]. mTOR-dependent processes plays a critical role in
controlling mRNA translation, ribosome biogenesis, au-
tophagy and metabolism [15]. Rapamycin, also known as
Sirolimus, inhibits the highly conserved mTOR by form-
ing a complex with its intracellular receptor, the FK506-
binding protein [16]. The latter binds directly to mTOR
complex 1 but not mTOR complex 2. Growth factors are
known to stimulate mTORCI through the PI3K/AKT path-
way [17]. Rapamycin has been shown to be effective against
intracerebral glioma xenografts and has a cytostatic effect
against gliomas [18]. It is safe when co-administered with
another EGFR tyrosine kinase inhibitor (Gefitinib) in sev-
eral clinical trials [19,20] and could enhance cell death in
combination with Nimotuzumab in epidermoid carcinoma
cell line A431 [21].

In a recent study, wild-type epidermal growth factor
receptor (WtEGFR) has been shown to phosphorylate a
truncated EGFR (known as EGEFRVIII), leading to the
phosphorylation of STAT proteins and progression in
gliomagenesis [22]. This finding may explain earlier report
of why EGFRVIII expression rarely occurs without EGFR
gene amplification [4]. Despite the fact that combination of
EGER targeting drugs and rapamycin has been used before,
the effect of mono-treatment of Nimotuzumab, rapamycin
and combination therapy in human glioma expressing
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different types of EGFR is not well-studied. Herein, we
evaluated the efficacy of dual blockage using monoclonal
antibody against EGFR (Nimotuzumab) and an mTOR in-
hibitor (rapamycin) in Caucasian patient-derived human
glioma cell lines, Asian patient-derived human glioma cell
lines, primary glioma cells derived from the Mayo GBM
xenografts, and primary short-term glioma culture derived
from high-grade glioma patients. Collectively, our results
showed that Nimotuzumab, in combination with rapamy-
cin, significantly enhanced the therapeutic efficacy in hu-
man glioma cells compared to single treatment. The
combined treatment is effective regardless of the EGFR
status in human glioma.

Methods

Ethics statement

The use of human glioma cell lines and patient-derived
GBMs were approved by the Singhealth Centralized In-
stitutional Review Board, Singapore. GBM tumor speci-
mens from patients, who had undergone surgery, were
obtained after written informed consent.

Drugs and treatment

Temozolomide (TMZ; Temodal) was obtained from
Schering Plough and dissolved in DMSO to a final con-
centration of 100 mM. Rapamycin was obtained from
Selleckchem.com (Houston, TX) and dissolved in DMSO
to a final concentration of 1 M. Nimotuzumab was pro-
vided by Innogene Kalbiotech Pte Ltd (Singapore) at a
concentration of 5 mg/ml (equivalent to 0.03 mM). For all
treatments, except Nimotuzumab, DMSO was added to a
final concentration of 0.1% and used as vehicle control.

Cell culture

Human glioma Gli36 cells was kindly provided by A.T.
Campagnoni (UCLA School of Medicine, Los Angeles,
CA) and AGli36 cells was provided by M. Sena-Esteves
(University of Massachusetts, Boston, MA). Human gli-
oma U87MG was purchased from American Type Culture
Collection (Rockville, MD, USA). Human glioma U87MG.
EGFRVIII and U87MG.WtEGFR were engineered to ex-
press EGFRVIII and wild-type EGFR proteins respectively
and were kindly provided by W. Cavenee, Ludwig Institute
of Cancer Research, UCSD, CA). Immortalized normal
human astrocytes (iNHA) that overexpress E6, E7, and
human telomerase reverse transcriptase (WTERT) were
kindly provided by R.O. Pieper (University of California,
San Francisco, CA) and was cultured in DMEM supple-
mented with 10% FBS, 0.5 pg/ml puromycin (Invivogen,
San Diego, CA), 25 pg/ml blasticidin and 1.25 pug/ml fun-
gizone (Life Technologies, Grand Island, NY). Primary
GBM xenograft cell lines, GBM6 and GBM10, were pur-
chased from Mayo Clinic (Rochester, MN) and maintained
as subcutaneous xenografts as previously described [23].
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Figure 1 Enhanced efficacy using rapamycin and Nimotuzumab was observed in EGFR-null cells. IC50 of (A) TMZ, (B) Nimotuzumab, and
(C) rapamycin in iNHA cells was determined by subjecting the cells to a range of drug concentrations. Viability of cells was determined by CCK-8
assay. Data are presented as mean + SEM. (D) Western blot analysis was carried in EGFR-null Gli36 cells to verify the absence of EGFR expression.
A431 cells induced with EGF served as positive (+) control for wtEGFR expression. (E) IC50 of TMZ was determined in Gli36 cells (from 0 to 1000 uM) as
described previously. (F) Percentage of cell viabilities of Gli36 cells upon single treatment with either rapamycin (0.1 mM) or Nimotuzumab (0.013 mM) and
combination treatment of Nimotuzumab and rapamycin. Data are presented as mean + SEM. Combination groups were compared to individual single
drug treatments ***p < 0.001. (G) Western blot analysis of phospho-ERK1/2, total ERK1/2, phospho-AKT and total AKT in Gli36 cells treated with DMSO,
TMZ, rapamycin and Nimotuzumab for 24 h. Pan actin served as loading control. The protein expression is normalized to their respective controls in
the blots. The numbers below the blot are relative to the respective controls from arbitrary values generated from the MetaVue software, as described

in methods.

Primary Asian glioma cell lines cultivated from Chinese gli-
oma patients, G5T/VGH, GBM8401 and GBM8901 were
purchased from Food Industry Research and Development
Institute, Bioresource Collection and Research Center
(Hsinchu, Taiwan). GBM8401/TSGH, NDMC (abbreviated
as GBM8401) was derived from a patient with a right par-
ietal GBM brain tumor [24]. These cells expressed
astrocyte-specific intracytoplasmic marker, glial-acidic fi-
brillary proteins (GFAP), with a doubling time of 38 h and
were capable of forming tumors subcutaneously in athymic
nude mice. Astrocytic differentiation and growth inhibition
could be induced after dibutyryl (db)-cAMP treatment.
GBMS8901 was also cultivated from a GBM patient. Similar
to GBM8401, these cells were GFAP-positive, primarily bi-
polar and tripolar cells at initial culture but adopted
epitheloid-like cell morphology at confluency. Notably, fol-
lowing subcutaneous transplantation, these cells could
metastasize to the lung [25]. Lastly, G5T/VGH cells lacked
GFAP and only formed tumors initially which regressed
gradually.

All cells were maintained at 37°C in a 5% CO2 - 95% air
atmosphere and cultured in Dulbecco’s modified Eagle
medium (DMEM) supplemented with 10% Fetal Bovine
Serum (FBS; Hyclone Laboratories, Logan, UT), penicillin
(100 U/ml; Life Technologies, Grand Island, NY), strepto-
mycin (100 pg/ml; Life Technologies) and 2 mM L-glu-
tamine (Life Technologies). AGli36 and the U87MG.
EGERVIII cells were further supplemented with 1 pg/ml
puromycin (Sigma-Aldrich Corp., St. Louis, MO ) and
500 pg/ml G418 (Life Technologies, Grand Island, NY ),
respectively. Primary Asian glioma cell lines GBM8401
and GBM8901 were cultured in RPMI 1640 supplemented
with 10% FBS, penicillin/streptomycin and L-glutamine.

Isolation of primary short-term glioma cultures

High-grade anaplastic astrocytomas, NNI37 and NNI41,
were obtained from local patients undergoing tumor re-
section surgery, following approval of patient informed
consent by SingHealth Centralized Institutional Review
Board, Singapore. Isolation of cells from patient-derived
tumor tissue was performed as follows. In brief, tumor
specimens were cut into smaller pieces and washed

thoroughly with phosphate-buffered saline (PBS) prior
to digestion with 0.25% Trypsin at 37°C for 30 min with
constant stirring. Equal volumes of Astrocyte Growth
Medium (AGM; Lonza, Basel, Switzerland) were then
added to the suspension. Tumor pieces were allowed to
settle prior to collecting the supernatant and filtering
through a 70-pm membrane filter (BD Biosciences,
Franklin Lakes, NJ). Filtered supernatant was centrifuged
at 1000 rpm for 5 min at room temperature (r. t). The
cell pellet was then resuspended in fresh AGM media
and cultured on short-term basis.

Cell viability assay

Cell viability was determined by cell counting kit-8 (CCK-8)
assay (Dojindo, Japan), which measures the number of viable
cells based on bioreduction of a water soluble formazan.
Human glioma cells (5000 cells/well) were seeded in 96-
well dish and 24 h later, Nimotuzumab, rapamycin and
respective controls were added to the cells. After an add-
itional 24 h of respective treatments, 10% (v/v) of CCK-8
dye was added into the wells and cells were incubated for
1-2 h. The percentage of viable cells was then determined
by measuring absorbance at an optical density (OD)
450 nm with a reference at 650 nm using Victor spectro-
photometer (PerkinElmer Life Sciences, Waltham, MA).
The percentage cell viability for each cell line and treat-
ment group was normalized to respective vehicle controls.

Western blot

Equal amounts of proteins were resolved in either 8 or
10% SDS-PAGE and electroblotted onto polyvinylidine
difluoride membrane (PVDF) using semi-dry blotting sys-
tem (Trans-Blot Transfer medium; Bio-Rad Laboratories).
Membranes were blocked in 5% BSA in PBS containing
0.1% Tween-20 and incubated overnight at 4°C with anti-
bodies against rabbit anti-phospho-ERK1/2 (Thr202/
Tyr204) (1:1000), rabbit anti-ERK1/2 (1:1000), rabbit
anti-phospho-AKT (Ser473) (1:500), rabbit anti-AKT
(1:1000) from Cell Signaling Technology (Danvers, MA);
mouse anti-EGFR (1:200) and anti-pan actin (1:50 000) anti-
bodies from Neomarker (Fremont, CA). After several
washes, membrane was incubated with either goat anti-
rabbit or goat anti-mouse horseradish peroxidase conjugated
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Figure 2 Nimotuzumab and rapamycin combination treatment enhanced therapeutic efficacy in Asian Glioma cell lines. (A) Western
blot analysis was done to check the EGFR expression status in G5T/VGH, GBM8401 and GBM8901 Asian glioma cell lines with respective (+) controls.
These cell lines were treated with TMZ (500 pM), rapamycin (0.1 mM) or Nimotuzumab (0.013 mM) as single treatments or combination of rapamycin
and Nimotuzumab for 24 h and percentage of cell viabilities of G5T/VGH (B), GBM8401 (C) and GBM8901 (D) were determined. Data are presented as
mean + SEM. Combination groups were compared to each single drug treatments in individual cell line *p < 0.05, ***p < 0.001.

secondary antibodies (DakoCytomation, Denmark) (1:10
000). Specific protein bands were visualized with an en-
hanced chemiluminescence using Western Lightning chemi-
luminescent kit (Perkin-Elmer, MA).

Densitometry semi-quantitation analyses of proteins

The band density of specific proteins from each western
blot was quantified with MetaVue software (Ver. 6.1)
(Molecular Devices Corp.) Briefly, specific protein bands
from scanned western films were boxed and integrated
intensity values were derived from region measurements.
Background was corrected and the intensity of each pro-
tein was normalized to the respective loading controls.
The activated and total levels of the proteins are
expressed as the ratio of intensity of each protein to the
respective loading controls.

Statistical analysis

Statistical differences between values were determined
by either one way ANOVA or Student’s ¢-test. A value of
p <0.05 was considered as statistically significant. To de-
termine the differences between single and combined
treatment’s killing efficacy, one-way ANOVA followed by
Tukey’s multiple comparison test (p<0.05) was done
using software package Prism 3.0 (Graphpad Software
Inc., San Diego, CA).

Results

The combination of Nimotuzumab with Sirolimus
increased glioma cell cytotoxicity when compared to
single drug treatment

As TMZ is routinely used as a first-line therapy for GBMs,
we sought to first determine the concentration required to
achieve 50% inhibition of cell proliferation, i.e., IC50 of
TMZ, Nimotuzumab and rapamycin in immortalized hu-
man astrocytes (iNHA) which are the most common cell
types that give rise to glioma. The results showed that IC50
was achieved at 500 pM of TMZ concentration (Figure 1A).
The IC50 for Nimotuzumab was determined to be 2 pg/ul
(0.013 mM) (Figure 1B) and these cells exhibited resist-
ance to rapamycin even up to a concentration of 0.5 mM
(Figure 1C). However, at this concentration, rapamycin
was far too toxic for most of the glioma cells we have
tested (data not shown). At a concentration of 0.1 mM,
rapamycin exerted differential cytotoxicity levels in iNHA
versus human glioma, and thus was chosen for subsequent
experiments. Next, we determined the cell kill efficiency of

rapamycin and Nimotuzumab in comparison to TMZ in
the EGFR-null Gli36 cells, as confirmed by western blot
analysis (Figure 1D). TMZ dose response curve indicated
that Gli36 cells were sensitive to TMZ treatment with an
IC50 of 250 uM (Figure 1E). As shown in Figure 1F, the cell
viability in rapamycin and Nimotuzumab treatment groups
was approximately 12% and 42% respectively. In combin-
ation treatment group, only 7% of the cells were viable.

To gain insight on possible molecular mechanisms in-
volved after respective treatments, western blot analysis
was performed to examine the expression levels of acti-
vated AKT and ERK1/2, which are downstream targets
of EGFR. In these non-EGFR expressing glioma cells,
rapamycin treatment reduces activation of AKT at Serine
473 residue when compared to the untreated or DMSO
control group (Figure 1G). In contrast, Nimotuzumab
treatment did not inhibit pAKT when compared with
the control group. Instead, the results showed an in-
crease in activated AKT and ERK1/2 pathways. Despite
the detection of similar amount of actin proteins, we are
unable to detect the presence of AKT/ERK in combination
treatment. In EGF-treated A-431 cells, an epidermoid car-
cinoma cell line overexpressing wtEGFR, Nimotuzumab
did not induce activation of AKT and rapamycin treat-
ment marginally reduces pAKT levels [21]. These data
suggested human GBM lacking EGF and its corresponding
receptors trigger a non-AKT-dependent pathway in re-
spond to the mono-and combination treatment.

TMZ-resistant Asian-derived human glioblastoma cell
lines were sensitive to co-treatment of Nimotuzumab and
rapamycin

In Singapore and Asian countries, the molecular signature
of gliomas is not well- documented. The latest informa-
tion available in PubMed is an article dated more than a
decade ago by a local neurosurgeon in the “Journal of
Neurooncology” where he reported that the genetic profiles
of Asian glioma patients do not appear to follow the con-
ventional molecular pathways [26]. Herein, we first deter-
mined whether the combination treatment is equally
effective in inhibiting tumor cell proliferation as compared
to single drug treatment alone in Asian gliomas. All of the
Asian patient-derived glioma cells, ie. GBM8401, G5T/
VGH and GBM8901 expressed similar levels of wtEGFR
(Figure 2A), and were TMZ-resistant. These cells were only
marginally sensitive to Nimotuzumab and rapamycin as a
single agent (Figure 2B-D). However, cell viability was
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Figure 3 EGFRVIII conferred enhanced sensitivity to drug treatment in isogenic human glioma cells. (A) Western blot analysis of EGFR
expression in human glioma cells U87MG.EGFRVIII and U87MGWtEGFR that were engineered to express EGFRIIl and wtEGFR proteins, respectively.
Cell viability assay was carried out in (B) U87MGWtEGFR (C) US7MGEGFRVIII cells using CCK-8 assay after treatment with 500 uM of TMZ, 0.1 mM of
rapamycin or 0.013 mM of Nimotuzumab and combination of rapamycin and Nimotuzumab. Percentage cell viabilities were measured at 24 h after
respective treatments. Data are presented as mean + SEM. Combination group was compared to Nimotuzumab single treatment for each cell line

*p < 0.05, **p < 001. (D) Western blot analysis was performed to detect the expression levels of phospho-AKT (Ser473) and total AKT in U87MG.
WEEGFR and U87MG.EGFRVIII cells untreated (UT) or after treatment with Nimotuzumab (N) for 24 h. Pan actin served as the loading control. Densitometry
quantification of the AKT activated levels were determined as described before. The numbers below the blot are displayed as ratio of the total
AKT proteins after normalizing with pan actin. (E) U87.wtEGFR cells were treated with TMZ (500 uM), rapamycin (0.1 mM) or Nimotuzumab
(0.013 mM and 0.0065 mM) as single treatments and combination of rapamycin and Nimotuzumab for 24 h and percentage cell viabilities were
determined by CCK-8 assay. Data are presented as mean + SEM. Nimotuzumab treatment group at half the concentration (0.0065 mM) was
compared to the original group (0.013 mM) in single treatments and in combination with rapamycin ***p < 0.001.

reduced 3-fold in GBM8401 and 1.5-fold in GBM8901 with
combination treatment in comparison to TMZ (Figure 2C
and D). In fact, rapamycin and Nimotuzumab combin-
ation treatment significantly reduced the percentage of vi-
able cells by at least 12-50% with respect to the
monotherapies (Figure 2; p<0.01, one-way ANOVA).
Taken together, the results showed that combination treat-
ment of Nimotuzumab and rapamycin was more effica-
cious than TMZ treatment as a single agent.

The combination of Nimotuzumab with rapamycin
enhanced tumor cell cytotoxicity in an EGFR independent
manner

EGFRVIII is the most common deletion mutant found in hu-
man gliomas [27,28]. However, overexpression of EGFRVIII
is usually not observed in isolation, but in combination with
amplification of the wild-type receptor, suggesting select-
ive pressure for both species in gliomagenesis [29]. Most
recently, wild-type EGFR has been shown to phosphoryl-
ate EGFRVII], leading to phosphorylation of STAT pro-
teins and progression in tumorigenesis [22]. In the earlier
part of the study, we showed that combined treatment is
effective in Asian glioma cells expressing wild-type EGFR;
herein, we sought to determine whether the combination
of Nimotuzumab and rapamycin may also be effective in
mutant EGFRvIII-expressing human glioma cells. For this,
human U87MG glioma cells overexpressing wild-type
EGFR (U87MG.WtEGFR; 170 kDa) and mutant EGFRVIII
(US7MG.EGEFRVIII, 145 kDa), as validated by western blot
analysis (Figure 3A), were used. US87MG.wWtEGFR and
U87MG.EGERVIII were treated with 500 pM of TMZ,
rapamycin, Nimotuzumab and the combination of rapa-
mycin and Nimotuzumab. The enhanced cytotoxic effect
in combination treatment was independently confirmed in
U87MG.WtEGFR  (Figure 3B) and U87MG.EGFRVIII
(Figure 3C), respectively. In these glioma cells expressing
either wt or EGFRVIII receptor, elevated cell death observed
in the Nimotuzumab group correlated with reduced levels
of activated AKT in both cell types (Figure 3D), providing
further support that Nimotuzumab acts regardless of
EGER status. U87MG.EGERVIII has lower percentage of

viable cells in comparison to US7MG.WtEGER, suggesting
that EGFRvIII-positive human glioma cells were less re-
sistant to TMZ compared to their wtEGFR counterpart.
Enhanced cell death in combination treatment versus
mono-treatment was also observed in half the normal
Nimotuzumab concentration was used in U87MG.
wtEGFR (Figure 3E). Similar findings were observed in
U87MG.EGFRVIIL. Taken together, the data showed that
combined treatment is effective regardless of the EGFR
status in human glioma.

Nimotuzumab and rapamycin combination treatment
enhanced therapeutic efficacy

With the aim of translating the combination treatment regi-
men for clinical use, we studied the effect of combined treat-
ment in patient-derived glioma cells. These tumors were
histologically high grade glioma derived from Singaporean
patients of Chinese descent and expressed only wtEGFR by
western blot analysis (Figure 4A). GBM6 and 10 are primary
human GBM xenografts that were originally derived from
consented Mayo clinic patients’ tumor specimens. In line
with previous studies, our western blot results showed that
GBM6 and 10 were EGFRVIII and wild-type EGFR ex-
pressing cell lines respectively [30,31]. EGFRVIII-
expressing GBM6 was more resistant to TMZ treatment
(Figure 4B) when compared to the wtEGFR-expressing
GBM10 (Figure 4C). This was not surprising because
GBM6 contains unmethylated MGMT promoter [23].
The results showed that although both cell lines were re-
sistant to TMZ treatment, co-treatment of Nimotuzumab
and rapamycin was more effective in cell kill when com-
pared to single treatment regardless of the EGFR status of
the tumor (Figure 4B and C). These findings were repro-
ducible in wtEGFR expressing high-grade glioma derived
from Singaporean patients (Figure 4D and E).

Discussion

With the increasing ability to dissect cancer genome in
clinical tumor samples, instead of having therapies that are
based on non-specific one-size-fits-all strategies, moving
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Figure 4 EGFRuvlll-expressing patient-derived glioma cells were more sensitive to Nimotuzumab. (A) Expression levels of wtEGFR (170 kDa)
and EGFRVIII (145 kDa) were analyzed in primary GBM xenografts (GBM6 and 10) and in local patient-derived high grade primary GBMs, NNI37
and 41. Loading controls were performed with Hsp70. The primary GBM xenografts, GBM6 and 10 (B and C) and local patient-derived primary
GBMs, NNI37 and 41 (D and E) were treated with TMZ (500 uM), rapamycin (0.1 mM), Nimotuzumab (0.013 mM) or a combination treatment of
Nimotuzumab and rapamycin for 24 h and then cell viabilities were assessed by CCK-8 assay. Data are presented as mean + SEM. Combination
group was compared to Nimotuzumab single treatment for each cell type *p < 0.05, **p < 0.01, ***p < 0.001.

towards developing new approaches that would allow
patient-specific molecular targeted therapies are warranted.

The advances in understanding the molecular basis of
cancer formation and progression have unraveled the
challenges in treating tumor heterogeneity. It is becom-
ing clear that combination or sequential treatment mo-
dalities that target multiple pathways can lead to better
control of aberrant cell proliferation. Stupp and col-
leagues have reported that survival of patients who re-
ceived the combination therapy of TMZ and radiation
exceeded that of radiation alone [32]. Unfortunately,
there is no significant benefit of using similar approach
in our patient cohort [33]. This may be due to the small
number of patient cohort, or perhaps, the genetic aber-
rations of Asian glioma patients differ from those of
Caucasian glioma patients. The astrocytic gliomas derived
from Caucasians have been reported to exhibit a different
spectrum of genetic abnormalities when compared to
non-Caucasian patients [34]. The Cancer Genome Atlas
(TCGA) network described a robust gene expression
based molecular classification of GBMs that divided
them into proneural, neural, classical and mesenchymal
subtypes [35]. However, the classical gene signature was
not observed in a study conducted by Yan et al. on 225
Chinese glioma patients selected for whole genome gene
expression profiling, highlighting differences between
Asian gliomas and Caucasian gliomas [36]. Thus, there
is a need to identify effective treatment option for Asian
glioma patients, and to correlate the outcome to clinical
parameters and biomarkers for advancing our under-
standing of the disease.

In this study, we demonstrate proof of concept that
Nimotuzumab and rapamycin is effective as a combin-
ation therapy in glioma cell lines derived from Caucasian
and Asian glioma patients. The enhanced efficacy of
the combination therapy compared to mono-treatment
is demonstrated in various human glioma cell lines
(Figures 1F, 2B-D, and 3D and E), primary glioma cells
derived the Mayo GBM xenografts (Figure 4B and C), and
primary short-term glioma culture derived from high-
grade Singapore GBM patients (Figure 4D and E). Of note,
we are not certain why immortalized normal human as-
trocytes are not killed by concentrations of TMZ greater
than the stated ICs, (Figure 1A), it is possible that they
have shifted to become more tumor-like cells. These are
based on the facts that these cells overexpress viral

oncoproteins required for immortalization, and can be-
come tumorigenic in the presence of a Forkhead box tran-
scription factor [37]. For future study, normal primary
human astrocytes should be included as additional con-
trol. Regardless, it is encouraging that the combination
treatment of Nimotuzumab with rapamycin is consistently
more effective than the current standard of care therapy,
TMZ. One major advantage of Nimotuzumab is that it
does not induce skin [38], renal, and gastrointestinal
mucosa-related toxicities [39]. Nimotuzumab requires bi-
valent binding for stable attachment on cell surface recep-
tor while other monoclonal antibody such as Cetuximab
can bind in a monovalent manner [40]. Thus, in the skin,
where cell surface EGFR density is low, Cetuximab is ex-
pected to be more active than Nimotuzumab. It has also
been suggested that Nimotuzumab only interferes with
ligand-dependent EGFR activation; thus, the basal level of
EGER signalling which is required for the survival of nor-
mal epithelial cells is not affected. As a consequence, non-
specific toxicity is reduced [6].

The binding affinity and kinetics of Nimotuzumab has
been shown to be similar between wtEGFR and EGFR-
VIII [41]. In non-small cell lung cancer cell lines, the in-
hibitory effect of Nimotuzumab on EGFR signaling was
found to be dependent on the cell surface expression of
EGEFR but not the status of EGFR mutation [42]. Herein,
we showed that Nimotuzumab was effective in Asian
patient-derived human glioma cell lines which expressed
wild-type EGFR (Figure 2A-D), and Caucasian patient-
derived human glioma cell lines expressing either wild-
type EGFR (Figure 3B) or mutant EGFRVIII (Figure 3C),
indicating that the effect of Nimotuzumab was indeed in-
dependent of the endogenous EGFR mutation status [22].
Interestingly, EGFR-null glioma cells (Gli36; Figure 1F)
and parental U87MG (data not shown) are also responsive
to Nimotuzumab treatment. In Gli36 cells, Nimotuzumab
treatment resulted in activation of AKT, thus, the ob-
served reduction in cell viability must be mediated
through an AKT-independent pathway (Figure 1G). In
U87MG.wtEGFR and U87MG.EGFRVIII cells, Nimotuzu-
mab treatment inhibited activation of AKT, consistent to
the reduced pAKT levels in wtEGFR-expressing A431 tu-
mors treated with Nimotuzumab [21]. Although the re-
sults indicate that EGFR-null glioma cells are responsive
to Nimotuzumab, the mechanism of action is unclear and
we cannot exclude the possibility that EGFR-null cells are
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sensitive to the reagent used to prepare Nimotuzumab, in
this case, it is a buffer solution containing polysorbate 80
of unrevealed concentration which has been associated
with cytotoxic effect on the cells [43]; the slight reduction
in cell viability observed may be attributed to this effect.
Alternatively, the findings may represent a new mechan-
ism of action. In normal cells, ligand-stimulated activation
of EGER is followed by subsequent internalization, ubiqui-
tination and degradation in lysosomes. In GBM, mutant
EGERVIII is always present at the cell membrane due to
its defective internalization properties [44]. As a result,
there is a decrease in associating with Cbl proteins and
degradation. The enhanced half-life and the constitutive
phosphorylation of EGFRVIII are known to contribute to
gliomagenesis. The finding that EGFR-null is also respon-
sive to Nimotuzumab treatment could be due to possible
receptor dimerization and crosstalk activities. Receptor
dimerization has also been reported between urokinase-
type plasminogen activator receptor and EGFRVIII that
supports the survival and growth of GBM [45]. Given that
receptor dimerization and crosstalk contribute to advan-
tage in cell growth, it is therefore possible that when
Nimotuzumab binds to the 3A epitope of the extracellular
domain of EGFRVII], it may be affecting oncogenic recep-
tor dimerization events that lead to reduced cell viability.
The use of rapamycin alone in cancer therapy has
shown modest success, perhaps due to the re-assembly
of mTOR in the mTORC2/Rictor complex, leading to
phosphorylation and reactivation of AKT. James and col-
leagues have shown that the treatment of A-431 cells
with Nimotuzumab is effective in preventing feedback
activation of pAKT by rapamycin in vivo [21]. Further,
tumors derived from combination treatment were com-
pared with mono-therapies using microarray analysis.
Combination treatment resulted in the downregulation
of genes beyond the typical pathways associated with
Nimotuzumab and rapamycin. These pathways include
metabolic, ECM-receptor interactions, tight junctions,
biosynthesis of unsaturated fatty acids, ubiquitin medi-
ated proteolysis pathways etc. Although this study differs
from ours in many ways including experimental objec-
tives, concentration of drugs and presence of EGF li-
gands and different cancer types, it is nevertheless
encouraging that the combination treatment is effective
given different cancer model. This is especially relevant
in GBM because it highlights the plausibility of targeting
TMZ resistant and EGFR-null glioma cells with alterna-
tive combination drugs such as Nimotuzumab and rapa-
mycin. Furthermore, Nimotuzumab has recently been
shown to enhance cancer radiosensitivity by inhibiting
DNA-PKcs activation via the blockage of the PI3SK/AKT
pathway [46]. Although we have yet to determine
whether the radiosensitizing effect of Nimotuzumab may
be further enhanced with rapamycin, our results have
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nevertheless indicated that the combination of Nimotu-
zumab and rapamycin is more efficacious compared to
TMZ and single treatment although it warrants further
studies to delineate the underlying mechanism of action
given different EGFR receptor status and possible cross-
talk interaction.

Conclusions

The present study showed that the combination of
Nimotuzumab and rapamycin could enhance glioma cell
death, in an EGFR independent manner. Moreover, the
results showed that combination treatment was effective
in TMZ-resistant glioma cells, suggesting that Nimotu-
zumab and rapamycin may potentially be of clinical rele-
vance for future treatment of human gliomas.
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