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Abstract

Background: Dopamine [-hydroxylase (DBH) is a critical enzyme in the biosynthesis of catecholamines. This
enzyme's role in neuroendocrine regulation is well known, but there are some indications that it may also
modulate reproduction and endocrine in mammals and birds. We selected goose (Anas cygnoides) as an ideal
model species for investigating the role of DBH in avian reproduction.

Results: Full-length cDNA encoding DBH was cloned from Zhedong goose using reverse transcription PCR and rapid
amplification of cDNA ends. The cDNA consisted of a 126-base pair (bp) 5"-untranslated region (UTR), a 379-bp 3"-UTR,
and an 1896-bp open reading frame encoding a polypeptide of 631 amino acids. The deduced amino acid sequence
of gDBH shared high homology with an analogue from other birds and contained three conserved domains from a
mono-oxygenase family including a DOMON domain and two Cu2_mono-oxygen domains. Real-time quantitative PCR
analysis showed that gDBH mRNA was expressed in both reproductive and endocrine tissues of Zhedong goose,
specifically in the hypothalamus, pituitary, ovary, and oviduct. More DBH mRNA of reproductive and endocrine tissues
was detected at ovulation than at oviposition in Zhedong goose. Evidence of opposite trend of gDBH expression was
found between the hypothalamus-pituitary and oviduct during the ovulation phase and the broody phase. In addition,
we assessed DBH mRNA expression during ovulation in two breeds of geese that differ in egg production.
The reproductive and endocrine tissues of Yangzhou geese with higher egg production had more gDBH
expression than Zhedong geese. Finally, the five non-synonymous SNP(c.1739 C>T, c.1760G > T, c.1765A > G,
c1792 T>C and c.1861G > C) were identified in the coding region of DBH gene between Zhedong goose
and Yangzhou goose.

Conclusions: We conclude that goose DBH mRNA show obvious periodically variation in reproductive and
endocrine tissues during the reproductive cycle in geese.
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Background

Dopamine -hydroxylase (DBH) catalyzes the conversion
of dopamine to norepinephrine in the biosynthesis of
catecholamines [1-3]. The activity of DBH influences
the levels of dopamine and the biosynthesis of norepineph-
rine and epinephrine. Dopamine [-hydroxylase’s import-
ance in the nervous system is well established [4—9], but a
few studies also point to its importance in reproduction.
The evidence for this in mammals can be summarized
as follows. DBH, regulated by the sympathetic nervous
system, has major effects in the female reproductive
system of pigs, where it influenced ovarian and ovi-
ductal function [10]. Injection of 1-phenyl-3-(2-thiazo-
lyl)-2-thiourea (U-14,624), a DBH inhibitor, increased
the number of progestin and estrogen receptors in female
rat [11-13]. In research with other mammals, DBH regu-
lated reproductive performance through modulating the
concentration of catecholamines, as well as other
physiological functions. Mice with targeted disruption
of DBH had a high fetal mortality rate and altered ma-
ternal behavior [14, 15]. In pigs, polymorphism of DBH
was related to reproduction and piglet survivability
[16]. This background was intriguing and led us to
speculate on the role of DBH in avian reproduction,
about which little is known.

The goose (Anas cygnoides) is a commercially import-
ant food source that is widely cultivated in China. It is
an ideal avian model for characterization of reproduction
because of its obvious reproductive stages and strong
broodiness [17]. In a previous study in which we used
transcriptome profiling of ovaries from laying and
brooding geese [18], we identified DBH as an important
gene in the goose reproductive cycle. We have extended
this study here by cloning the Zhedong goose DBH and
characterized its spatio-temporal expression patterns by
qPCR. Next, we undertook a correlative study of DBH
expression and egg production by comparing DBH ex-
pression in the Yangzhou breed, which has high-egg pro-
duction, with the Zhedong goose, a breed with low-egg
production and strong broodiness behavior. The DBH
expression profiles provide an invaluable information for
understanding of the regulatory function of DBH in

goose egg laying.

Results

Zhedong Goose DBH cDNA cloning and sequence
analyses

The full-length cDNA of gDBH was acquired with RT-
PCR and RACE. The DBH ¢DNA from Zhedong goose
was 2399 nucleotides in length and consisted of a 126-
nucleotide 5° untranslated region (UTR), a 379-
nucleotide 3" UTR, and an 1896-nucleotide open
reading frame (ORF) putatively encoding a single 631
amino acid protein(GenBank accession KU672379).
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The other transcript variant was not detected in Zhedong
goose in this study.

Phylogenetic analysis of the putative DBH

Alignment analysis of the DBH protein (Fig. 1) revealed
that the putative goose DBH had high homology with
analogues from the other four birds (chicken, duck,
turkey and zebra finch). There was less homology with
the non-bird species than the avian species.

The structural domain of the DBH protein of different
species was compared with gDBH. It is relatively conserva-
tive and contains three potential domains (a DOMON do-
main, goose DBH 52-170AA; the two Cu2_mono-oxygen
domains in the N-terminal and C-terminal, respectively,
goose DBH 215-344AA, 360-524AA), which belonged to a
mono-oxygenase family. The conserved domains in gDBH
and the amino acid sequence similarity with other DBHs
strongly suggested that it was a homologue of DBH from
Anas cygnoides.

To determine the evolutionary relationship between
gDBH and the other proteins, phylogenetic analysis was
carried out by Clustal W and Mega 6.0. The amino acid
sequences of gDBH and from another ten species were
compared. Protein sequences were used for the rooted
phylogenetic tree, which was constructed by the
neighbor-joining method. The goose proteins from dif-
ferent species were divided into three major branches.
Gallus gallus, Anas platyrhynchos, Anas cygnoides,
Meleagris gallopavo, Taeniopygia guttata were grouped
into a cluster. The second branch consisted of Homo sa-
piens, Mus musculus, Sus scrofa, Bos taurus, and Capra
hircus. Danio rerio was separated and formed an inde-
pendent branch (Fig. 2). The established evolutionary
relationship tree was consistent with the real evolution
of animals.

Expression pattern of DBH in different tissues and
reproductive cycle stages of Zhedong goose

The qPCR demonstrated that DBH was differently
expressed in fourteen tissues of Zhedong goose. High
levels of DBH transcript were detected in hypothalamus,
pituitary, ovary, oviduct, lung, cerebrum, and cerebellum
tissues in Zhedong goose while levels were negligible in
chest muscle tissue (Fig. 3).

We wished to examine the temporal expression pat-
terns of gDBH expression in the hypothalamus, pituitary,
ovary, and oviduct tissues during different stages of the
goose reproductive cycle, specifically the pre-laying
stage, ovulation, oviposition, and the broody phase. The
results are shown in Fig. 4. Overall, there were differ-
ences in gDBH expression with respect to both time and
tissue. Expression was lowest in all tissues during the
oviposition phase. It was high in the hypothalamus,
ovary, and pituitary in the pre-laying period. Expression
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Anas platyrhynchos —————~~~~~~" MQTSSSKKCPCLGFKLREVASVYFTMVAVFLVILVVALQGSA-PRGT YFPYKVPLDPQGLLELSWNVSYPEQAVYFQILSRELKFGLLFGMSDRGEFENADLAVLWS 106
Anas cygnoid MQTSGSKPCPCPGFKLREVASVYFTMIAVFLVILVAALQGSA-PRGT YFPYKVPLDPQGLLELSWNVSYPEQAVYFQILSRELKFGLLFGMSDRGEFENADLAVLWS 106
Taeniopygia guttata MQSSRSKPCSCPSLKLREVASMYFTMVAAFLVILVVALQGSA-PRQSDFPYKVPLDPQGLLELSWNVSYPEQAVHFQLLIRELHFGLLFGMSDRGEFENADLAVLWS 106

Gallus gallus MAKARRVGAILPSMQTHGSMLSPCSSFRLRELASMYFTMVAVFLVILVVAMQGLA-PSNTHFPYKVSLDPQGLLELSWNVSYPEQAVYFQILIKKFRFGLLFGMSDRGEFENADLAVLWT 119
Meleagris gallopavoMAKARRVGATLPSMQTHGSTPCPCPSFRLRELASMYFTMVAVFLVILVVALQGLV-PRGT YFPYKVPLDPQGLLELSWNVSYPEQAVYFQILIRKLKFGLLFGMSDRGEFENADLAVLWN 119

Bostaurus ~ —————————————mm————e MQVPSPSVREAASMYGTAVAVFLVILVAALQGSA-PAESPFPFHIPLDPEGTLELSWNISYAQETIYFQLLVRELKAGVLFGMSDRGELENADLVVLWT 98
Capra hircus =~ ————mme e MKVPSPSAREAASMYGTAVAVFLVIVVAALQGSA-PAESPFPFHIPLDPEGTLELSWNVSYAQETVYFQLLVRELKAGVLFGMSDRGELENADLVVLWT 98
Susscrofa = e MQVPGPSLREAASMYGTAVAVFLVILVAALQGST-PPESPFPYHIPLDPEGTLELSWNVSYVQETVHFQLLVRELKAGVLFGMSDRGELENADLAVLWT 98
Homo sapi MPALSRWASLPGPSMREAAFMYSTAVAIFLVILVAALQGSA-PRESPLPYHIPLDPEGSLELSWNVSYTQEAIHFQLLVRRLKAGVLFGMSDRGELENADLVVLWT 105
Mus I MQAHLSHQPCWSSLPSPSVREAASMYGTAVAIFLVILVAALRGSE-PPESPFPYHIPLDPEGILELSWNVSYVQEI IHFQLQVQGLRAGVLFGMSDRGEMENADLIMLWT 109
Danlorero. ————eeee—] )[RLI\'KDLRLQDVTL\IYLTVL-\T\'WLLVASYQAPAGQSRPTLAYHIPLDPSGQLELSW\ISYPKQEVLLEVKV]\ELHHGI ILG!ISDRGEPT\ADLVI LWD 101
s ik ok ik kDK - . e o SOIOK K dololololcdoE oo o st o o ok cdkiobikk  dkkk ok
DOMON_11ke superfanily

Anas platyrhynchos DGHSSYFGDAWSDAKGHLHMDSQQDYQLLGAQSAAEGLY ILFRRAFSTCDPKDYLIEDGT VHLIYGILEQPVRSLQAINISATHRGLQRVQLLKPNITIPELPSDMKTMEITAPGVVIPS 226
Anas cygnoides DGHSSYFGDAWSDAKGHLHMDSQQDYQLLGAQSAAEGFY ILFRRAFSTCDPKDYLIEDGT VHLIYGILEKPVRSLQAINISATHRGLQRVQLLKPNITIPELPSDMKTMEITAPGVVIPS 226
Taeniopygia guttata DGHNSYFGDAWSDAKGQLHMDSQQDYQLLGARRAPEGLYLLFRRAFSTCDPKDYLIEDGT VHLIYGILEKPVRSLQAINISALHGGLQRVQLLKPNISIPQLPRDMKTMEITAPDVVIPS 226
Gallus gallus DGHSSYFGDAWSDAQGQLHMDSQQDYQLLGAQKAPEGLYLLFRRAFSTCDPKDYLIEDGT VHLIYGILENPVHSLHAINISTMYRGLQRVQLLKPDITIPVLPRDVKIMEITTPSIVIPS 239
Meleagris gallopavoDGHSSYFGDAWSDAHGQLHMDSQQDYQLLGAQKAPEGLYLLFRRAFSTCDPKDYL IEDGT VHLIYGILENPVHSLRAINISTMYRGLQRVQLLKPNITIPELPNNVKTMEITTPNIVIPS 239

Bos taurus DRDGAYFGDAWSDQKGQVHLDSQQDYQLLRAQRTPEGLYLLFKRPFGTCDPNDYLIEDGT VHLVYGFLEEPLRSLESINTSGLHTGLQRVQLLKPSIPKPALPADTCTMEIRAPDVLIPG 218
Capra hircus DRDGAYFGDAWSDQKGQVHLDSQQDYQLLRAQRTPEGLCLLFKRPFGTCDPNDYLIEDGT VHLVYGLLEEPLQSLEAINTSGLRTGLQRVQLLKPSIPQPXXXXTGCSPPILQMGKQRPS 218
Sus scrofa DGDSAYFGDAWSDQKGQIHLDSQQDYQLLRAQRTPEGLSLLFKRPFGTCDPKDYFIEDGT VHLVYGILEEPVRSLEAINTSGLQTGLQRVQLLKPNISVPALPADLQTMEIRAPDILVPG 218

Homo sapiens DGDTAYFADAWSDQKGQIHLDPQQDYQLLQVQRTPEGLTLLFKRPFGTCDPKDYLIEDGT VHLVYGILEEPFRSLEAINGSGLQMGLQRVQLLKPNIPEPELPSDACTMEVQAPNIQIPS 225
Mus musculus DGDRAYFADAWSDRKGQIHLDSQQDYQLLQAQRTRDGLSLLFKRPFVTCDPKDYVIEDDT VHLVYGILEEPFQSLEAINTSGLHTGLQRVQLLKSEVPTPSMPEDVQTMDIRAPDILIPD 229

Danio rerio DGHKSYFGDAWSDSEGRVTLDTQADYQLLETHQSTEGFFLLFKRSFSTCDPHDY 1 IEEGT VHITYTMLEHPILSLHELNISRLQPGVQRVLLLRPDTPSPHLPKDVRTLEVLAPDVIIPT 221
¥ o, ok ook |k Dk clokaololok | 0 0 Dk Dok ok ckololok ok ook ko otk ckk ok, ok, ok ok ;o kodkdkk ook, | % 2 5 *

Anas platyrhynchos QETTYWCYMAELPDGFAKHHIVMYEPVITAGNEALVHHMEVFQCAAELDSIPPYNGPCDA KMKPEQLNYCRHVLAAWAMGXQAFYYPEEAGLAFGGPGSSRYLRLEVHYHNPLVFKGRRD 346
Anas cygnoides  QETTYWCYMAELPDGFPKHHIIMYEPVITAGNEALVHHMEVFQCAAELDSIPRYNGPCDA KMKPDQLNYCRHVLAAWAVGAQAFYYPEEAGLAFGGPGSSRYLRLEIHYHNPLVFKGRRD 346
Taeniopygia guttata QETTYNCYMAELPEGFPKHHI IMYEPVVTAGNEALVHHMEVFQCAAHFDSFPLYNGPCDS KMKPERLNYCRHVLAAWAMGAQAFYYPEEAGLAFGGPGSSRYLRLEIHYHNPLVFTGRRD 346
Gallus gallus QETTYWCYIRELPDNFTKHHI IMYEPVITAGNEALVHHME IFQCTTESVNIPHYNGQCDS KMKPEQLNYCRRVLAAWAMGAQAFYYPEEAGVAFGGPGSSRHLRLEIHYHNPLIFRGRRD 359
Meleagris gallopavoQETTYWCY IAKLPDSFAKHHIVMYEPV I TAGNEALVHHME IFQCTAEFDS IPQYNDLCDS KMKPERLNYCRHVLAAWAMGAQAFYYPKEAGLAFGGPDSSRYLRLEVHYHNPLLFKGRRD 359

Bos taurus QQTTYWCYVTELPDGFPRHHIVMYEPIVTEGNEALVHHMEVFQCAAEFRDHPHF SGPCDS KMKPQRLNFCRHVLAAWALGAKAFYYPEEAGLAFGGPGSSRFLRLEVHYHNPLVITGRRD 338
Capra hircus REGSFSG-GERVGVGSQRALAPQYEPIVTEGNEALVHHMEVFQCAAEFESVPHFSGPCDS KMKPQRLNYCRHVLAAWALGAKAFYYPEEAGLAFGGPGSSRFLRLEVHYHNPLVIKADLG 337
Sus scrofa QETTYWCY ITELPEGFSRHHIVMYEPIVTAGNEALVHHMEVFQCAAEFESFPAFSGPCDS KMKPERLNYCRHVLAAWALGAKAFYYPEEAGLAFGGPGSSRFLRLEVHYHNPLMITGRRD 338

Homo sapiens QETTYWCYIKELPKGFSRHHI IKYEPIVTKGNEALVHHMEVFQCAPEMDSVPHFSGPCDS KMKPDRLNYCRHVLAAWALGAKAFYYPEEAGLAFGGPGSSRYLRLEVHYHNPLVIEGRND 345

Mus musculus NETTYWCYITELPPRFPRHHI IMYEAIVTEGNEALVHHMEVFQCAAESEDFPQFNGPCDS KMKPDRLNYCRHVLAAWALGAKAFYYPKEAGVPFGGPGSSPFLRLEVHYHNPRKIQGRQD 349

Danio rerio OETTYI'CHIYOLPP\‘LPK\HIV!IYESVITPG\'EAIV}MIE\’FECSPOSDI\’PQYSGSCDS KMKPRNLNYCRHVLAAWAMGAEPFYYPADAGLPMGGEGSSRFLRLEVHYHNPLLLSGRRD 341
sk dakokok dokok sk kK ¥ 1., kFkkkk | kkokkokkbkkRik o okkkk ckk: Rk k% | kkkkkkkkk

| Cu2_renooyren supartanily |
Anas platyrhynchos SSGIRLYYTGSLRRYDAGIMELGLVYTPVMAVPPGETAFVLTGYCTDKCTQRVTLPAAGIRIFASQLHTHLAGRKVVTVLARDGRERQGGERXXXFCPPSQEIRMLKELVAVFPGDELIT 466
Anas cygnoides  SSGIRLYYTGSLRRYDAGIMELGLVYTPVMAVPPGETAFVLTGYCTDKCTQR-ALPAAGIRIFASQLHTHLAGRKVVTVLSRDGRERQVVNADGHYSPHFQE IRVLKELVAVFPGDELIT 465
Taeniopygia guttata SSGIRLYYTATLRPYDAGIMELGLVYTPVMAIPPGEDSF ILTGYCTDKCTQL-ALPAAGIRIFASQLHTHLAGRKVVTVLSRDGRERQVVNADGHYSPHFQE IRMLKEVVAVFPGDELIT 465
Gallus gallus SSGIRLYYTDKLRSHDAGIMELGLVYSPLMAVPPGETAF ILTGYCTDKCTQK-ALPEGGIRIFASQLHTHLAGRKVVTVLSREGRELQVVNADGHYSPHFQEIRMLKELVEVFPGDELIT 478
Meleagris gallopavoSSGIRLYYTANLRPHDAGIMELGLVYTPVMAVPPGETTF ILTGYCTDKCTLQ-ALPEDGIRIFASQLHTHLAGRKVVTVLSRDGREQQVVNADGHYSPHFQEIRMLKELVAVFPGDELIT 478

Bos taurus SSGIRLYYTAALRRFDAGIMELGLAYTPVMAIPPQETAFVLTGYCTDKCTQL-ALPASGIHIFASQLHTHLTGRKVVTVLARDGRETEIVNRDNHYSPHFQEIRMLKKVVSVQPGDVLIT 457
Capra hircus SRKVQRLLRRETQAGGEGCERSSLSGPGGMAALEDEEPLHEGSRHVLRSRWR-DRLCLDMEVGKASMF————~ WKAQVVRPGGCIEVGAREQDGWVALHPKEIRMLRKVVSVHPGDVLIT 451
Sus scrofa SSGIRLYYTATLRRFDAGIMELGLVYTPVMAIPPQEPAFVLTGYCTDKCTQL-ALPPSGIHIFASQLHTHLTGRKVVTVLARGGREREVVNRDDHYSPHFQEIRMLKKVVSVLPGDVLIT 457

Homo sapiens SSGIRLYYTAKLRRFNAGIMELGLVYTPVMAIPPRETAFILTGYCTDKCTQL-ALPPSGIHIFASQLHTHLTGRKVVTVLVRDGREWEIVNQDNHYSPHFQEIRMLKKVVSVHPGDVLIT 464

Mus msc f”"-" SSGIRLHYTATLRRYDAGIMELGLVYTPLMAIPPQETAFVLTGYCTDKCTQM-ALQDSGIHIFASQLHTHLTGRKVVTVLARDGQERKVVNRDNHYSPHFQEIRMLKKVVTVYPGDVLIT 468

Danio rerio SSGIRLWYSPSLRRFDAGIMELGLVYTPVMAIPPRQRSFQLTGYCT! -\KCTQT A\LPVGGIHlFASQLHTHLAGLGVRTVLVRGGQEVEWQED!\HFSTHYQIIR\’LQMIVTVLPGDALLT 460
L L S S ol . ¥ * : . TR o ot

Cu2_nonoox.C superf:
Anas platyrhynchos ACTYNTEDRTKVTVGGFGIMEEMCVNYVHYYPQTQLELCKSAVDPGYLHRYFSLVNRFNDEEVCTCPQVSVPQQFSSIPWNAFNRDVLKSLYGFAPISMHCNKSTAVRFPGEWEKQPLPS 586
Anas cygnoides ACTYNTEDRSQVTVGGFGIMEEMCVNYVHYYPQTQLELCKSAVDPGYLHRYFSLVNRFNDEEVCTCPQVSVPQQFSSIPWNTFNRDVLKSLYGSAPISMHCNKSSAVRFP-——VRTASPP 582
Taeniopygia guttata TCTYNTEDRSRATVGGFGILEEMCVNYVHYYPQTQLELCKSAVDPGYLHRYFNLVNRFNDEEICMCPQVSVPQQFYSIPWNTFNRDVLKSLYGFAPISMHCNKSSAVRFPGEWEKQPLPS 585
Ga"llsgﬂ"us SCTYNTENRSNATVGGFGIMEEMCVNYVHYYPQTQLELCKSTTDPGYVQRYFNTVNRFNDEEVCMCPQVSVPQQFSSVPWNTFNKQILKSVYNFAPISMHCNKSSAVRFPGQWEKQPLPS 598
Meleagris gallopavo TCTYNTEDRNKVTVGGFGIMEEMCVNYVHYYPQTQLELCKSAVDPGYLHLYFNTVNRFNDEEVCTCPKVSVPEQFSSIPWNAFNRDVLKSLYNFAPISVHCNKSSAVRFPGDWEKQPLPS 598

Bos taurus SCTYNTEDRRLATVGGFGILEEMCVNYVHYYPQTQLELCKSAVDPGFLHKYFRLVNRFNSEEVCTCPQASVPEQFASVPWNSFNREVLKALYGFAPISMHCNRSSAVRFQGEWNRQPLPE 577
Capra hircus SCTYNTEDRRLATVGGFGILEEMCVNYVHYYPQTQLELCKSAVDPGFLQKYFHLVNRFNSEEVCTCPQASVPEQFASVPWNSFNREVLKALYGFAPISMHCNKSSAVRFQGEWDRQPLPE 571
Sus scrofa SCTYNTEDRKLATVGGFGILEEMCVNYLHYYPQTQLELCKSAVDPGFLQKYFHLVNRFDSEQVCTCPQATVPEQFASVPWNSFNRQVLRALYGFAPISMHCNKSSAVRFQGEWNLQPLPE 577

Homo sapiens SCTYNTEDRELATVGGFGILEEMCVNYVHYYPQTQLELCKSAVDAGFLQKYFHL INRFNNEDVCTCPQASVSQQF TSVPWNSFNRDVLKALYSFAPISMHCNKSSAVRFQGEWNLQPLPK 584
Mus musculus SCTYNTENKTLATVGGFGILEEMCVNYVHYYPQTELELCKSAVDDGFLQKYFHMVNRFSSEEVCTCPQASVPQQFSSVPWNSFNRDMLKALYDYAPISMHCNKTSAVRFPGEWNLQPLPK 588

Danio rerio TCRF\'TEDRSI\\'T\’GGFGI\lEE\ICV\'YVHY\PRTQLELCKSHVDTDYLQKYFSLI\RFQGRESCSCPOTS\'EEQFSSVSI'DSFSGEVL\SLYVTAPFSMHC\QSTAOLFPGDWEKQEIPV 580
Sk okERID SRR K LR L DIDoRE DRRE LR RED Dk DRF kD kIR DIR Dk RkRIRREI IR X
Cu2_n C superfanily
Anas platyrhynchos 1TETLREPVPHCPPARPRASSCCLRAHQAGGDQEGLSRFLAKEPKWVLKRTENKRTQSEGTK 648
Anas cygnoides ~ RADVLHGKNSRPGLKPPRSAPRWARDVAAPCG———===~~ PKAGSWSCP--GNPSTSST- 631
Taeniopygia guttata 1TERLQEPRPHCSPAP-—~EPQPAAPVPLQLG QLHSD- 619
Gallus gallus ITKTLREPKPHCPPTP--~EPRPAVPVPINLG HFRRG- 632
Meleagris gallopavol TKTLREPQPHCP————— GPRPAVPVPINLS DIRRG- 629
Bos taurus IVSRLEEPTPQCPASQ---AQSPAGPTVLNIS GGKG— 610
Capra hircus IVSRLEEPTPHCPASR-~-AQSPTGPTVLSIG-——===—====m=mmmmmmmm EGKG-- 604
Sus scrofa ITSKLEEPAPHCPPGR-—-GQSPVGPTVVSIG————————————=—====—=—~ GGKG—— 610
Homo sapiens VISTLEEPTPQCPTSQ-~~GRSPAGPTVVSIG-====mmmmmmmmmmmm e GGKG-- 617
Mus musculus ITSTLEEPTPRCPIRQ-—-TQSPANPTVPITT EADAE- 622
Danio rerio VTAQLQRAPYPCEINR-RVASNNDSPTEVRAD SSG-—- 614
*,

Fig. 1 (See legend on next page.)
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Fig. 1 Multiple sequence alignment of the deduced amino acid sequence of gDBH with those of other species. All DBH protein sequences from 11
species were aligned by the Clustal W program. Additional GenBank accession numbers not mentioned elsewhere are as follows: chicken
(Gallus gallus, XM_415429), duck (Anas platyrhynchos, XM_005013310), turkey (Meleagris gallopavo, XM_003211322), zebra finch (Taeniopygia
guttata, XM_004174352), human (Homo sapiens, NM_000787), mouse (Mus musculus, NM_138942), pig (Sus scrofa, XM_001927211), cattle
(Bos taurus, NM_180995), goat (Capra hircus, XM_005687352), zebra fish (Danio rerio, NM_001109694). Asterisk indicates residues that are
identical among all species; dashes indicate gaps introduced to facilitate alignment; the underline indicates the conserved domains

was higher in hypothalamus-pituitary than in the oviduct
during the broody phase. In contrast, the expression of
the DBH gene was high in the oviduct during ovulation
phase, but low in the hypothalamus-pituitary.

Comparison of DBH expression of Zhedong goose and
Yangzhou goose during the ovulation phase

Two goose breeds, with markedly different egg perform-
ance, were selected to test the hypothesis that DBH
expression might be correlated with egg production. The
comparison was made between the Zhedong goose, with
low egg production, and the Yangzhou goose, with high
egg production. The expression of DBH was higher in
reproductive and endocrine tissues of the high-egg-
producing, Yangzhou goose than in the Zhedong goose
during the ovulation phase. These differences were
significant for the hypothalamus, pituitary, and ovary
(P<0.01), but not for the oviduct (Fig. 5).

Identification of genetic variation on DBH in Zhedong
goose and Yangzhou goose

By sequence alignment, the five nsSSNPs (non-synonymous
SNP) including ¢.1739 C>T, ¢.1760G > T, c.1765A > G,
¢.1792 T > C and ¢.1861G > C were identified in the Exon
11 of goose DBH gene (Table 1). The allele frequency
from ¢.1739 C>T and ¢.1792 T > C substitutions were

significantly different between Zhedong goose and
Yangzhou goose (P < 0.01).

Discussion
In this study, the goose DBH gene was characterized
from Anas cygnoides. A DOMON domain and a
Cu2_mono-oxygen domain were identified in the de-
duced amino acid sequence of gDBH. Both DOMON
and Cu2_mono-oxygen domains were highly conserved
in all the DBHs analyzed. The DOMON domain had
been identified in the physiologically important enzymes
including cellobiose dehydrogenase, extracellular fungal
oxidoreductase and ethylbenzene dehydrogenase [19, 20].
Recent studies indicate that DOMON domains are re-
sponsible for heme or sugar recognition and binding
at the cell surface [21] and it has been suggested to
be a dopamine-binding domain in DBHs [22]. The
Cu2_mono-oxygen domain may be the catalysis cen-
ter of DBH and, as such, involved in the conversion
of dopamine to norepinephrine. The conserved DOMON
domain and Cu2_mono-oxygen domain identified in
goose DBH in this study led us to speculate that it had the
same function as other avian DBHs, namely, in the
synthesis of catecholamines.

Quantitative PCR analysis revealed that DBH was
expressed in every tissue analyzed except chest muscle,

0.03]

Danio rerio

Capra hircus

Bos taurus

Anas platyrhynchos

Homo sapiens
Mus musculus

Anser cygnoides

Gallus gallus

Meleagris gallopavo

Taeniopygia guttata

Fig. 2 Phylogenetic tree based on the amino acid sequence of gDBH and other homologous sequences. The tree was constructed with
Clustal W. The reliability of the neighbor-joining tree was estimated by bootstrap analysis with 1,000 replicates. Bootstrap values are shown on the
lineages of the tree and major taxonomic clusters are indicated separately. The position of the root of the phylogenetic tree was established by using
Danio rerio as an outgroup. The scale bar indicates 5 % amino acid divergence within a sequence
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Fig. 3 Expression of gDBH in various tissues of Zhedong geese. Gene expression was determined by gPCR and is represented relative to GAPDH
expression. Vertical bars represent the mean £ S.D. (n = 3). Different capital letters above error bars indicate highly significant differences between
means (P < 0.01). Different lower case letters indicate significant differences (P < 0.05)

tissue

albeit to different degrees in different tissues. The infor-
mation on the tissue distribution might provide clues
about the role of DBH in various physiological functions
in birds. The ubiquitous distribution of DBH that we
observed in goose tissues had not been observed in
mammalian tissues, where it was mainly present in the
nervous system [5-7]. Of course, high expression of
DBH was found in the cerebrum and cerebellum in
goose, no doubt due to the involvement of norepineph-
rine and epinephrine in neuroendocrine processes. Inter-
estinglyy, DBH mRNA was clearly present in both
reproductive and endocrine tissues, specifically in the
hypothalamus, pituitary, ovary, and oviduct. It may be,

then, that DBH regulates hormone synthesis. DBH modu-
lated the concentration of both progestin receptors and
estrogen receptors [11-13], supportive of this suggestion.
It is also reasonable that the lungs, which are regulated by
the sympathetic nervous system, had high DBH expres-
sion in our results. This finding also agrees with the
results [23, 24]. In human, analysis of DBH mRNA had
been confirmed high expression in the brain, but also in
sympathetically innervated organs, such as lung [23].

The expression of DBH, detected with mRNA accumula-
tion, was assessed during the pre-laying, ovulation, ovipos-
ition, and broody phases. The expression level drastically
fluctuated in reproductive tissues and endocrine tissues.

304
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oviduct
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pituitary gland
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T
hypothalamus

Fig. 4 Expression patterns of gDBH during the reproductive cycle of Zhedong geese. Gene expression was determined by gPCR and is represented
relative to GAPDH expression. Vertical bars represent the mean + S.D. (n = 3). Different letters above error bars indicate highly significant differences
between respective means (P < 0.01)
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Fig. 5 DBH expression in tissues of Zhedong geese and Yangzhou
geese during ovulation. Gene expression was determined using
gPCR and is represented relative to expression of GAPDH. Vertical
bars represent the mean + S.D. (n = 3). Different letters above error
bars indicate highly significant differences between respective
means (P<0.01)

The DBH expression levels were high in the ovulation
phase and among the lowest observed in the oviposition
phase. Similar results were observed in catfish [25]. The
fluctuations might be related to the different activity of
norepinephrine during the reproductive cycle. Most re-
search focused on DBH regulation of hypothalamo-
pituitary-adrenal (HPA) responses [26, 27], but we also
found that DBH played a role in hypothalamus-pituitary-
gonadal (HPGA) axis. DBH catalyzed a key step in cat-
echolamine biosynthesis, and catecholamine was believed
to derive from the extrinsic innervation of the ovary and
to participate in the regulation of ovarian development
and mature gonadal function [28]. The levels of DBH in
hypothalamus or ovary affected luteinizing hormone
secretion [10, 29], leading us to speculate that an ovarian
steroidogenesis surge, with increased noradrenaline
release by the HPGA axis, occurs concomitant with in-
creased DBH expression. Interestingly, DBH expression
was higher in hypothalamus-pituitary than oviduct during
the broody phase, while, in contrast, it was higher in
the oviduct than the hypothalamus-pituitary during
ovulation. We considered this to be evidence for a
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feedback mechanism that controlled either the enzyme or
its gene expression, or both.

We also observed higher DBH expression in Yangzhou
geese than in Zhedong geese during the ovulation phase.
Yangzhou geese are known for excellent egg-production
ability and no broodiness behavior, while Zhedong geese
have low egg-production with broodiness behavior.
Yangzhou geese might need to release more hormones
to ovulate, so the observed higher DBH expression levels
might be required to ensure sufficient hormone secre-
tion. The similar results presented in the rat. Stoker TE
et al. found DBH played an important role in the regula-
tion of the acute effects o on the hormonal control of
ovulation [30]. Besides, we found the allele frequency
from ¢.1739 C> T and ¢.1792 T > C substitutions were
significantly different between Zhedong goose and
Yangzhou goose. The two substitutions might be asso-
ciate with egg-production or broodiness behavior.

Conclusion

In summary, we presented the molecular cloning and
characterization of gDBH from Anas cygnoides and had
analyzed its expression during the reproductive cycle. In
Zhedong geese, DBH expression, as measured by mRNA
accumulation, was higher at ovulation than at ovipos-
ition. We hypothesized feedback regulation of gDBH
expression between hypothalamus-pituitary and the ovi-
duct during ovulation and the broody phase. Expression
of DBH during ovulation was higher in Yangzhou geese
than Zhedong geese. Hence this finding provides cor-
relative evidence that DBH expression is important in
reproduction. Our findings reveal that the gDBH may
regulate goose reproductive activity by the HPGA axis.

Methods

Animals

All animal experiments were reviewed and approved by
the Institutional Animal Care and Use Committee of
Yangzhou University. Procedures were performed in ac-
cordance with the Regulations for the Administration of
Affairs Concerning Experimental Animals (Yangzhou
University, China, 2012) and the Standards for the
Administration of Experimental Practices (Jiangsu,
China, 2008). The two goose breeds used in this study,
Zhedong goose and Yangzhou goose, were raised in the
breeding farm of Jiangsu Lihua Animal Husbandry Co.,

Table 1 Absolute frequencies of the five nsSNPs on DBH gene in Yangzhou goose and Zhedong goose

Breeds c1739C>T c1760G>T

CC CT TT Pvaluee GG GT TT Pvalue AA AG GG Pvalue TT TC CC Pvaluee GG GC CC Pvalue

Yangzhou goose(n=29) 12 12 5 0008 4 9 16 002
Zhedong goose(n=22) 4 5 13 1 1 20

c1765A> G c1792T>C c1861G>C
0 9 20 003 2 6 21 001 0 4 25 007
5 5 12 9 3 10 o 0 22




Xu et al. BMC Genetics (2016) 17:48

Ltd., Changzhou, China, according to the farm’s standard
practice. One hundred female geese of each breed were
selected randomly for the study. Geese were exposed to
natural light and ambient temperature throughout this
study and released to an open area during the day, when
they were fed ad libitum with rice grain and, when pos-
sible, green grass.

Tissue sample collection

Geese were sacrificed by anesthetizing them with sodium
pentobarbital. To investigate DBH expression patterns in
different tissues, various tissues were removed, immedi-
ately frozen in liquid nitrogen, and stored at —-80 °C for
RNA isolation. These tissues were heart, liver, glandular
stomach, lung, spleen, kidney, intestinum tenue, intesti-
num crissum, cerebrum, cerebellum, muscle, infundibu-
lum of the oviduct, pituitary, hypothalamus, and the
stroma of the ovary. A group of Zhedong geese were sacri-
ficed in the pre-laying stage, when they were 120 days old.
Three groups of 380-days-old Zhedong geese(5 geese/
group) were selected: a laying group with an egg in the
oviduct (ovulation, the release of an ovum from a rup-
tured follicle), a laying group without an egg in the
oviduct (oviposition, the laying of the egg), and a brooding
group(The goose sits in the nest and the distance between
pubic bones is less than two finger widths). Another 5 lay-
ing Yangzhou geese with an egg in the oviduct (ovulation)
was also selected for comparison with the Zhedong breed.

Zhedong goose DBH cDNA cloning and sequencing

Total RNA was extracted from collected tissue samples
using TRIzol reagent according to the manufacturer’s in-
struction (TaKaRa, China) and re-suspended in RNase-
free water. The concentration and purity were determined
with a NanoDrop Spectrophotometer (NanoDrop, USA).
After purification, 2 pg of total RNA was reverse
transcribed using M-MLYV reverse transcriptase (Promega,
USA) according to the manufacturer’s protocol. Primers
were designed according the unigene (Xu et al., [18];
Additional file 1) and reverse transcription PCR (RT-
PCR) was performed using ovarian cDNA from geese.
The PCR product was purified, cloned into the pMD19-T
vector (TaKaRa, China), and subjected to sequence ana-
lysis. The 5'- and 3'-ends of DBH were amplified via rapid
amplification of ¢cDNA ends (RACE) using the 5-RACE
System for Rapid Amplification of cDNA Ends (Invitro-
gen, USA) and the 3’-Full RACE Kit (TaKaRa, China),
respectively. RACE primers (Additional file 1) were de-
signed using the partial DBH nucleotide sequence ob-
tained from RT-PCR. Touchdown and nested PCRs were
performed according to the manufacturer’s instructions.
Amplicons were then cloned into a plasmid vector for nu-
cleotide sequencing by Sangon Biotech (Shanghai, China).

Page 7 of 9

Bioinformatics analysis

The Zhedong goose ¢cDNA and deduced DBH amino acid
sequences were analyzed using DNAStar (version 7.1).
Homology analyses were carried out using Clustal W
(http://www.ebi.ac.uk/Tools/msa/). Conserved domains in
the protein were identified by the conserved domain data-
base (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).
A rooted neighbor-joining tree was constructed to deter-
mine the phylogenetic relationship using MEGA 6.0 soft-
ware with 1000 bootstrap replicates to establish the
confidence level of each node.

DBH expression patterns in Zhedong goose and
Yangzhou goose

To study expression of the cDNA encoding goose DBH
(¢DBH), we performed real-time quantitative PCR
(qPCR) on total RNA isolated from the tissues. Assays
were conducted in 20-pL reaction mixes using the SYBR
Premix Ex Taq™ (TaKaRa, China) and performed on an
ABI two-step RT-PCR system (Applied Biosystems 7500,
USA) with diluted first-strand cDNA. The glyceraldehyde-
3-phosphate dehydrogenase gene (GAPDH) served as an
internal reference gene. Quantitative qPCR programs for
DBH and GAPDH were: one cycle of 95 °C for 5 min,
40 cycles of 95 °C for 10 s, 60 °C for 34 s of data collec-
tion, and one cycle for the melting curve analysis. All
¢DNA synthesis reactions were carried out using 100 ng
of total RNA per reaction and assayed in three to four
technical replicates for each set of biological samples. The
same methods were used to determine the DBH mRNA
expression profile during the reproductive cycle. For
the DBH mRNA expression profile of the pre-laying
Zhedong geese, the chest muscle tissue served as a cali-
brator. For the differential expression analysis during
the reproductive cycle, the oviduct tissue from pre-
laying Zhedong geese served as a calibrator. To com-
pare the expression patterns between the Zhedong
geese and Yangzhou geese, the mean ACt value of the
hypothalamus tissue of Zhedong geese within each
group was used as the calibrator. Relative expression of
mRNA was calculated using the 244" method [31].

Identification of SNP on DBH in Zhedong goose and
Yangzhou goose

According to the goose genome sequences(scaffold224136,
scaffold224137), nine pairs of primers (shown in Additional
file 1) were synthesized to identify the polymorphisms.
PCR products were amplified from the DNA of Yangzhou
geese and Zhedong geese, and sequenced directly by the
GenScript Co., Ltd. (Nanjing, China). The obtained se-
quences were aligned by AlignIR(V2.0) software to screen
the potential single nucleotide polymorphisms (SNPs) in
the coding region.


http://www.ebi.ac.uk/Tools/msa/
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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Statistical analyses

Data analysis was performed by using SPSS17.0, then
adopted one-way ANOVE analyses to compare the differ-
ence among the different tissues, periods and breeds, re-
spectively. Comparisons of genotypes between the different
breeds were evaluated by Chi-square (x%) tests. P<0.01
was considered statistically very significant in all.

Availability of supporting data

The data sets supporting the results of this article are in-
cluded within the article and its additional files. The cDNA
sequence of DBH from Zhedong goose been deposited in
the GenBank of National Center for Biotechnology Infor-
mation (NCBI) with accession number KU672379.

Additional file

[ Additional file 1: Primers used in this study. (DOCX 20 kb) ]
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