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Abstract: α-Klotho is a known anti-aging protein that exerts diverse physiological effects,
including phosphate homeostasis. Klotho expression occurs predominantly in the kidney and
is significantly decreased in patients with chronic kidney disease. However, changes in serum klotho
levels and impacts of klotho on outcomes among kidney transplant (KTx) recipients and kidney
donors remain unclear. A literature search was conducted using MEDLINE, EMBASE, and Cochrane
Database from inception through October 2019 to identify studies evaluating serum klotho levels
and impacts of klotho on outcomes among KTx recipients and kidney donors. Study results were
pooled and analyzed utilizing a random-effects model. Ten cohort studies with a total of 431 KTx
recipients and 5 cohort studies with a total of 108 living kidney donors and were identified. After KTx,
recipients had a significant increase in serum klotho levels (at 4 to 13 months post-KTx) with a
mean difference (MD) of 243.11 pg/mL (three studies; 95% CI 67.41 to 418.81 pg/mL). Although KTx
recipients had a lower serum klotho level with a MD of = −234.50 pg/mL (five studies; 95% CI −444.84
to −24.16 pg/mL) compared to healthy unmatched volunteers, one study demonstrated comparable
klotho levels between KTx recipients and eGFR-matched controls. Among kidney donors, there was a
significant decrease in serum klotho levels post-nephrectomy (day 3 to day 5) with a mean difference
(MD) of −232.24 pg/mL (three studies; 95% CI –299.41 to −165.07 pg/mL). At one year following
kidney donation, serum klotho levels remained lower than baseline before nephrectomy with a MD
of = −110.80 pg/mL (two studies; 95% CI 166.35 to 55.24 pg/mL). Compared to healthy volunteers,
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living kidney donors had lower serum klotho levels with a MD of = −92.41 pg/mL (two studies;
95% CI −180.53 to −4.29 pg/mL). There is a significant reduction in serum klotho levels after living
kidney donation and an increase in serum klotho levels after KTx. Future prospective studies are
needed to assess the impact of changes in klotho on clinical outcomes in KTx recipients and living
kidney donors.

Keywords: klotho; α-Klotho; FGF-23; kidney transplantation; kidney donor; renal transplantation;
transplantation; Nephrology; CKD-MBD; CKD-Mineral and Bone Disorder

1. Introduction

α-Klotho (klotho) is a membrane protein that is highly expressed in the kidney, especially in
the distal tubular epithelial cells [1–10]. Membrane-bound klotho regulates phosphate homeostasis
by acting as a co-factor of fibroblast growth factor 23 (FGF23) [11–14]. FGF23-Klotho signaling
promotes urinary phosphate excretion and suppresses the expression of renal 1α-hydroxylase,
resulting in reduced vitamin D-dependent intestinal absorption of calcium and phosphate [11,15].
Altogether, FGF23-Klotho signaling regulates phosphate metabolism and prevents phosphate
retention [16–20]. Soluble klotho can be detected in the circulation in two forms: (1) cleaved klotho,
which is derived from cleavage of the extracellular domain of membrane klotho, and potentially
(2) secreted klotho, which is derived from an alternatively spliced klotho mRNA transcript [21,22].

Soluble klotho displays diverse physiological effects and hormonal functions, including the
reduction of oxidative stress and the inhibition of intracellular insulin and insulin-like growth factor 1
(IGF-1) signaling [15,23–28]. Klotho protects the kidney by suppression of apoptosis [29,30] and cell
senescence [31,32], suppression of fibrosis [33–37], and upregulation of autophagy [3,38] in renal tubular
cells. Klotho-deficient mice develop premature aging, hyperphosphatemia, vascular calcification
and endothelial dysfunction, and have shorter lifespans, while klotho overexpressing mice have
20–30% longer lifespans than wild type mice [2,24,39]. Since klotho expression is the most abundant
in the kidney [40], patients with kidney diseases, including acute kidney injury (AKI) and chronic
kidney disease (CKD), are found to have a significant reduction in klotho expression and soluble
levels [41–51]. Studies have demonstrated that serum klotho declines in progressive human CKD with
the lowest serum klotho levels among patients with end-stage kidney disease (ESKD) on dialysis [41,48].
Low serum klotho is associated with increased mortality and cardiovascular events among patients
with ESKD [52].

When compared to treatment with chronic dialysis, kidney transplantation (KTx) is the best
therapeutic option for patients with ESKD and is associated with increased survival and better quality of
life [53–56]. In addition, living donor KTx provides greater allograft longevity than those transplanted
from a deceased donor [57]. However, changes in serum klotho levels and the impact of klotho on
outcomes among KTx recipients and kidney donors remain unclear [58–75]. Thus, we conducted
this systematic review and meta-analysis to assess serum klotho levels and the impact of klotho on
outcomes among KTx recipients and kidney donors.

2. Methods

2.1. Search Strategy and Literature Review

A systematic literature search of MEDLINE (1946 to October 2019), EMBASE (1988 to October 2019),
and the Cochrane Database of Systematic Reviews (database inception to October 2019) was conducted
(1) to assess studies evaluating serum klotho levels and effects of klotho on outcomes among KTx
recipients and kidney donors. The systematic literature review was undertaken independently by
two investigators (C.T. and W.C.) using a search strategy that combined the terms of (“klotho” OR
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“klotho protein” OR “klotho gene”) AND (“kidney transplantation” OR “renal transplantation” OR
“kidney donor”) which is provided in online Supplementary Materials (Table S1). No language
limitation was applied. A manual search for conceivably relevant studies using references of the
included articles was also performed. This study was conducted by the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analysis) statement [76]. The data for this meta-analysis are
publicly available through the Open Science Framework (URL: https://osf.io/kx9we/).

2.2. Selection Criteria

Eligible studies must have been (1) clinical trials or observational studies (cohort, case-control,
or cross-sectional studies) that evaluated serum klotho levels and effects of klotho on outcomes among
KTx recipients or kidney donors, and (2) studies that presented data to calculate mean differences (MDs)
with 95% confidence intervals (CIs) that evaluated changes in serum klotho before and after KTx/kidney
donation or compared serum klotho between KTx patients/donors and a control group composed
of non-KTx or non-donor controls. Retrieved articles were individually reviewed for eligibility by
the two investigators (C.T. and W.C.). Discrepancies were addressed and solved by joint consensus.
Inclusion was not limited by the size of the study.

2.3. Data Abstraction

A structured data collecting form was used to obtain the following information from each study
including the title, name of the first author, publication year, year of the study, country where the study
was conducted, demographic data of kidney transplant recipients and donors, methods used to measure
serum klotho, serum klotho levels, estimated glomerular filtration rate (eGFR), control group, and adjusted
effect estimates with 95% CI and covariates that were adjusted for in the multivariable analysis. This data
extraction process was independently performed by two investigators (C.T. and W.C.).

2.4. Statistical Analysis

Analyses were performed utilizing the Comprehensive Meta-Analysis 3.3 software (version 3;
Biostat Inc., Englewood, NJ, USA). Adjusted point estimates from each study were consolidated by the
generic inverse variance approach of DerSimonian and Laird, which designated the weight of each
study based on its variance [77]. The summary statistics for each outcome were the mean change from
baseline and standard deviation (SD) of the mean change. The mean change in each group was obtained
by subtracting the final mean from the baseline mean. The MDs were preferred since all studies use the
same continuous outcome and unit of measure (pg/mL) of serum klotho and FGF-23 levels. The SD of
mean change was computed, assuming a conservative correlation coefficient of 0.5 [78]. Effects sizes of
0.2 were interpreted as small, those of 0.5 as moderate, and of 0.8 as large [79]. Given the possibility of
between-study variance, we used a random-effect model rather than a fixed-effect model. Cochran’s Q
test and I2 statistics were applied to determine between-study heterogeneity. A value of I2 of 0%
to 25% represents insignificant heterogeneity, 26% to 50% low heterogeneity, 51% to 75% moderate
heterogeneity and 76–100% high heterogeneity [80]. The presence of publication bias was assessed by
the Egger test [81].

3. Results

A total of 132 potentially eligible articles were identified using our search strategy. After the
exclusion of 93 articles based on title and abstract for clearly not fulfilling inclusion criteria on the
basis of the type of article, study design, population or outcome of interest, or due to being duplicates,
39 articles were left for full-length review. Eighteen of these were excluded from the full-length review
as they did not report the outcome of interest, while six articles were excluded because they were not
observational studies. Thus, 15 studies (10 cohort studies [58–67] with a total of 431 KTx recipients
and 5 cohort studies [68–72] with a total of 108 living kidney donors) were included. The literature
retrieval, review, and selection process are demonstrated in Figure 1.

https://osf.io/kx9we/
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Figure 1. Outline of our search methodology. Abbreviation: KTx, kidney transplant.

3.1. Serum Klotho after Kidney Transplantation

The characteristics of the included studies assessing serum klotho after kidney transplantation
are presented in Tables 1 and 2. After KTx, there was a significant increase in serum klotho levels
in recipients (at 4 to 13 months post-KTx) in reference to baseline levels before KTx with a mean
difference (MD) of 243.11 pg/mL (three studies; 95% CI 67.41 to 418.81 pg/mL, I2 = 93%), Figure 2A.
There were significant reductions in serum PTH and phosphate levels with MDs of −134.65 pg/mL
(95% CI −176.09 to −93.21 pg/mL, I2 = 0%) and −2.81 mg/dL (95% CI −3.46 to −2.16 mg/dL, I2 = 97%),
respectively. There was no significant change in serum calcium levels with a MD of 0.37 mg/dL
(95% CI, −0.05 to 0.79 mg/dL, I2 = 83%). Although KTx recipients had lower serum klotho levels with a
MD of = −234.50 pg/mL (five studies; 95% CI −444.84 to −24.16 pg/mL, I2 = 93%, Figure 2B) compared
to healthy unmatched volunteers, one study demonstrated comparable klotho level between KTx
recipients and eGFR-matched controls [66]. Two studies demonstrated high serum klotho levels in deceased
donors as a prognostic marker for good allograft function within one year after KTx (p < 0.05) [59,60].
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Table 1. Characteristics of the included studies assessing serum klotho after kidney transplantation.

Study Year Country N-KTx Characteristics-KTx Klotho before KTx (pg/mL) Other Markers before KTx Kloth after KTx (pg/mL) Other Markers after KTx

Kubota et al. Japan 20
Age 6.9 ± 4.5 years

988 ± 122
FGF23 At 4 months N/A

Male 12 (60%) 5343 ± 1350 pg/mL 1405 ± 125

Tan et al. 2017 Australia 29
Age 49 (35–55) years

307 (279–460)

iFGF23 At 52 weeks
At 52 weeks

iFGF23
2060 (825–5075) pg/mL 64 (34–88) pg/mL

eGFR 460 (311–525) eGFR
Male 17 (59%) 7.4 (6.5–8.7) mL/min/1.73 m2 60.4 (50.5–71.6) mL/min/1.73 m2

Mizusaki et al. 2019 Japan 36
Age 38.1 ± 14 years

211.8 eGFR At 1 year At 1 year
eGFR

Male 15 (42%) 3.8 ± 0.8 mL/min/1.73 m2 369.3 49 ± 17 mL/min/1.73 m2

Abbreviations: eGFR, estimated glomerular filtration rate; iFGF23, intact fibroblast growth factor-23; KTx, kidney transplant; N/A, not available.

Table 2. Characteristics of the included studies comparing serum klotho between KTx recipients and healthy volunteers.

Study Year Country N-KTx Characteristics-KTx Klotho-KTx (pg/mL) Other Markers-KTx N-Control Klotho-Control (pg/mL) Other Markers-Control

Balogu et al. Turkey 40 N/A 153 ± 170
FGF23 20 healthy subjects 641 ± 1797

FGF23
47.4 ± 61 pg/mL 1.6 ± 1.3 pg/mL

Malyszko et al. 2014 Poland 84

Median time from KTx

228 (161–384)

eGFR

22 healthy subjects 757 (632–839)

eGFR56.3 ± 1.6
37 (13–72) months mL/min/1.73 m2 97.3 ± 13.5 mL/min/1.73 m2

Age 47.9 ± 12.0 years FGF23 FGF23
Male 64 (76%) 16.7 (13.8–21.2) pg/mL 11.7 (10.8–17.2) pg/mL

Bleskestad et al. 2015 Norway 40

Median time from KTx

605 (506–784)

eGFR 39 GFR-matched
controls

GFR-matched controls

GFR-matched control
eGFR

62 (57–73) mL/min/1.73 m2

iFGF23
63 (52–87) pg/mL
Healthy volunteer

eGFR
99.5 (89.5–110.8)

18.3 (IQR 12.2–26.2) years 62 (52–72) mL/min/1.73 m2 660 (536–847) mL/min/1.73 m2

Age 61.3 ± 11.8 years iFGF23 20 healthy subjects Healthy volunteers iFGF23
Male 29 (73%) 75 (53–108) pg/mL 692 (618–866) 51 (36–68) pg/mL

Tartaglione et al. 2017 Italy 80

Time for KTx

449 (388–534)

eGFR

30 healthy subjects 795 (619–901)

eGFR
77.6 (37.6–119.5) months 46.3 (36.2–58.3) mL/min/1.73 m2 109.1 ± 14.1 mL/min/1.73 m2

Age 54.7 ± 10.3 years FGF23 FGF23
Male 49 (61%) 41 (25–59) pg/mL 34 (28–441) pg/mL

Nahandi et al. 2017 Iran 30
Time from KTx

276 ± 241
eGFR

27 healthy subjects N/A N/A6.42 ± 2.44 years
64.53 ± 17.83 mL/min/1.73 m2

Age 30.9 ± 5.3 years

Abbreviations: eGFR, estimated glomerular filtration rate; FGF23, fibroblast growth factor-23; KTx, kidney transplant; N/A, not available.
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Figure 2. (A) Change in Serum Klotho in KTx Recipients after Kidney Transplant. (B) Serum Klotho in
KTx Recipients Compared to Unmatched Healthy Volunteers.

3.2. Serum Klotho after Living Kidney Donation

The characteristics of the included studies assessing serum klotho after kidney transplantation are
presented in Tables 3 and 4. A total of 108 living kidney donors were identified from five cohort studies.
After kidney donation, there was a significant decrease in serum klotho levels post-nephrectomy
(day 3 to day 5) with a mean difference (MD) of −232.24 pg/mL (three studies; 95% CI −299.41 to
−165.07 pg/mL, I2 = 0), Figure 3A. At one year following the kidney donation, serum klotho levels
remained lower than baseline before nephrectomy with a MD of = −110.80 pg/mL (two studies; 95% CI
−166.35 to −55.24 pg/mL, I2 = 5), Figure 3B.

Figure 3. Changes in serum klotho after living kidney donation: (A) immediate post-donation and (B) one
year post-donation.
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Table 3. Characteristics of the included studies evaluating serum klotho after living kidney donation.

Study Year Country N-Donor Characteristics-Donor Klotho before Donor
Nephrectomy (pg/mL)

Other Markers before
Donor Nephrectomy

Klotho after Donor
Nephrectomy (pg/mL)

Other Markers after
Donor Nephrectomy

Akimoto et al. 2013 Japan 10
Age 64 ± 9 years

910 (755–1132)
eGFR At day 5

N/AMale 4 (40%)
87 (72–92) mL/min/1.73 m2 619 (544.6–688.5)

Living donor

Ponte et al. 2014 Switzerland 27
Age 54 ± 11 years

526 (482–615)

eGFR At day 3

At day 3
FGF23

26.9 (22.1–38.0) pg/mL
At day 360

eGFR
95 ± 11 mL/min/1.73 m2 304 (266–491) 63 ± 13 mL/min/1.73 m2

Male 15 (57%) FGF23 At day 360 FGF23
Living donor 48.1 (37.4–60.0) pg/mL 440 (398–613) 45.2 (37.7–56.4) pg/mL

Kimura et al. 2015 Japan 15
Age 59 ± 9 years

1084 (795–1638)
eGFR At day 5

N/AMale 8 (53%)
74 ± 14 mL/min/1.73 m2 809 (638–1357)

Living donor

Tan et al. 2017 Australia 21
Age 54.1 ± 14.7

564 (468–663)

eGFR At 12 months
At 12 months

eGFR
94 (82–97) mL/min/1.73 m2 61 (49–69) mL/min/1.73 m2

Male 13 (62%) iFGF23 420 (378–555) iFGF23
Living donor 52 ± 15 pg/mL 72 ± 22 pg/mL

Abbreviations: eGFR, estimated glomerular filtration rate; FGF23, fibroblast growth factor-23; N/A, not available.

Table 4. Characteristics of the included studies comparing serum klotho between living kidney donors and healthy volunteers.

Study Year Country N-Donor Characteristics-Donor Klotho-Donor (pg/mL) Other Markers-Donor N-Control Klotho-Control (pg/mL) Other Markers-Control

Thorsen et al. 2016 Norway 35

Age 56.5 ± 9.4 years

669 (409–1161)

FGF23

35 healthy subjects 725 (458–1222)

FGF23

Male 21 (60%)
62.6 (6.6–112) pg/mL 51.8 (25.9–90) pg/mL

Living donor

Time from donor
nephrectomy eGFR eGFR

Median 15 years 75.8 ± 12.3 mL/min/1.73 m2 99.0 ± 13.1 mL/min/1.73 m2

Tan et al. 2017 Australia 21

Age 54.1 ± 14.7 years

420 (378–555)

eGFR

20 healthy subjects 517 (434–667)

eGFR

Male 13 (62%) 61 (49–69) mL/min/1.73 m2 97 (89–102) mL/min/1.73 m2

Living donor iFGF23 iFGF

Time from donor
nephrectomy 1 year 72 ± 22 pg/mL 52 ± 15 pg/mL

Abbreviations: eGFR, estimated glomerular filtration rate; FGF23, fibroblast growth factor-23.



J. Clin. Med. 2020, 9, 1834 8 of 16

There was no significant change in serum FGF-23 at one year post-donation with a
MD of = 8.19 pg/mL (two studies; 95% CI −14.24 to 30.62 pg/mL, I2 = 85%), Figure 4A. Compared to
unmatched healthy volunteers, living kidney donors had lower serum klotho levels with a
MD of = −92.41 pg/mL (two studies; 95% CI −180.53 to −4.29 pg/mL, I2 = 44%), Figure 4B.

Figure 4. (A) Changes in Serum FGF-23 at one year post-donation and (B) Serum klotho levels in
kidney donors compared to unmatched healthy controls.

3.3. Evaluation for Publication Bias

A funnel plot was not drawn because of the limited number of studies in each analysis.
Generally, tests for funnel plot asymmetry should be used only when there are at least ten study
groups, because the power of the test is too low to distinguish chance from real asymmetry [82].
Egger’s regression test demonstrated no significant publication bias in all analyses (p > 0.05).

4. Discussion

In this meta-analysis, we demonstrated that serum klotho levels were significantly increased
after successful KTx. While KTx recipients had lower serum klotho levels compared to unmatched
healthy volunteers, serum klotho levels in kidney transplant recipients were comparable to those in
eGFR-matched controls. Among kidney donors, we found a significant decrease in serum klotho levels
post-nephrectomy at day 3 to day 5, which remained lower than baseline before nephrectomy at one
year following kidney donation. Compared to healthy volunteers, living kidney donors had lower
serum klotho levels.

The findings from our meta-analysis support that klotho is primarily synthesized in the kidneys [40],
and transplanting a new kidney into ESKD patients would result in an increase in renal klotho
and serum klotho levels post-KTx. In addition to the oligo-anuric state, patients with advanced
CKD/ESKD have a significant reduction in klotho and progressively lose the ability to prevent
phosphate retention, resulting in hyperphosphatemia, vascular calcification, and cardiovascular
disease [83,84]. After successful KTx, in addition to improvement in eGFR, there is also a significant
increase in klotho, altogether leading to an improvement in phosphate homeostasis. Recent studies
have demonstrated that post-transplant hypophosphatemia after KTx is associated with good kidney
allograft function [85,86]. Although the actual underlying mechanisms remain unclear, this is likely
because excellent quality transplanted kidneys have higher eGFR and klotho expression, resulting in a
reduction in phosphate levels post-KTx.

We identified two cohorts of KTx patients who received their kidneys from deceased donors;
higher serum klotho levels in these donors were prognostic for good allograft function at one year
after KTx [59,60]. In the ischemia-reperfusion injury (IRI), which is unavoidable to a certain degree
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in all KTx surgeries, soluble klotho protects renal tubular cells from oxidative damage by inhibiting
the insulin/IGF-1 signaling pathway and by inhibition of TGF-β1 for decreasing renal fibrosis [87,88],
and upregulation of autophagy in renal tubular cells [3,89]. In addition, klotho is also involved in
the inhibition of Wnt pathway-associated β-catenin activation, thus improving renal fibrosis [87].
Compared to patients with early graft function, a lower level of klotho is observed in implantation
biopsies among patients with delayed graft function (DGF) [90]. Although data on the effects of klotho
on long-term allograft outcomes are limited, it is well known that poor allograft function at one year after
KTx and DGF is associated with renal allograft loss [91,92]. Following successful KTx, patients regain
functions of klotho via FGF23-Klotho signaling, and with the previously accumulated FGF23,
residual hyperparathyroidism, and the use of calcineurin inhibitors (especially cyclosporine) [93–95],
post-KTx hypophosphatemia can commonly occur up to 86% [85,96,97]. Post-KTx hypophosphatemia is
known to be associated with lower risks of death-censored graft failure and cardiovascular mortality [85].
The association between post-KTx hypophosphatemia and reduced cardiovascular mortality among
KTx recipients could be related to the reduction of calcium phosphate product, an important factor
associated with vascular calcification and cardiovascular events [98,99]. Our study demonstrated that
successful KTx can result in a significant increase in serum klotho levels among KTx recipients [85].
In addition, previous literature has demonstrated trending towards normal FGF-23 levels after
successful KTx [42,100]. Thus, regaining function in FGF23-Klotho signaling after KTx helps promote
urinary phosphate excretion and reduced vitamin D-dependent intestinal absorption of calcium and
phosphate [11,15], which might explain the association between post-KTx hypophosphatemia and
reduced cardiovascular mortality. Future studies are needed to assess the impact of klotho levels on
long-term cardiovascular health in KTx recipients, allograft, and patient survival.

Living donors supply approximately 40% of kidney allografts in the United States [101].
Overall, living kidney donation is considered safe and does not appear to increase long-term mortality
compared with controls [102–107]. A recent systematic review of 52 studies comprising 118,426 living
kidney donors reassured the safety of living kidney donations with the finding of no difference in
all-cause mortality among donors and controls [108]. In addition, a large retrospective population-based
matched cohort study of 2028 kidney donors in comparison with 20,280 matched non-donor controls
(followed for a median of 6.5 years) demonstrated no difference in the rate of cardiovascular events
between the two groups [109]. Although the findings of our study showed a significant reduction in
serum klotho at post-operative day 3 to 5 and at one year following kidney donation, the degree of klotho
reduction seemed to be attenuated at one year post-donation compared to the early post-operative
period. In addition, we found no significant change in serum FGF-23 at one year post-donation. It is
possible that after living kidney donation serum klotho is not severely reduced enough to stimulate
the rise in serum FGF-23, which occurred in patients with advanced CKD [41,110]. Elevated FGF-23
levels have been shown to be associated with increased mortality and cardiovascular events [111–113].
Thus, no significant increase in FGF-23 levels after living kidney donation is consistent with the findings
of no difference in all-cause mortality among donors and controls in previous literature [108,109].

Despite these published reassuring findings of donor safety [108,109], a recent small multicenter
study of living kidney donors and healthy controls (n = 124) demonstrated an association between
living kidney donation and a significant increase in left ventricular mass and reduced aortic
distensibility [114]. In addition to functions of klotho via FGF23-Klotho signaling, soluble klotho also has
FGF23-independent effects, including endothelial protection from senescence, anti-fibrotic properties,
cardioprotection, and prevention of vascular calcifications [84,115,116]. Klotho-deficient CKD mice
have significant left ventricular hypertrophy (LVH) and cardiac fibrosis compared with wild-type
mice [117]. Soluble klotho also provides cardioprotection against stress-induced exaggerated cardiac
remodeling through downregulation of transient receptor potential cation channel 6 (TRPC6) [118].
Although an increased LVH and reduced aortic distensibility in living kidney donors could be related
to an increased risk of hypertension post living kidney donation [102,103], future studies are required
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to assess whether a reduction in serum klotho levels after living kidney donation may play a role in the
higher risk of LVH, and reduced aortic distensibility observed among living kidney donors.

Our meta-analysis is subject to certain limitations. First, although there were comparative groups,
all studies are observational, making them susceptible to selection bias. Second, many variables
may influence klotho levels in the post-transplant period that may contribute to the heterogeneity
between the included studies evaluating changes in serum klotho levels among KTx recipients.
Data on medications that may affect endogenous klotho expression in the kidney and soluble
levels such as angiotensin II inhibitors and hydroxymethylglutaryl-CoA (HMG-CoA) reductase
inhibitors [17,21,119,120] as well as data on immunosuppression were limited in included studies.
Lifestyle, diet, psychological stress, and activities such as exercises may also affect serum klotho
levels [121–124]. Thus, future prospective studies are needed to assess the impact of changes in klotho
on clinical outcomes in KTx recipients and living kidney donors. Third, the follow-up duration of
included studies was limited to only one year, and future studies are required to evaluate the impacts of
serum klotho levels on long-term clinical outcomes. Fourth, serum klotho is also affected by the aging
process and declines with older age [125]. However, we demonstrated an increase in serum klotho
levels after KTx at one year and a decrease in klotho levels at immediate postoperative (which is less
likely to be affected by the aging process). Lastly, all included studies measured serum klotho levels by
ELISA. Recently, immunoprecipitation-immunoblot (IP-IB) assay is shown to be superior to the ELISA
and highly correlated with eGFR [126]. However, this technique requires the labor-intensive nature of
the IP-IB assay, and further research is needed to evaluate the use of the IP-IB assay in KTx patients.

In conclusion, compared to patients’ baseline, serum klotho levels increase early after successful
KTx and decrease after living kidney donation, respectively. Future studies are required to assess
the impact of serum klotho levels on risk-stratification and patient-centered outcomes in both living
donors and KTx recipients.
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