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Background
Polypharmacy, the concurrent administration of multiple drugs, has been increasing 
among patients in recent years [1–3]. When administering multiple drugs, interactions 
might arise among them, often termed drug–drug interactions (DDI). The intended 
effect of a drug may therefore be altered by the action of another drug. These effects 
could lead to drug synergy [4], reduced efficacy or even to toxicity [5]. Thus, DDI discov-
ery is an important step towards improved patient treatment and safety.

Abstract 

Background:  Drug–drug interactions (DDIs) refer to processes triggered by the 
administration of two or more drugs leading to side effects beyond those observed 
when drugs are administered by themselves. Due to the massive number of possible 
drug pairs, it is nearly impossible to experimentally test all combinations and discover 
previously unobserved side effects. Therefore, machine learning based methods are 
being used to address this issue.

Methods:  We propose a Siamese self-attention multi-modal neural network for DDI 
prediction that integrates multiple drug similarity measures that have been derived 
from a comparison of drug characteristics including drug targets, pathways and gene 
expression profiles.

Results:  Our proposed DDI prediction model provides multiple advantages: (1) It is 
trained end-to-end, overcoming limitations of models composed of multiple separate 
steps, (2) it offers model explainability via an Attention mechanism for identifying sali-
ent input features and (3) it achieves similar or better prediction performance (AUPR 
scores ranging from 0.77 to 0.92) compared to state-of-the-art DDI models when 
tested on various benchmark datasets. Novel DDI predictions are further validated 
using independent data resources.

Conclusions:  We find that a Siamese multi-modal neural network is able to accurately 
predict DDIs and that an Attention mechanism, typically used in the Natural Language 
Processing domain, can be beneficially applied to aid in DDI model explainability.
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It is almost impossible to conduct an empirical assessment of all possible drug pair 
combinations and test their propensity for triggering DDIs. Computational approaches 
have addressed this issue by enabling the testing of large number of drug pairs more effi-
ciently. For instance, DeepDDI [6], a multilabel classification model, takes drug structure 
data as input along with drug names, in order to make DDI predictions in the form of 
human-readable sentences. Another model, GENN [7], a graph energy neural network, 
puts a focus on DDI types and estimates correlations between them. NDD [8] utilizes 
multiple drug similarity matrices, which are combined by Similarity Network Fusion 
(SNF) and finally fed through a feed-forward network for classification. Similarly, ISCMF 
[9] performs matrix factorization on the known DDIs in order to calculate latent matri-
ces which are used for predictions. It utilizes the same SNF-fused matrix as to constrain 
this factorization.

The above mentioned solutions come with some drawbacks. First, there is a plethora 
of drug feature information available for many approved drugs, including chemical 
structure, side effects, targets, pathways, and more. However, current DDI prediction 
solutions often only take advantage of a small subset of these features, particularly drug 
chemical structure features, due to their broad availability. Other current model limi-
tations include low interpretability and/or the fact that they consist of multiple sepa-
rate steps (i.e., cannot be trained end-to-end). A novel solution should preferably offer a 
mechanism to tackle those drawbacks simultaneously.

To this end, we introduce AttentionDDI, a Siamese self-attention multi-modal neu-
ral network model for DDI prediction. Our model is inspired by and adapts ideas from 
Attention-based models (i.e., Transformer network) [10] that showed great success par-
ticularly in the Natural Language Processing (NLP) domain. Our model 1) is trained 
end-to-end, 2) offers model explainability and 3) achieves similar or better prediction 
performance compared to state-of-the-art DDI models when tested on various bench-
mark datasets.

Results
Model evaluation In order to evaluate the performance of our approach in predicting 
drug–drug interactions, we focused on four distinct benchmark datasets broadly used 
in the literature [8, 9, 11–13]. These four datasets consist of one or more drug similar-
ity matrices describing multiple drug characteristics such as chemical structure and side 
effects. These datasets are explained in detail in the Methods section and Additional 
file 1, and are henceforth referenced as DS1, DS2 and DS3 (the last one with two variants 
called CYP and NCYP). The usage of these datasets for comparing our model with previ-
ously released models allows for fair benchmarking and reproducibility of our work.

Evaluation results We compared our model AttentionDDI (the full version and two 
variants thereof ) against state-of-the-art models reported in the literature, as shown 
in Table 1. Overall, our model achieves similar or better prediction performance when 
tested on the above mentioned benchmark datasets.

For DS1, our model achieves an AUPR score of 0.924, outperforming the baseline 
NDD model (AUPR 0.922). The best performing model for DS1 is the Classifier ensem-
ble model (AUPR 0.928). For DS2 our model outperforms all models with an AUPR 
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score of 0.904, with NDD coming second with an AUPR score of 0.89. For DS3 with the 
CYP labels, our model achieves the second best AUPR score of 0.775, surpassed by the 
baseline model (AUPR 0.830). Of note, most other models perform poorly (AUPR < 0.5 ) 
on this dataset. Finally, for DS3 with NCYP labels our model (AUPR score of 0.890) out-
performs all models except for the NDD model (AUPR 0.947).

We further compared AttentionDDI (our model) to two model variants where we (1) 
use Attention only (without siamese architecture) and (2) use neither the Attention nor 
the siamese components (i.e. deep neural network architecture only). Table 1 shows that 
the full version of AttentionDDI outperforms both variants by a large margin, especially 
for DS2 and DS3, highlighting the importance of the Attention and siamese components 
of our model. Moreover, the role of siamese component was further corroborated when 
assigning more weight to the contrastive loss function (see hyperparameter γ in Table 6 
and Eq. 16 for more details) that involved using the distance computed between every 
drug pair representation vectors generated from the siamese architecture in the training 
datasets.

Attention weights Our model offers model explainability through the Attention scores 
computed at all layers of the model including the Feature Attention layer (Fig. 4). These 
scores are used to determine the contribution (i.e. weights) of the similarity matrices 
(i.e. modalities) to each of the drug representation vectors ( za, zb ), namely which drug 
characteristics lead to better encoding (detailed explanation of this approach is found in 
Methods).

Table 1  Model evaluation scores for all datasets. First rank scores and AttentionDDI model scores are 
reported in bold

‡Our model, *scores from [8], †scores from [9]

Model score DS1 DS2 DS3 (CYP) DS3 (NCYP)

AUC​ AUPR AUC​ AUPR AUC​ AUPR AUC​ AUPR

AttentionDDI‡ 0.954 0.924 0.986 0.904 0.989 0.775 0.986 0.890
AttentionDDI (without siamese)‡ 0.944 0.907 0.965 0.791 0.945 0.277 0.907 0.443

AttentionDDI (without Attention & siamese)‡ 0.944 0.909 0.926 0.596 0.962 0.491 0.953 0.639

NDD* 0.954 0.922 0.994 0.890 0.994 0.830 0.992 0.947
 Classifier ensemble* 0.956 0.928 0.936 0.487 0.990 0.541 0.986 0.756

 Weighted average ensemble* 0.948 0.919 0.646 0.440 0.695 0.484 0.974 0.599

 RF* 0.830 0.693 0.982 0.812 0.737 0.092 0.889 0.167

 LR* 0.941 0.905 0.911 0.251 0.977 0.487 0.916 0.472

 Adaptive boosting* 0.722 0.587 0.904 0.185 0.830 0.143 0.709 0.150

 LDA* 0.935 0.898 0.894 0.215 0.953 0.327 0.889 0.414

 QDA* 0.857 0.802 0.926 0.466 0.709 0.317 0.536 0.260

 KNN* 0.730 0.134 0.927 0.785 0.590 0.064 0.603 0.235

ISCMF† 0.899 0.864 – – 0.898 0.767 0.898 0.792

 Classifier ensemble† 0.957 0.807 – – 0.990 0.541 0.986 0.756

 Weighted average ensemble† 0.951 0.795 – – 0.695 0.484 0.974 0.599

 Matrix perturbation† 0.948 0.782 – – – – – –

 Neighbor recommender† – – – – 0.953 0.126 0.904 0.295

 Label propagation† – – – – 0.952 0.126 – –

 Random walk† – – – – – – 0.895 0.181
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In order to assess the capacity of Attention scores for assessing modality importance, 
we compared the Attention weights to results from an orthogonal method based on 
modality masking. The latter approach assesses modality importance by masking each 
modality one at a time and computing the model’s relative change in performance (AUC 
and AUPR), compared to a base model that has access to all modalities.

Figure  1 depicts the relative change of AUC and AUPR performance compared to 
the computed Attention weights for DS1. There is an overall agreement between both 
methods in determining the top-3 modalities (i.e. similarity matrices) contribution 
where offsideeffect and indication are weighted more with an average of 0.2, 0.15 scores 
respectively.

Fig. 1  Modality importance using attention scores and masking methods for DS1. First and second rows 
report modality importance using the masking approach (see Algorithm 1). The values represent the average 
models’ relative change in AUC and AUPR performance when masking applied to each modality one at a 
time compared to a base model that has access to all modalities. Third row represents the average between 
AUC and AUPR average relative change values (i.e. average of values in first and second rows). Fourth row 
reports average modality importance using Attention score computation (see Eq. 21). The higher the value, 
the more important the data modality is

Fig. 2  Modality importance using Attention scores and masking methods for DS3 with the CYP labels
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In the DS3 dataset, for both the CYP and NCYP labels, the top-3 ranked similar-
ity matrices were ligandSimilarity, sideeffectSimilarity and ATCSimilarity, as shown 
in Figs. 2 and 3. Both the relative change in AUC and AUPR, and the Attention score 
method, overlap in determining the top-3 modalities (i.e. similarity matrices) contribu-
tion, thus also illustrating an agreement between both methods.

Case Studies To further test the efficiency of our model, we investigated the top pre-
dictions of our model through an external drug interaction database, DrugBank [14], 
which contains DDIs extracted from drug labels and scientific publications. We focused 
on the DS1 dataset, which links drug similarities to external drug IDs and therefore 
can be used for external validation. From DS1, we selected the top 20 novel predictions 
(“false positives” according to the DS1 labels) with the highest interaction probabilities 
from our model, AttentionDDI. In Table 2 we list those drug pairs along with the inter-
action information from DrugBank. We found that 60% of those top predictions were 
externally confirmed as known drug pair interactions.

Discussion
End‑to‑end solution

In this work, we presented an end-to-end architecture that utilizes an Attention mech-
anism to train a DDI prediction model. When looking at the DDI models reported in 
the literature, most of them consist of separate steps for model training. For example, 
the two competing baseline models (NDD and ISCMF) consist of multiple cascaded 
steps such as (1) matrix selection/filtering, (2) matrix fusion, and (3) classification that 
are optimized separately during model training. Preferably, the matrix selection would 
be informed by the classification goal. However, the first two steps (matrix filtering and 
fusion) are independent from classification and therefore not informed by the model 
training task. In contrast, our model uses a holistic approach in which all computational 

Fig. 3  Modality importance using Attention scores and masking methods for DS3 with the NCYP labels
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steps are connected and optimized while minimizing the loss function of our classifier. 
Consequently, our model is able to optimize the input information for DDI predictions 
at every computational step.

Explainability

Along with DDI predictions, our model makes it possible to gain additional informa-
tion on modality importance. When looking at the relative importance of the Attention 
weights, the phenotypic information such as drug indication and offside effect similari-
ties were ranked higher than the lower level information (chemical) in DS1 (Fig. 1). This 
agrees with the conclusion in [15] that phenotypic information is more informative for 
DDI prediction compared to biological and chemical information. In DS3 for both the 
CYP as well as the NCYP labels, the phenotypic and biological information contributed 
more for the model’s prediction, as independently verified by our masking experiments.

Evaluation of model components

We explored the contribution of the siamese architecture and Attention to model per-
formance. Comparing two model variants, an (1) Attention only model (i.e. without 
siamese architecture) and a (2) deep neural network model (i.e. without Attention and 
siamese components), to the full AttentionDDI model, we found that the latter vastly 
outperformed the model variants on DS2 and DS3 (see Table 1). These results provide 
evidence for the importance of both components (i.e. Attention and siamese architec-
ture) for our model’s state-of-the-art performance.

Weighing the loss functions

Our model’s loss function was defined by a linear combination of two loss functions: (1) 
the negative log-likelihood loss (NLL) and (2) the contrastive loss (Eq. 16). The contribu-
tion of the NLL loss was included as a standardized loss used in the classification tasks. 
On the other hand, the contrastive loss focuses on minimizing the intra-class distances 
(among positive or negative samples) and maximize the inter-class distances (between 
positive and negative samples).

In our experiments, the importance of the contrastive loss over the NLL loss became 
evident especially for DS3 datasets. For DS1 and DS2, a uniform weight between both 
losses would result in a slight decrease of performance as opposed to biasing the weights 
towards contrastive loss as reported in the manuscript. However, for the DS3 dataset, 
weighing heavily the contrastive loss was important for achieving the high performance 
reported in the results section. This could be an indication that the positive and negative 
samples (that lead to drug interactions or not) are in close distance to each other and not 
well separated. In such a case, the contrastive loss would assist in better separating those 
samples and hence improve model performance. This was pronounced in the case of the 
DS3 dataset, where the proportions of positive samples are low ( ∼ 1.5% for CYP, ∼ 6% 
for NCYP).
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Conclusions
DDIs have important implications on patient treatment and safety. Due to the large 
number of possible drug pair combinations, many possible DDIs remain to be discov-
ered. Thus, DDI prediction methods, and particularly computational methods, can aid 
in the accelerated discovery of additional interactions. These results are valuable for 
healthcare professionals that aim at finding the most effective treatment combinations 
while seeking to minimize unintended drug side effects.

In this paper, we present a novel DDI prediction solution which employs Attention, a 
mechanism that has successfully advanced model performance in other domains (such 

Table 2  Case studies for the top predictions in DS1

Interaction information from the DrugBank database

Rank ID A ID B Drug A Drug B Interaction

1 DB01194 DB00273 Brinzolamide Topiramate The risk or severity of adverse effects can be 
increased when Topiramate is combined 
with Brinzolamide

2 DB01589 DB00678 Quazepam Losartan The metabolism of Quazepam can be 
decreased when combined with Losartan

3 DB01212 DB00417 Ceftriaxone PenicillinV No interactions

4 DB01586 DB00951 Ursodeoxycholicacid Isoniazid No interactions

5 DB01337 DB00565 Pancuronium Cisatracurium Pancuronium may increase the central nerv-
ous system depressant (CNS depressant) 
activities of Cisatracurium

6 DB00351 DB00484 Megestrolacetate Brimonidine No interactions

7 DB00530 DB00445 Erlotinib Epirubicin No interactions

8 DB00458 DB00659 Imipramine Acamprosate No interactions

9 DB01586 DB00319 Ursodeoxycholicacid Piperacillin No interactions

10 DB00443 DB00333 Betamethasone Methadone The metabolism of Methadone can be 
increased when combined with Beta-
methasone

11 DB00458 DB00321 Imipramine Amitriptyline The metabolism of Amitriptyline can be 
decreased when combined with Imipra-
mine

12 DB00790 DB00584 Perindopril Enalapril The risk or severity of angioedema can be 
increased when Enalapril is combined 
with Perindopril

13 DB01059 DB00448 Norfloxacin Lansoprazole No interactions

14 DB00571 DB01203 Propranolol Nadolol Propranolol may increase the arrhythmo-
genic activities of Nadolol

15 DB00975 DB00627 Dipyridamole Niacin No interactions

16 DB00967 DB01173 Desloratadine Orphenadrine Desloratadine may increase the central 
nervous system depressant (CNS depres-
sant) activities of Orphenadrine

17 DB00222 DB00328 Glimepiride Indomethacin The protein binding of Glimepiride can 
be decreased when combined with 
Indomethacin

18 DB00193 DB01183 Tramadol Naloxone The metabolism of Naloxone can be 
decreased when combined with Tramadol

19 DB00904 DB00918 Ondansetron Almotriptan The risk or severity of adverse effects can be 
increased when Ondansetron is combined 
with Almotriptan

20 DB00423 DB00794 Methocarbamol Primidone The risk or severity of adverse effects can 
be increased when Methocarbamol is 
combined with Primidone
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as NLP). We demonstrated that Attention based models can be successfully adapted to 
multi-modal biological data in the DDI domain with increased DDI prediction perfor-
mance over various benchmark datasets and enhanced model explainability.

Methods
Benchmark datasets

In order to predict interactions between drugs, we focused on specific benchmark data-
sets listed in Table 3. Our model, AttentionDDI, and two competitive baseline models, 
NDD [8] and ISCMF [9], are all built to take advantage of the multi-modality contained 
in those datasets. Each dataset consists of one or more drug similarity matrices as 
described in Table 3 and in more detail in the Additional file 1. Those matrices are calcu-
lated based on the following drug characteristics: chemical structure, targets, pathways, 
transporter, enzyme, ligand, indication, side effects, offside effects, GO terms, PPI dis-
tance, and ATC codes. The datasets have been previously used by multiple other studies 
[8, 9, 11–13].

We obtained the precomputed drug similarity matrices from [8] and further describe 
them in detail in the Additional file 1. As an example, the side effects matrix of the DS1 
dataset [11] was constructed as follows: A matrix representing a list of N known drugs 
on the y-axis and a list of M known side effects on the x-axis was created. In this matrix, 
each row is representing a drug along with its side effects in the N ×M matrix. It is 
filled with the value 1 in each position where it is known that a drug may cause a specific 
side effect, 0 otherwise. In this fashion, each drug is represented by a binary feature vec-
tor (size M). Furthermore, this binary feature matrix was transformed into a similarity 
matrix using all drug pairs. Given two drugs, da and db , and their binary feature vectors 
( ua and ub ∈ [0, 1]M ), their similarity was calculated according to the Jaccard score:

J (ua,ub) = M11/(M01 +M10 +M11), 0 ≤ J (ua,ub) ≤ 1

Table 3  Benchmark datasets

Dataset # drugs Similarity matrices

DS1 [11] 548 Chemical, enzyme, indication, offside effects, pathway, 
side effects, target, transporter

DS2 [12] 707 Chemical

DS3 [13] 807 ATC, chemical, GO, Ligand, PPI distance, side effects, target

Table 4  Labels for each dataset

Dataset #drugs #drug–drug pairs #known DDIs % known DDIs

DS1 548 149,878 48,584 ∼ 32

DS2 707 249,571 17,206 ∼ 7

DS3 CYP 807 325,221 5039 ∼ 1.5

DS3 NCYP 807 325,221 20,452 ∼ 6
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where M01 represents the count of positions in ua and ub where uai = 0 and ubi = 1 
( i ∈ [1, . . . ,M] ). Similarly, M10 represents the count of positions (i) in ua and ub where 
uai = 1 and ubi = 0 . Lastly, M11 denotes the count of positions (i) in ua and ub where 
uai = 1 and ubi = 1 . This similarity measure is calculated for each drug pair resulting in a 
N × N  similarity matrix.

Additionally to the above mentioned matrices, we calculated the Gaussian Interac-
tion Profile (GIP) similarity matrix (according to [16]) based on the interaction labels of 
each dataset (Table 4). Therefore, in addition to the similarity features listed in Table 3, 
the GIP of each dataset label matrix is also utilized as a further similarity feature. This 
method assumes that drugs with resembling existing labels (DDIs) are expected to have 
comparable novel interaction predictions.

DS2 and DS3 were generated by similar approaches. The description of the similarity 
matrices construction can be found in [11–13] for DS1, DS2 and DS3 datasets respec-
tively and further summarized in the Additional file 1.

Database DDI labels

In a supervised classification setting, labels of known drug–drug interactions are 
required in the form of a binary matrix with the same dimensions ( N × N  ) as the input 
similarity matrices (Table 4). For example, the labels in DS1 were provided by the TWO-
SIDES database [17].

Notably, the DS3 dataset labels are split based on whether the DDIs result from a 
shared CYP metabolizing enzyme (CYP) or not (NCYP). This separation was made on 
the grounds that CYPs are major enzymes involved in ∼ 75% of the total drug metabo-
lism. As an example, one drug would inhibit a specific CYP enzyme which also metabo-
lizes another drug, therefore triggering a CYP-related DDI. This separation of CYP labels 
can affect the model training and predictability, as the positive labels are way outnum-
bered by the negative ones (Table 4).

The known DDIs in these label matrices have the label value 1. Label 0, however, does 
not guarantee the absence of drug interactions for the given drug pair. An interaction in 
this case, may not have been observed yet, or may not have been included in the specific 
DDI database.

Model evaluation

The model performance is evaluated based on standardized classification metrics. We 
included (1) AUC-ROC and (2) AUC-PR. For consistency with previous studies, we 
denote them by AUC​, AUPR from now on. These scores are composed according to the 
definitions in Table 5.

Table 5  Confusion matrix

True interactions
Positive Negative

Predicted Positive TP FP Precision = TP/(TP + FP)

Interactions Negative FN TN

TPR,Recall = TP/(TP + FN) FPR = FP/(FP + TN)
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Fig. 4  AttentionDDI model architecture. (1) The sets of drug pair feature vectors (ua , ub) from each similarity 
matrix are used as model input, separately for each drug. (2) A Transformer-based Siamese encoder model 
generates new drug feature representation vectors for each drug. First, by applying learned weights 
(through Self-Attention) to the drug feature vectors. Then, by non-linearly transforming the weighted feature 
vectors by a feed-forward network. Finally, a Feature Attention pooling method aggregates the transformed 
feature vectors into a single feature vector representation for each drug ( za or zb respectively). 3) A separate 
classifier model concatenates the encoded feature vectors za , zb with their distance (euclidean or cosine). 
Lastly, through affine mapping of the concatenated drug pair vectors followed by Softmax function, a 
drug-interaction probability distribution is generated for each drug pair
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AUPR is the Area Under the Precision-Recall curve and is considered the fairer meas-
ure [8] especially when class imbalance (i.e., unequal label distribution) is prevalent in 
the dataset. This is notably the case when the number of positive samples (labels with 
value 1) and the number of negative samples (0 s) are significantly imbalanced. Given the 
low proportions of positive samples (Table 4) this is the main performance measure we 
focus on for the model evaluation. We furthermore computed the AUC​ as standard clas-
sification metric. AUC​ is the Area Under the TPR-FPR Curve, where TPR (also Recall) is 
the True Positive Rate and FPR is the False Positive Rate, as defined in Table 5.

Baseline model

We compared our model to multiple baseline models found in the literature with spe-
cial focus on NDD [8] that showed high performance on DDI prediction (as reported by 
the authors). NDD consists of three parts: (1) In a first step, the similarity matrices are 
filtered based on matrix entropy scores. This aims at basing the classification only on 
the most informative similarity matrices and therefore excluding less informative ones 
using handcrafted heuristics. (2) In a second step, the remaining similarity matrices are 
merged into one matrix through the SNF method (i.e., using similarity network fusion 
algorithm) [18]. (3) Finally, the fused matrix is used as input to a feed-forward classifier 
network which outputs binary DDI predictions.

We re-implemented (to the best of our ability) NDD using the PyTorch deep learning 
library [19] for the purpose of reproducing the baseline model results. However, we were 
not able to reproduce the model results reported in [8] especially for DS2 and DS3 data-
sets. Therefore, we report the performance values cited by the author in their article [8, 
9].

AttentionDDI: model description

We constructed a Siamese multi-head self-Attention multi-modal neural network model 
(Fig. 4) adapting the Transformer architecture to model our DDI problem.

Siamese model Our model is a Siamese neural network [20] designed to use the same 
model weights for processing in tandem two different input vectors. In our case the drug 
similarity features of each drug pair (da, db) are encoded in parallel in order to learn 
improved latent vector representations. They are used in a later stage for computing a 
distance/similarity between both vectors.

Transformer architecture Our model architecture adapts the Transformer network [10] 
that uses multi-head self-attention mechanism to compute new latent vector represen-
tations from the set of input vectors while being optimized during training for our DDI 
prediction problem. It consists of: 

1	 An Encoder model, which takes as input a set of drug similarity feature vectors and 
computes a new (unified) fixed-length feature vector representation.

2	 A Classifier model, which given the new feature vector representations, generates a 
probability distribution for each drug pair, indicating if this drug pair is more likely to 
interact or not.
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Input vectors Our model is trained on each benchmark dataset (i.e., DS1, DS2 and DS3) 
separately. There are one or more similarity matrices in a given dataset and N distinct 

number of drugs. Furthermore, there are K =
(

N
2

)

 drug pair combinations in every 

dataset. For a drug pair (da, db) in a dataset D, the drug feature vectors (ua,ub) each rep-
resent a set of input feature vectors extracted from corresponding similarity matrix 
{S1, S2, . . . , ST } ∈ D (including GIP) in dataset D. Each set (i.e., ua and ub ) is used as 
model’s input for each drug separately where T feature vectors are processed. For 
instance, a dataset with three similarity matrices (including GIP) would have two sets of 
three input vectors (Fig. 4) for each drug pair:

Encoder model

For each drug pair (da, db) the sets of drug feature vectors (ua,ub) go through the 
Encoder separately, in parallel (hence, Siamese model). The Encoder consists of multiple 
layers. Initially, the input vectors go through a Self-Attention layer that aims at generat-
ing improved vector encoding (i.e., new learned representation) while optimizing for the 
target task (i.e., classification in our setting). During this step, the drug feature vectors 
are weighted according to how strongly they are correlated to the other feature vectors 
of the same drug. Subsequently, those weighted vectors are fed into a feed-forward net-
work in order to calculate new feature vector representations via non-linear transfor-
mation. Lastly, the encoded feature vector representations are passed through a Feature 
Attention layer which aggregates the learned representations, i.e., pools across similar-
ity type vectors. The Encoder then outputs the two separate drug representation vec-
tors (za, zb) which are then fed into the Classifier model. Additionally, there are Add + 
Normalize layers (i.e., residual connections and normalization) after the Self-Attention 
and Feed-Forward layers which are used for more efficient training. To summarize, the 
encoder consists of the following layers in this order: Self-Attention, Add + Normalize, 
Feed-Forward, Add + Normalize, Feature Attention.

Self‑attention layer

We followed a multi-head self-attention approach where multiple single-head self-
attention layers are used in parallel (i.e., simultaneously) to process each input vector 
in set u (i.e., ua for drug da ). The outputs from every single-head layer are concatenated 
and transformed to generate a fixed-length vector using an affine transformation. 
The single-head self-attention approach [10] performs linear transformation to every 
input vector using three separate matrices: (1) a queries matrix Wquery , (2) keys matrix 
Wkey , and (3) values matrix Wvalue . Each input ut where t indexes the feature vectors 
in u (i.e., set of input feature vectors for a given drug extracted from similarity matri-
ces {S1, S2, . . . , ST } ∈ D ) is mapped using these matrices to compute three new vectors 
(Eqs. 1, 2, and 3)

ua = {Sda1 , S
da
2 , S

da
3 }, ub = {Sdb1 , S

db
2 , S

db
3 }
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where Wquery , Wkey , Wvalue ∈ R
d′×d , qt , kt , vt ∈ R

d′ are query, key and value vectors, and d′ 
is the dimension of the three computed vectors respectively. In a second step, Attention 
scores are computed using the pairwise similarity between the query and key vectors for 
each input vector ut in the input set u. The similarity is defined by computing a scaled 
dot-product between the pairwise vectors. For each input vector, we compute Attention 
scores αtl representing the similarity between qt and vectors kl ∀l ∈ [1, . . . ,T ] where T 
representing the number of vectors in the input set u (Eqs. 4, 5) and then normalized 
using softmax function. Then a weighted sum using the Attention scores αtl and value 
vectors vl ∀l ∈ [1, . . . ,T ] is performed (Eq. 6) to generate a new vector representation 
rt ∈ R

d′ for the input vector ut . This process is applied to every input vector in the input 
set u to obtain a new set of input vectors R = {r1, r2, . . . , rT }.

In a multi-head setting with H number of heads, the queries, keys and values matrices 
will be indexed by superscript h (i.e., Wh

query , Wh
key , W

h
value ∈ R

d′×d ) and applied separately 
to generate a new vector representation rht  for every single-head self-attention layer. The 

(1)qt =Wqueryut

(2)kt =Wkeyut

(3)vt =Wvalueut

(4)αtl =
exp (score(qt , kl))

∑T
l=1 exp (score(qt , kl))

(5)score(qt , kl) =
qt

⊤kl√
d′

(6)rt =
T
∑

l=1

αtlvl

Table. 6  Training hyperparameters

DS1 DS2 DS3 CYP DS3 NCYP

# Attention heads (H) 2 2 4 2

# transformer units (E) 1 1 1 1

Dropout 0.3 0.3 0.45 0.3

MLP embed factor ( ξ) 2 2 2 2

Pooling mode attn attn attn attn

Distance cosine cosine cosine cosine

Weight decay 1−6 1−6 1−8 1−6

Batch size 1000 1000 400 1000

# epochs 100 100 200 100

γ 0.05 0.05 0.05 0.05

µ 1 1 1 1
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output from each single-head layer is concatenated into one vector 
rconcatt = concat(r1t , r

2
t , . . . , r

H
t ) where rconcatt ∈ R

d′H and then transformed using affine 
transformation (Eq.  7) such that Wunify ∈ R

d′×d′H and bunify ∈ R
d′ . This process is 

applied to each position in the set R to generate a new set of vectors R̃ = {r̃1, r̃2, . . . , r̃T }.

Layer normalization and residual connections

We used residual/skip connections [21] in order to improve the gradient flow in layers 
during training. This is done by summing both the newly computed output of the cur-
rent layer with the output from the previous layer. In our setting, a first residual con-
nection sums the output of the self-attention layer r̃t and the input vector ut for every 
feature vector in the input set u. We will refer to the summed output by r̃t for simplicity.

Layer normalization [22] was used in two occasions; after the self-attention layer and 
the feed-forward network layer with the goal to ameliorate the “covariate-shift” prob-
lem by re-standardizing the computed vector representations (i.e., using the mean and 
variance across the features/embedding dimension d′ ). Given a computed vector r̃t , Lay-
erNorm function will standardize the input vector using the mean µt and variance σ 2

t  
along the features dimension d′ and apply a scaling γ and shifting step β (Eq. 10). γ and β 
are learnable parameters and ǫ is small number added for numerical stability.

FeedForward layer

After a layer normalization step, a feed-forward network consisting of two affine 
transformation matrices and non-linear activation function is used to further com-
pute/embed the learned vector representations from previous layers. The first trans-
formation (Eq.  11) uses WMLP1 ∈ R

ξd′×d′ and bMLP1 ∈ R
ξd′ to transform input r̃t to 

new vector ∈ R
ξd′ where ξ ∈ N is multiplicative factor. A non-linear function such 

as ReLU(z) = max(0, z) is applied followed by another affine transformation using 
WMLP2 ∈ R

d′×ξd′ and bMLP2 ∈ Rd′ to obtain vector gt ∈ R
d′ . A layer normalization 

(Eq. 12) is applied to obtain g̃t ∈ R
d′.

(7)r̃t = Wunifyr
concat
t + bunify

(8)µt =
1

d′

d′
∑

j=1

r̃tj

(9)σ 2
t = 1

d′

d′
∑

j=1

(r̃tj − µt)
2

(10)LayerNorm(r̃t) =γ × r̃t − µt
√

σ 2
t + ǫ

+ β

(11)gt =WMLP2ReLU(WMLP1r̃t + bMLP1)+ bMLP2
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These transformations are applied to each vector in set R̃ to obtain new set 
G̃ = {g̃1, g̃2, . . . , g̃T } . At this point, the encoder block operations are done and multiple 
encoder blocks can be stacked in series for E number of times. In our experiments, E 
was a hyperparameter that was empirically determined using a validation set (as the case 
of the number of Attention heads H used in self-attention layer).

Feature attention layer

The feature Attention layer is parameterized by a global context vector c with learnable 
parameters optimized during the training. For a set of input vectors G̃ = {g̃1, g̃2, . . . , g̃T } 
(computed in the layer before), Attention scores ψt∀t ∈ [1, . . . ,T ] are calculated using 
the pairwise similarity between the context vector c ∈ R

d′ and the set G̃ (Eqs. 13, 14). 
These scores are normalized and used to compute weighted sum of the {g̃1, g̃2, . . . , g̃T } 
vectors to generate a new unified vector representation z ∈ R

d′ that is further passed to 
the classifier layer (Eq. 15).

Classifier layer The classifier layer calculates a distance (euclidean or cosine) between 
the computed representation vectors (za, zb) and then concatenates them with that dis-
tance. Subsequently, through an affine transformation, the concatenated feature vector is 
mapped to the size of the output classes (i.e., presence or absence of interaction). Finally, 
a softmax function is applied to output the predicted probability distribution over those 
two classes (i.e. ŷ(i) for ith drug pair).

Objective function

We defined the total loss for an ith drug pair by a linear combination of the negative log-
likelihood loss ( LC ) and the contrastive loss ( LDist ). The contribution of each loss func-
tion is determined by a hyperparameter γ ∈ (0, 1) . Additionally, a weight regularization 
term (i.e., l2-norm regularization) applied to the model parameters represented by θ is 
added to the objective function (Eq. 16).

where

(12)g̃t =LayerNorm(gt)

(13)ψt =
exp (score(c, g̃t))

∑T
j=1 exp (score(c, g̃j))

(14)score(c, g̃t) =
c⊤g̃t√
d′

(15)z =
T
∑

t=1

ψt g̃t

(16)LTotal = γLC + (1− γ )LDist + �

2
||θ ||22
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and

Dist(i) represents the computed distance between the encoded vector representations za 
and zb of ith drug pair, which can be euclidean or cosine distance. Additionally, µ is a con-
trastive loss margin hyperparameter.

The training is done using mini-batches where computing the loss function and updat-
ing the parameters/weight occur after processing each mini-batch of the training set.

Model variants

To further assess the contribution of the different components of our model’s architec-
ture, we trained and tested two model variants. The first uses an Attention only model 
(i.e. without the siamese architecture) where the feature vectors of each drug pair are 
used as set of input vectors to the model. The second variant disables both the Attention 
and siamese components, such that it only uses a deep neural network (i.e. feed-forward 
neural network) where each drug pair feature vectors are simply concatenated and fed to 
the model. Each model was trained and tested in similar way to the original model (i.e. 
AttentionDDI) on each dataset separately.

Training workflow

For training, we utilized a 10-fold stratified cross-validation strategy with 10% dedicated for 
a validation set and hyperparameter tuning (defined in Table 6). For hyperparameter opti-
mization we selected a set of random hyperparameter combinations for each model and 
then trained them on a random fold (out of 10). Subsequently, we selected the hyperparam-
eters based on the performance of the models on the validation set of the respective fold. 
Finally, with the selected hyperparameters (Table 6) we retrained each model on all 10 folds. 
During training, examples were weighted inversely proportional to class/outcome frequen-
cies in the training data. Model performance was evaluated using area under the receiver 
operating characteristic curve (AUC), and area under the precision recall curve (AUPR). 
During training of the models, the epoch in which the model achieved the best AUPR on 
the validation set was recorded, and model state as it was trained up to that epoch was 
saved. This best model, as determined by the validation set, was then tested on the test split.

(17)lC(i) =− [y(i)logŷ(i) + (1− y(i))log(1− ŷ(i))], yi ∈ {0, 1}

(18)LC = 1

K

K
∑

i=1

lC(i)

(19)lDist(i) =
{

yi = 1 1
2
Dist2(i)

yi = 0 1
2
max((µ− Dist(i))

2, 0)

(20)LDist = 1

K

K
∑

i=1

lDist(i)
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Data modality importance

To determine the importance of each data modality (i.e. similarity matrix) and its contribution 
to model’s performance, we used two separate methods. The first is based on the Attention 
scores computed at every layer when a drug pair is passed to the model. Given our Atten-
tionDDI model has varying number of Attention heads H and varying number of encoder 
units E, we aggregate every computed Attention score matrix Attn[h,e] from the different 
heads and units and then average it across all layers, where h and e index the model’s Attention 
heads and the encoder units respectively. Lastly, the Attention vector computed in the Feature 
Attention layer featAttn is used to reweight the averaged Attention matrices as described in 
Eq. 21.

where featAttni ∈ R
1×T and Attn[h,e]i  ∈ R

T×T for the i− th drug pair with T number of 
input modalities (i.e. similarity matrices). For each dataset in this study, the average modal-
ity importance vector (i.e ModalityImpAttnavg  ) is computed using all test data in the 10-folds.

The second method for evaluating the input modality importance is based on an masking 
experiment, where for each fold in the 10-folds of a given dataset, we mask each modality one 
at a time and compute the model’s relative change in performance (AUC and AUPR), com-
pared to a base model that had access to all modalities. Algorithm 1 describes the procedure in 
details. The higher the relative change, the more important the removed/masked modality is.

(21)ModalityImpAttn(i) = featAttni ·
(

1

E

E
∑

e=1

1

H

H
∑

h=1

Attn
[h,e]
i

)
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