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Abstract

Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that
result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-
by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation
involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a
dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a
few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate
or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting
the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel
orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object
orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent
behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates
adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations,
there will be a degree of independence for adaptation and de-adaptation within each context, and that the states
associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in
two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged
during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific
representations. In the case of familiar object dynamics, however, the representations can be engaged based on visual
context, and are updated by a single-rate process.
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Introduction

Object manipulation is an essential feature of everyday human

behavior [1]. It represents a challenge for the motor system

because grasping an object changes the relationship between the

motor commands and the resulting movement of the arm [2,3,4].

Skillful manipulation thus requires the rapid adaptation of motor

commands to the particular dynamics of the object. This

adaptation can be facilitated by using stored knowledge such as

an internal model of object dynamics [5,6,7,8]. Previous studies

have examined the representation of dynamics using tasks in

which subjects adapt their reaching movements to novel and

unusual force-fields applied to the hand by robotic interfaces

[9,10,11,12,13,14]. In these tasks, the force-field alters the normal

dynamics of the arm, inducing movement errors which reduce

gradually across many trials. Several models have been developed

to explain how errors on each trial result in the gradual acquisition

of an internal representation of the perturbing dynamics

[15,16,17,18,19,20]. This approach is based on state-space models

in which, typically, the internal state represents an estimate of the

perturbation. The state estimate is updated after each trial based

on the error experienced on the previous trial. Recently, a model

which includes two internal states has been proposed [17]. The

two states adapt independently at different rates (one fast, one

slow) and sum to produce an estimate of the perturbation.

Importantly, this dual-rate model can reproduce phenomena

observed experimentally that a single-rate model cannot [17,19,

for an alternative view see 21]. State-space models have also been

used to account for generalization, in which the movement

direction (the kinematic context) varies across trials [15,19]. In this

case, each movement direction has its own state in the model,

representing the estimate of the perturbation associated with a

movement in that direction. A generalization function specifies

how an error experienced during a movement in one direction

affects the states associated with other directions. These models

can successfully reproduce the trial-by-trial changes in perfor-

mance and the pattern of generalization observed during tasks that

involve novel dynamics and visuomotor perturbations.

The novel dynamics described above typically take subjects tens

to hundreds of trials to learn [22]. In contrast, when interacting

with everyday objects subjects adapt to the familiar dynamics

much more rapidly. For example, when lifting an object of

unknown mass, subjects adapt their predictive load and grip forces

within just a few trials [5,23,24,25,26,27,28,29]. Given appropri-
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ate visual and other contextual cues subjects can even generate

appropriate motor commands on the very first trial [5]. Rapid

adaptation of grip force is also observed during bimanual object

manipulation, when subjects pull on an object with one hand while

stabilizing it with the other [30,31]. In this case, grip force

adaptation can be shown to be context-specific, being locally

confined to the movement direction in which the object is

experienced [31]. As such, adaptation to the dynamics associated

with familiar objects also appears to manifest context-dependent

generalization. Moreover, the adaptation, while rapid, neverthe-

less occurs progressively as a result of trial-by-trial errors associated

with an internal estimate of object parameters. This suggests that

context-dependent state-space models may also be applicable to

adaptation associated with manipulating objects with familiar

dynamics.

In a previous study, we examined adaptation to familiar object

dynamics by presenting subjects with a virtual hammer-like tool

[32]. The task involved rotating the object while keeping the grasp

point stationary (Figure 1A to C). This required subjects to

generate a torque to rotate the object as well as a force to stabilize

the grasp point. The dynamics were simulated using a novel

robotic manipulandum (the WristBOT [33]) which can produce

forces and torques that depend on the translational position and

angular rotation of its vertical handle. The visual orientation of the

object could also be varied from trial to trial. Results showed that

subjects generate anticipatory forces in the direction appropriate

for the visually-presented orientation of the object, even before

they had been exposed to the dynamics. This suggests that subjects

have pre-existing knowledge of the structural form of the dynamics

that can be recalled based on vision. Moreover, when exposed to

the dynamics of a specific object, subjects rapidly adapt the

magnitude of their anticipatory forces over the first few trials to be

appropriate for the particular mass of the object. To probe the

representation of the dynamics, we examined the force magnitude

at novel visual orientations of the object, where the dynamics had

not been experienced. Consistent with previous studies, both of

novel dynamic perturbations and familiar object dynamics, we

showed that generalization of force magnitude was context-

specific, being limited to orientations close to those at which the

object had been experienced. However, in contrast to previous

studies, the kinematics of the movements in our task were

unchanged, and the pattern of generalization observed depended

only on the visual context (the orientation) of the object.

The aim of the current study was to determine whether a state-

space model could account for rapid context-specific adaptation to

the familiar dynamics of everyday objects and whether such

Figure 1. The robotic manipulandum and virtual object
manipulation task. A The WristBOT is a planar two-dimensional
robotic manipulandum which includes torque control at the vertical
handle. Cables and pulleys (two are shown) implement the transmission
system between the handle and the drive system at rear of
manipulandum (not shown). Subjects grasped the vertical handle of
the WristBOT and manipulated a virtual object (shown in green). B The
object dynamics were simulated as a point mass (m) on the end of a
rigid rod (length r) of zero mass. Visual feedback of the object was
updated in real-time (dark grey). The task involved rotating the object
40u from a starting angle (light grey bar) to a target angle (black bar)
while maintaining the handle within a circular home region (light grey
disc). Rotation generated translational forces (F) and rotational torques
(t) at the handle. Figure shows a grey-scale version of actual visual
feedback (see scale bar). Annotations have been added. C Top view
showing visual feedback of the virtual object (dark grey), which was
projected over the subject’s hand in the plane of movement. Visual
feedback was consistent with grasping the object at its base. The
WristBOT handle translates in the horizontal plane and rotates around
the vertical axis. Subjects viewed visual feedback in a mirror which
prevented them from seeing either their hand or the manipulandum.
Dotted line shows subject’s mid-sagittal plane which was aligned with
the hand and the vertical rotation axis of the object. Inset shows top
view of subject’s hand overlaid with five different visual orientations of
the object. D The Gaussian tuning function (see Equation 11, 12 and 13)
which implemented the context-selection vector in the MCSRM4. The
function has two parameters which describe the standard deviation of
the Gaussian (s) and its offset (d). The function is centered on the
current orientation of the object (0u for the red line) and takes the value
of 1 at this point. The function decays to d (the offset) at 6180u relative
to the current orientation. The pink and pale pink lines show the tuning
function for 290u and 180u, respectively.
doi:10.1371/journal.pcbi.1002196.g001

Author Summary

Skillful object manipulation is an essential feature of
human behavior. How humans process and represent
information associated with objects is thus a fundamental
question in neuroscience. Here, we examine the represen-
tation of the mechanical properties of objects which define
the mapping between the forces applied to an object and
the motion that results. Knowledge of this mapping, which
can change depending on the orientation with which an
object is grasped, is essential for skillful manipulation.
Subjects performed a virtual object manipulation task by
grasping the handle of a novel robotic interface which
simulated the dynamics of a familiar object which could be
presented at different orientations. Using this task, we
show that adaptation to the properties of a particular
object is extremely rapid, and that such adaptation is
confined to the specific orientation at which the object is
experienced. Moreover, the pattern of adaptation ob-
served when the orientation of the object and its
mechanical properties were changed from trial-to-trial
was reproduced by a model which included multiple
representations and a generalization function tuned for
object orientation. These results suggest that the skillful
manipulation of objects with familiar dynamics is mediated
by multiple context-specific representations.

Context-Dependent Adaptation to Object Dynamics
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adaptation would be mediated by a single-rate or dual-rate

process. Specifically, we developed a state-space model that

includes multiple context-dependent states and a generalization

function tuned to the visual orientation of the object. The results

show that a single-rate context-dependent model reproduces the

time-course of adaptation and de-adaptation, along with the

context-specific behavior observed in three experiments from our

previous study. In these previous experiments, subjects were

exposed to the dynamics of the object at a single orientation. The

model also makes predictions with regards to exposure at multiple

orientations which we confirm in two new experiments.

Methods

Ethics statement
The study was approved by the local ethics committee and 68

subjects provided informed consent before participating.

A preliminary analysis of experiments 1, 2 and 3 has been

previously reported [32]. We include the basic methods for these

experiments here for completeness. In the current study, we

extend our previous analysis, run additional subjects on a new

condition in Experiment 2, and perform three new experiments (4,

5 and S1). In addition, we apply state-space models to the data

from all experiments.

The task
Subjects were seated at a virtual reality system and grasped the

handle of a planar robotic manipulandum (the WristBOT) with

their right hand (Figure 1A). The WristBOT can generate

translational forces in the horizontal plane and a rotational torque

about its vertical handle [33]. This allowed us to provide haptic

feedback (forces and torques) of the dynamics of a simulated object

(Figure 1B). A virtual reality display system provided visual

feedback associated with the object and the task (Figure 1C). The

object was a small hammer-like tool which consisted of a mass on

the end of a rigid rod. The task was to grasp the object by the

handle at the base of the rod and rotate it back and forth between

visual targets. Subjects were told that the object might wobble

during the rotation and that they should try to maintain the handle

as still as possible within the central home region. We ensured that

the wrist operated near the midpoint of its range of motion so that

a comfortable posture was adopted. Subjects maintained this

posture throughout the experiment.

The visual feedback was provided by a projection system that

overlaid a visual image in the plane of the movement as previously

described [33]. The visual object (Figure 1B) consisted of a circular

handle (radius 0.5 cm) attached to a 4 cm square mass by an 8 cm

rod (width 0.2 cm). The position and orientation of the object was

determined by the position and orientation the WristBOT handle.

The home region was a 1 cm radius disc and the start and end

targets for rotation were oriented rectangles (0.6 by 2.5 cm)

continuous with the disc (Figure 1B). The orientation of the object

could be varied between trials. For a given object orientation,

subjects performed trials that alternated between clockwise (CW)

and counter-clockwise (CCW) rotations of amplitude 40u between

the two targets. The targets were 620u relative to the central

orientation at which the object was said to be presented. For

example, when the object was presented at 290u the CW and

CCW targets were at 270u and 2110u, respectively. A trial began

with the handle of the object stationary within the home region

and the rod of the object aligned with either the CCW target or

the CW target. The movement was cued by a tone and the

appearance of the second target. The trial ended when subjects

had rotated the object to reach the second target. Subjects were

required to make the movement within 400 ms. They were

warned if they took longer and had to repeat the trial if the

movement exceeded 500 ms. Rest breaks (30–60 s) were given

every 3–5 minutes.

Object dynamics
The WristBOT simulated the dynamics of an object (Figure 1B)

that consisted of a point mass (m) at the end of a rigid rod (length r).

In all experiments the object had a rod length of 8 cm and, except

were explicitly stated, the mass was equal to 1% of the subject’s

body mass (1% BM). When rotating the object, subjects

experienced a torque (t) that depended on the angular

acceleration (€hh) of the handle:

t~{mr2€hh ð1Þ

Subjects also experienced a force at the handle that consisted of

two orthogonal components. The first component was associated

with the tangential force (FT ), which depended on the angular

acceleration of the handle:

FT~mr€hh ð2Þ

Note that FT acts in the direction of the tangential acceleration

of the mass, and is thus perpendicular to the rod. The second

component was associated with the centripetal force (FC ), which

depended on the angular velocity ( _hh) of the handle:

FC~mr _hh
2 ð3Þ

Note that FC acts perpendicular to the tangential velocity of the

mass (towards the centre of rotation), and is thus parallel to the

rod.

The resultant force vector (F) experienced by the subject at the

handle is given by:

F~R(h) {FT FC½ �T ð4Þ

where F is the two-dimensional force vector (in the coordinate

system of the WristBOT, as specified in Figure 1B), h is the angle

of the rod (0u is aligned with the y-axis) and R hð Þ is a 262

clockwise rotation matrix.

To avoid the need to compute angular velocity and accelera-

tion, the dynamics were approximated by a simulation in which

the point mass was attached to the end of the rod by a stiff spring

(3000 N/m). Translation and rotation of the object caused the

spring to stretch, which then generated forces (and torques) on the

handle. At the same time, these forces were used to update the

state of the simulated mass. A small amount of damping was

applied to the mass to prevent oscillations (7 N m21 s). An analysis

of the kinematics and the forces and torques generated by the

WristBOT during the task verified that this approximation

accurately captured the dynamics of the object (see Figure S1 in

Text S1).

Experiments
A specific description of the individual experiments can be

found in the following sections. In general, each experiment

consisted of multiple trials in which the visual orientation and

Context-Dependent Adaptation to Object Dynamics
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dynamics of the object could be varied from trial to trial. Subjects

always experienced the torque associated with rotating the object

on every trial, whereas the forces experienced could be varied

across trials in three different ways. On ‘‘exposure’’ trials, subjects

experienced the full dynamics of the object such that the

manipulandum produced the forces associated with rotating the

object. On these trials, movement of the handle during the

rotation was caused by the sum of the forces produced by the

object and the forces produced by the subject. Specifically, if

subjects produced forces that exactly opposed those produced by

the object, the handle would remain stationary during the rotation

(as per the task requirements). On ‘‘zero-force’’ trials, the forces

associated with rotating the object were turned off and the

manipulandum produced no forces. On these trials the handle was

free to move and any forces produced by subjects as they rotated

the object resulted in a displacement of the handle. Finally, on

‘‘error-clamp’’ trials, the manipulandum simulated a stiff two-

dimensional spring (1000 N/m) centered on the handle position at

the start of the trial. On these trials, any forces produced by the

subject as they rotated the object were recorded as equal but

opposite forces generated by the spring. These error-clamp trials

minimize kinematic errors [34] and thus minimize adaptation (or

de-adaptation), allowing the anticipatory forces produced by

subjects as they rotate the object to be assessed.

Data collection and statistical analysis
The position and orientation of the handle and the force and

torque generated by the manipulandum were saved at 1000 Hz

for offline analysis using Matlab (R14, The MathWorks Inc.,

Natick, MA, USA). Two measures were used to characterize the

trial-by-trial performance of the subjects during the task. On zero-

force and exposure trials, the peak displacement of the handle was

measured, relative to its position at the start of the trial. The peak

displacement of the handle (in cm) is a measure of error, because

the task required subjects to keep the base of the object as still as

possible during the rotation. A peak displacement of zero would

thus indicate perfect performance. On error-clamp trials, the

forces produced by subjects were measured. Subjects produce

these forces in order to oppose the perturbing forces generated by

the object. The peak force can be regarded as a measure of the

subject’s estimate of the mass of the object. As such, for a given

error-clamp trial, we divide the peak force produced by the subject

by the peak force which would have been generated by the object.

We refer to this dimensionless ratio as the adaptation, which has a

value of 1 if subjects produce forces which exactly compensate for

the mass of the object. All statistical tests were performed using

Matlab. All t-tests were paired and two-tailed.

Modeling
Various state-space models have been recently proposed to

explain adaptation to dynamic [15,16,17,20] and kinematic

(visuomotor) perturbations [18,19]. These models have yet to be

applied to object manipulation, especially in light of experimental

results that characterize trial-by-trial adaptation to object

dynamics [29,30,32].

In the simplest case, the state-space adaptation model takes the

form of a single-rate (single-state) model (SRM) as follows:

x(nz1)~a:x(n)zb:e(n) ð5Þ

where x(n) is the state of the model on trial n, a is the retention

constant, b is the learning-rate constant, and e is the error given

by:

e(n)~f (n){x(n) ð6Þ

In the case of dynamic and visuomotor perturbation experi-

ments, f is typically taken to be a dimensionless value which

represents the magnitude and sign of the external perturbation

[17,19]. In our case, f is the mass of the object. For simplicity we

consider f, x and e in Equation 5 and 6 to be dimensionless

quantities, where x can be thought of as the subject’s internal

estimate of the mass and e can be thought of as the error in this

estimate. Where reported, values of x in the model are referred to

as adaptation. To facilitate comparison with the equivalently

named experimental quantity described above, adaptation in the

model is expressed as the ratio of the estimated mass (x) to the

actual mass (f). In all experiments, f was set to the experimental

mass of the object, which (as described above) was 1% BM in all

experiments, except where explicitly stated.

Recently, a dual-rate (dual-state) model (DRM) has been

successfully applied to the results from both dynamic [17] and

visuomotor [19] perturbations:

x1(nz1)~a1
:x1(n)zb1

:e(n)

x2(nz1)~a2
:x2(n)zb2

:e(n)
ð7Þ

The rate-specific states sum together to produce the net output

state of the model:

x(n)~x1(n)zx2(n) ð8Þ

In these previous studies, the rate-specific states and the relative

values for their retention and learning-rate constants have been

associated with fast and slow adaptation processes [17,19]. In the

current study, we fit both the SRM and DRM to the results of

Experiment 1 (details in the following section) in order to

determine whether adaptation to familiar object dynamics is

mediated by a single-rate or dual-rate process.

The single-rate and dual-rate models described above are

context-independent models. To explain context-specific adapta-

tion, multiple-state context-dependent versions of these models have

been proposed [15,19]. The multiple-context form of the single-rate

model (MCSRM) in the current study is given as follows:

z(nz1)~a:z(n)zb:e(n):c(n) ð9Þ

where z(n) is a vector of the context-specific states on trial n and c is

the context-selection vector (described below). The net output state

of the model is the sum of the context-specific states, weighted by the

context-selection vector:

x(n)~z(n)T c(n) ð10Þ

where x(n) is the net output state of the model on trial n.

As originally described by Lee and Schweighofer [19], the

context-selection vector c defines which context is active on a given

trial. It does this in a binary manner. Specifically, the element in c
associated with the current context is 1 and all other elements are 0.

In this previous study, the context was the direction of movement in

a visuomotor perturbation task. In the current study, the context is

the visual orientation of the object specified in increments of 22.5u.

Context-Dependent Adaptation to Object Dynamics
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As such, the context-dependent state vector z and the context-

selection vector c contain 16 elements (covering 360u in 22.5u steps).

In our previous study, we reported a Gaussian-tuned pattern of

generalization across different visual orientations of the object

[32]. This graded pattern of generalization cannot be reproduced

by the binary context-selection vector from the Lee and

Schweighofer model, described above. Rather, we use a Gaussian

function tuned to the visual orientation of the object to specify the

16 elements of the context-selection vector. The shape of the

function (Figure 1D) is defined by two parameters which specify

the standard deviation of the Gaussian (s) and its offset (d). The

function is normalized to be 1 at the current orientation h(n) and

decays to d at h(n)6180u. The context-selection vector (c(n) in

Equations 9 and 10) thus becomes c(h(n),s,d), which is given by:

c(h(n),s,d)~dz
(1{d)(N(a(h(n)),s){N(180,s))

N(0,s){N(180,s)
ð11Þ

The function N(x,s) in Equation 11 is a zero-mean Gaussian, as

follows:

N(x,s)~
1ffiffiffiffiffiffiffiffiffiffi

2ps2
p e

{x2
=2s2 ð12Þ

The function a(h) in Equation 11 specifies a 16 element vector

(adjusted to the circular range of 6180u) which centers the tuning

function at the current orientation, as follows:

a hð Þ~ h{1800,h{157:50,h{1350, . . . ,hz157:50f g ð13Þ

The MCSRM with the Gaussian context-selection function

described above has 4 parameters (MCSRM4). In order to test our

assumption that the context-selection function was Gaussian in

form, we also considered a model in which the individual elements

of c were free parameters. Assuming symmetry and a fixed value

of 1 at the current orientation, 8 parameters defined the context-

selection vector in this version of the model to give a total of 10

parameters (MCSRM10).

In the context-independent versions of the model (SRM and

DRM, Equations 5 to 8), the object is experienced at a single

orientation and the error (e) is calculated simply as the difference

between the actual mass of the object (f) and the subject’s estimate

of the mass (x). However, in the context-dependent versions of the

model (MCSRM4 and MCSRM10, Equations 9 and 10), the

object can be experienced at multiple orientations. This

complicates the calculation of error because the displacement of

the object during the task will be influenced by the compliance of

the arm, which varies for perturbations in different directions

[35,36]. To account for this, the calculation of error in the context-

dependent versions of the model includes a compliance term

which was determined experimentally. Specifically, we define a

compliance-dependent error function for the model as follows:

e(n)~g:
kz

h(n)
:(f (n){x(n)), if f (n){x(n)§0

k{
h(n)
:(f (n){x(n)), if f (n){x(n)v0:

(
ð14Þ

As in the original error function (Equation 6), the error is due to

the difference between the actual mass of the object (f) and the

subject’s estimate of the mass (x). In this case, however, the error is

the product of this difference with the compliance factor (k) and

the gain factor (g). The subscripts and superscripts on k in Equation

14 allow the compliance to vary for different orientations of the

object (h) and for positive and negative errors, respectively (k+

when f.x, k2 when f,x). This latter feature of the function allows

the compliance to be different during adaptation and de-

adaptation. Specifically, during adaptation, displacement of the

hand is due to the object producing net forces on the subject. In

contrast, during de-adaptation, displacement of the hand is due to

the subject producing net forces on the object. The compliance

can be different in each case.

The value of k for a range of orientations was determined

experimentally in a separate group of subjects (see Experiment S1

in Text S1 for full details). It then remained fixed for all other

experiments and subject groups. Because the peak displacement

for these different subject groups could vary over a small but

critical range, the gain factor (g) in Equation 14 was included as a

free parameter in those models which implemented the compli-

ance function. This parameter was close to 1 in all cases (range

0.86 to 1.14). As for peak displacement in the experiments, the

compliance-dependent error has units cm.

When fitting the various models to experimental data,

parameters were estimated by a non-linear least-squares procedure

performed in Matlab (lsqnonlin). The absolute error output of

the model (from either Equation 6 or 14) was fit to the peak

displacement trials series for each experiment. The mean peak

displacement across subjects was used because the data for

individual subjects was too noisy to obtain reliable fits. Confidence

intervals for parameter estimates were calculated using a boot-

strap procedure [17]. Specifically, the boot-strap was performed

using 1,000 unique combinations drawn with replacement from

the subject pool for each experiment. The model was fit separately

to the mean peak displacement trial series for each of the 1,000

unique combinations of subjects. The 95% confidence intervals

were calculated as the 2.5 and 97.5 percentile values from the

distribution for each parameter obtained across the 1,000

individual fits.

In the case where more than one model was fit to the

experimental data, model selection was performed using the

Bayesian Information Criterion (BIC). The BIC for a particular

model combines a ‘‘reward’’ for the goodness of fit with a

‘‘penalty’’ for the number of free parameters:

BIC~n:ln(s2
e)zk:ln(n) ð15Þ

where s2
e is the variance in the residual errors of the fit, k is the

number of free parameters and n is the number of data points (the

number of trials). Taking the difference in BIC values for two

competing models approximates half the log of the Bayes factor

[37]. A BIC difference of greater than 4.6 (a Bayes factor of

greater than 10) is considered to provide strong evidence in favor

of the model with the lower BIC value [38].

Experiment 1 – Single-context adaptation and
de-adaptation

The first experiment was designed to examine adaptation and

de-adaptation in a single context (Figure 2A). Subjects (n = 8) were

presented with the object at 0u. They performed an initial

familiarization block of 48 pre-exposure trials during which the

forces associated with the dynamics of the object were turned off

(zero-force trials). The main experiment consisted of 320 trials and

began with a second block of 48 pre-exposure (zero-force) trials.

Context-Dependent Adaptation to Object Dynamics
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Subjects then experienced the full dynamics of the object (both

torques and the perturbing forces of the object) during an exposure

phase of 224 trials. In the final 128 trials of the exposure phase,

one error-clamp trial was inserted randomly every 8 trials for a

total of 16 error-clamp trials (8 CW and 8 CCW trials). During the

final post-exposure phase of 48 trials, the object forces were again

turned off (zero-force trials). Subjects were given rest breaks,

randomly timed to occur every 3–5 minutes.

We fit both the single-rate and the dual-rate context-

independent models (SRM and DRM) to the trial series of the

normalized mean peak displacement from Experiment 1.

Specifically, the mean peak displacement was calculated for each

trial across subjects and then normalized across trials so that the

mean of the pre-exposure phase was 0 and the maximum error

across all trials was 1.

To characterize the time constant of adaptation (during the

exposure phase) and de-adaptation (during the post-exposure

phase), we fit a single exponential function to each individual

subject’s data:

y~azbe{(n=t) ð16Þ

where n is the trial number. We calculated the mean time constant

(t) across subjects.

Experiment 2 – Multiple-context de-adaptation
The second experiment was designed to examine the context-

dependent pattern of generalization across multiple object

orientations after exposure to the dynamics of the object at a

single orientation (Figure 3A). Two groups of subjects (n = 12 in

each group) were first exposed to the object at 0u (group 1) or

180u (group 2) for 64 trials. They were then presented with

multiple blocks of 30 trials in which they were first partially de-

adapted with 8 zero-force trials presented at one of five possible

probe orientations (group 1: 0, 222.5, 245, 290 and 180u;

Figure 2. Single-context adaptation and de-adaptation (Experiment 1), experimental results and model fit. A Subjects (n = 8)
experienced a pre-exposure phase of 48 zero-force trials (left), followed by an exposure phase of 224 trials with full object dynamics (middle),
followed by a post-exposure phase of 48 zero-force trials (right). The object was presented at 0u on all trials. B The peak displacement trial series for
the experiment. Data points are means across subjects and shaded area are standard errors. Initial and final light-grey shaded plots are pre-exposure
and post-exposure phases, respectively. Dark-grey shaded plot is exposure phase. Inset shows final peak displacement (PD) for each phase (final 8
trials for each phase; mean and standard error across subjects; p-values are for two-tailed paired t-tests as indicated). C The normalized peak
displacement trial series for the experiment and the model fit. Black trace is mean across subjects from the experiment. Red line is the fit for the
single-rate model (SRM). Pink shading shows 95% confidence limits of the fit (see text for details). Inset shows the exponential time constants (mean
and standard error across subjects) for adaptation (during exposure) and de-adaptation (during post-exposure; p-value is for a two-tailed paired t-
test).
doi:10.1371/journal.pcbi.1002196.g002
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group 2: 180, 2157.5, 2135, 290 and 0u). They were then re-

exposed to the full dynamics of the object for 18 trials at the

training orientation. The first 2 trials immediately before and

immediately following the zero-force de-adaptation trials were

error-clamp trials presented at the training orientation, during

which the forces produced by subjects were measured. Probe

orientations were presented in a pseudo-random order such that

each probe orientation was presented once per cycle, with

subjects performing 3 cycles (3 cycles65 blocks per cycle = 15

blocks). The peak displacement of the handle during the first 4

de-adaptation trials was used as a measure of the magnitude of

the anticipatory forces produced by subjects at each probe

orientation. In addition, the peak displacement during the first 4

re-exposure trials (at the training orientation), was also measured.

Note that the probe orientations for each group (0u and 180u)
represented identical steps relative to the training orientation (0,

22.5, 45, 90 and 180u). Rest breaks were given every 3–5 minutes

as in Experiment 1.

We fit the 4 parameter and 10 parameter versions of the single-

rate multiple-context model (MCSRM4 and MCSRM10, respec-

tively) to the trial series of the mean peak displacement across

subjects. Both functions implemented the compliance-dependent

error function (Equation 14, described above). The 4 parameter

version of the MCSRM included the retention and learning-rate

constants (a and b) as well as the width (s) and offset (d) parameters

for the Gaussian context-selection function. The 10 parameter

version of the model included the 2 rate constants as well as 8

values specifying the individual elements of the context-selection

vector, as described above.

Experiment S1 – Estimating the compliance function
The compliance factor in the compliance-dependent error

function (k in Equation 14) was estimated by exposing subjects

to the object at multiple orientations (see Experiment S1 in Text

S1 for full details). Briefly, subjects (n = 12) experienced the

object at 5 different orientations (0, 245, 290, 2135 and 180u).
They were adapted and then de-adapted to the object dynamics

multiple times at each orientation. A modified version of the

SRM was then fit to the mean peak displacement trial series. In

this modified SRM, the original error function (Equation 6) was

replaced by the compliance-dependent error function (Equation

14). The model fit the a and b parameters of the SRM

(Equation 6) along with 10 parameters which defined the

compliance factor k.

Experiment 3 – Adaptation to different masses
The third experiment was designed to examine adaptation to

objects of different mass (Figure 4A). Specifically, subjects (n = 8)

were exposed to 3 object masses (0.7%, 1.0% and 1.3% of the

subject’s body mass). The object was presented in separate blocks

of 90 trials for each mass (in pseudo-randomized order). Each

block began with an exposure phase of 60 trials during which

subjects experienced the object at the training orientation of 0u. In

the subsequent 30 trials, one error-clamp trial was inserted

randomly every 5 trials. For these error-clamp trials, the object

was presented at 0u (the training orientation) or at 290u (the

transfer orientation). By examining the forces generated by the

subjects on error-clamp trials we could assess their adaptation to

the particular mass of the object at the training orientation and at

the novel probe (transfer) orientation. Rest breaks were given

every 3–5 minutes as in Experiment 1. Simulated results were

generated for this experiment using the selected MCSRM and its

best-fit parameters from Experiment 2.

Experiment 4 – Dual-context adaptation
The fourth experiment was designed to examine adaptation

when the object alternated sequentially between two different

contexts (Figure 5A). Subjects (n = 8) performed blocks of 24 trials

with the object presented at 180u and 0u consecutively across pairs

of blocks. A cycle thus consisted of a pair of blocks at 180u and 0u.
An initial pre-exposure cycle and a final post-exposure cycle were

performed (2 blocks624 trials per block = 48 trials). These

consisted of zero-force trials as in Experiment 1. The exposure

phase included 9 cycles (18 blocks for a total of 432 trials). The

entire experiment consisted of 11 cycles (11 cycles62 blocks per

cycle624 trials per block = 528 trials). Rest breaks were given

every 3–5 minutes as in Experiment 1. Predictions for this

experiment were generated using the selected MCSRM and its

best-fit parameters from Experiment 2.

Experiment 5 – Adaptation to multiple contexts
The fifth experiment was similar to Experiment 4 and was also

designed to examine adaptation when the object switched between

different contexts (Figure 6A). In this case, the object was

presented at five different orientations. Subjects (n = 8) performed

multiple exposure cycles that consisted of blocks of 20 trials in

which the object was presented at one of five orientations (0u,
245u, 290u, 2135u, 180u). The first two and the last two trials of

each block were error-clamp trials. The remaining 16 trials were

under the full dynamics of the object. A cycle consisted of a

sequence of 5 blocks with each orientation presented once (in a

pseudo-random order). Subjects performed two pre-exposure

cycles (error-clamp trials but only 4 trials: 2 cycles65 blocks64

trials = 40 trials), five exposure cycles (5 cycles65 blocks620

trials = 500 trials) and two post-exposure cycles (as in the pre-

exposure). This gave a total of 580 trials. Rest breaks were given

every 3–5 minutes as in Experiment 1. Predictions for this

experiment were generated using the selected MCSRM and its

best-fit parameters from Experiment 2.

The model and experimental results for Experiment 5 were

analyzed as follows. Values for the two measures (peak

displacement and adaptation) were binned for each block based

on the absolute change in orientation relative to the previous

block. The analysis included two bins; one for absolute changes in

orientation of 45u and another for absolute changes of 90u or

larger (denoted 90+u). The 90+u bin was chosen because relative

changes in orientation greater than 90u did not occur often enough

to allow separate bins. Data from the first exposure cycle was not

included because it represented the initial adaptation to the object

dynamics.

Previous object manipulation studies
Two previous studies of object manipulation are relevant to the

model presented in the current study. These previous studies

examined grip force adaptation during a bimanual object

manipulation task. Specifically, they characterized the time-course

of adaptation and de-adaptation of grip force [30] and the pattern

of generalization following single-context and dual-context

exposure [31]. The MCSRM was fit concurrently to data from

these four experiments (see Figure S6 and further details in Text

S1).

Results

Subjects rotated a virtual object by grasping and rotating the

handle of the WristBOT robotic manipulandum (Figure 1A)

[32,33]. The WristBOT produced the forces and torques

associated with the dynamics of the object (Figure 1B). Real-time
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visual feedback of the object was projected over the subject’s hand

(Figure 1C). On pairs of trials, subjects rotated the object CW and

CCW through 40u between two visually presented targets. The

orientation of the object and targets was varied in order to present

the object at different orientations (inset, Figure 1C). Subjects were

asked to keep the handle stationary within the home position. This

required them to produce forces to stabilize the object as they

rotated it. Performance was measured as the peak displacement of

Figure 3. Multiple-context de-adaptation (Experiment 2), experimental results and model fit. A Subjects (n = 12 in each group) were
initially exposed to the full dynamics of the object at a training orientation of 0u (group 1; left panel) or 180u (group 2; not shown). They then
experienced multiple blocks of 30 trials in which they were first partially de-adapted with 8 zero-force trials presented at 1 of 5 probe orientations (0,
22.5, 45, 90 and 180u relative to the training orientation; middle panel; object at 22.5u removed for clarity) and then re-exposed (full dynamics) at the
training orientation for 18 trials (right panel). B The peak displacement trial series for the experiment (black trace) and the model fit (red trace with
pink shading showing 95% confidence limits of the model fit) for 0u training group. Ehu and Rhu are exposure and re-exposure trials at the training
orientation (0u), respectively. Dhu are zero-force de-adaptation blocks at 1 of 5 probe orientations. Subjects performed 3 repeats for each probe
orientation in a random sequence (365 = 15 de-adaptation blocks). Experimental data is a composite in which the 3 repeats for each probe
orientation are averaged and sorted in order of relative orientation (see text for full details). C De-adaptation error (mean peak displacement over first
4 de-adaptation trials) for each probe orientation for 0u training group. Black symbols are means and standard error across subjects. Red symbols are
equivalent analysis of model fit. Black and red lines show a half-Gaussian fit to experimental and model points, respectively. D Re-exposure error
(mean peak displacement over first 4 re-exposure trials) for each probe orientation for 0u training group, plotted as in panel C. E Peak displacement
trials series for the experiment and model fit for 180u training group, plotted as in panel B. F De-adaptation error for 180u training group, plotted as in
panel C. G Re-exposure error for 180u training group, plotted as in panel D.
doi:10.1371/journal.pcbi.1002196.g003
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the handle during the rotation and error-clamp trials were used to

measure the anticipatory forces produced by subjects (see Methods

for full details).

Experiment 1 – Single-context adaptation and
de-adaptation

The first experiment examined adaptation and de-adaptation of

subjects (n = 8) to the dynamics of the object at a single orientation

(Figure 2A). During the initial pre-exposure (zero-force) phase of the

experiment, displacements of the handle were small (initial light

grey shaded plot in Figure 2B). The mean peak displacement across

the final 8 trials of the pre-exposure phase was 0.2360.08 cm

(subject mean 6 standard deviation). In the exposure phase (dark

grey shaded plot in Figure 2B), upon introduction of the forces

associated with the rotational dynamics of the object, displacement

increased markedly on the first exposure trial to 1.1360.24 cm,

falling rapidly over subsequent trials. The mean peak displacement

across the final 8 trials of the exposure phase was 0.4360.15 cm,

significantly larger than the final peak displacement for the pre-

exposure phase (two-tailed paired t-test, p,0.02; see inset of

Figure 2B). During the post-exposure phase, when the object forces

were again turned off, displacement increased on the first post-

exposure trial to 0.8060.31 cm, falling rapidly over subsequent

trials (final light grey shaded plot in Figure 2B). The mean peak

displacement across the final 8 trials of the post-exposure phase was

0.2660.13 cm, which was not significantly different from the final

peak displacement for the pre-exposure phase (two tailed paired

t-test, p = 0.26; see inset of Figure 2B).

Single-context adaptation and de-adaptation – Model
fitting

The mean peak displacement across subjects was normalized for

model fitting by subtracting the mean displacement across the final

8 trials of the pre-exposure phase and dividing by the maximum

displacement across all trials. Peak displacement data normalized

in this way for model fitting is referred to simply as ‘‘error’’ (black

trace in Figure 2C).

Two alternative models were fit to the single-context experi-

ment. The first was the context-independent single-rate model

(SRM) described in Equation 5, which has two free parameters.

The second was the context-independent dual-rate model (DRM)

described in Equations 7 and 8, which has four free parameters.

The SRM and DRM are equivalent to the single-state single-rate

model and two-state multi-rate model of Smith et al [17],

respectively. Model parameters were estimated by a least squares

minimization function in Matlab. Model selection was performed

using BIC (see Methods and Equation 15).

Both models were able to reproduce the time-course of

adaptation and de-adaptation in the experimental data

(Figure 2C shows the SRM fit; Figure S3-A in Text S1 shows

the fit for both SRM and DRM). The best-fit parameters for the

SRM were a = 0.9513 and b = 0.2150 (R2 = 0.7131). The best-fit

parameters for the DRM were a1 = 0.9808, b1 = 0.0139,

a2 = 0.9453, b2 = 0.2053 (R2 = 0.7153). The difference in BIC

values for the two models was 8.3, providing strong evidence in

favor of the SRM (see Methods). Thus, despite the slightly better

fit to the data achieved by the DRM, its additional parameters

Figure 4. Adaptation to objects of increasing mass (Experiment 3), experimental results and model predictions. A Subjects (n = 8)
were exposed to an object with 3 different masses in blocks of 90 trials. They first experienced the object at the training orientation (60 trials at 0u; left
panel) and were then presented with random error-clamp trials (right panel) at the training orientation (3 error-clamp trials at 0u) or a novel transfer
orientation (3 error-clamp trials at 290u). The 6 error-clamp trials were randomly inserted into a block of 30 exposure trials (1 every 5 trials). Subjects
experienced the 3 masses in a pseudo-random order. B Adaptation in the experiment as a function of increasing object mass for training (blue
squares) and transfer (red circles) orientations of the object (means and standard errors across subjects). Adaptation was measured using error-clamp
trials and is expressed relative to the 1.0% BM object (see main text). The lines show the mean of the individual linear fits to each subject for the
training (blue) and transfer (red) orientations. C Adaptation in the model as a function of the object mass, plotted as in panel B. The model simulation
is for the MCSRM4 with the best-fit parameters from Experiment 2. D Final peak displacement from the experimental data (black points show means
and standard errors across subjects) and predictions from the model (red points). The model correctly predicted that subjects would tolerate larger
errors for objects of larger mass.
doi:10.1371/journal.pcbi.1002196.g004
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were not justified. The 95% confidence limits for the SRM

parameters were a = 0.9090–0.9796 and b = 0.1553–0.2668 (esti-

mated using a boot-strap procedure, see Methods). The 95%

confidence limits for the model fit to the experimental data are

shown in Figure 2C (pink shading on the red line).

The BIC analysis, which selected the SRM over the DRM,

suggests that adaptation to familiar object dynamics is mediated by

a single-rate process. An analysis of the exponential time constants

for adaptation and de-adaptation provided further evidence for a

single-rate process. Specifically, we fit exponential functions

(Equation 16) to the adaptation and de-adaptation phases of

Experiment 1 individually for each subject. The mean time

constant for adaptation was not significantly different from the

mean time constant for de-adaptation (adaptation: 3.361.1 trials;

de-adaptation: 4.061.1 trials; two tailed paired t-test, p = 0.21; see

inset of Figure 2C). Thus, we found no evidence for the

phenomenon referred to as fast de-adaptation which is character-

istic of adaptation to novel dynamics [17,39,40] and dual-rate

adaptation processes [17].

We found further evidence to support a single-rate process by

performing simulations and an extensive search of the DRM

parameter space (see Text S1 for full details). First, the DRM

parameters obtained from fitting the model to Experiment 1

exhibit neither spontaneous recovery nor savings when the

appropriate experiments are simulated (Figure S3 in Text S1).

These phenomena are characteristic of dual-rate adaptation

processes [17] and their absence is thus consistent with a single-

rate process. Second, an analysis of the DRM parameter space

shows a wide range of solutions which provide a good fit to

Experiment 1 (Figure S4 in Text S1). Such parameter redundancy

would be expected if a DRM is fit to data generated by a single-

rate process. In contrast, the SRM solutions which provide a good

fit to Experiment 1 are confined to a narrow region of the

parameter space (inset of Figure S4 in Text S1). Finally, we show

that by excluding fast de-adaptation, results from Experiment 1

constrain the best-fit DRM solutions to a single-rate subspace

which excludes spontaneous recovery and savings (Figure S5 in

Text S1). This is especially striking given the wide range occupied

by these solutions in DRM parameter space (compare Figure S4

and Figure S5 in Text S1).

Experiment 2 – Multiple-context de-adaptation
The second experiment examined context-specific de-adapta-

tion at a range of probe orientations after exposure at a single

training orientation (Figure 3A). Subjects initially adapted to the

dynamics of the object at 0u (group 1, n = 12) or 180u (group 2,

n = 12). They then completed multiple de-adaptation blocks at one

of five probe orientations (0u, 22.5u, 45u, 90u and 180u relative to

the training orientation). After each de-adaptation block, subjects

were re-exposed to the dynamics at the original training

Figure 5. Dual-context adaptation (Experiment 4), experimental results and model predictions. A Subjects (n = 8) experienced the object
at two orientations (180u and 0u) which alternated in blocks of 24 trials (4 random error-clamp catch trials and 20 exposure trials under full dynamics).
B The peak displacement trial series for the experiment (black trace) and model prediction (red trace). The model prediction is for the MCSRM4 with
the best-fit parameters from Experiment 2. Ehu and Dhu are exposure and de-adaptation blocks (respectively) at each orientation. C Experimental
(black trace) and model (red trace) peak displacement trial series for the initial exposure blocks at 180u and 0u. Error bars on first and last trial in each
block are standard errors. P-values are for two-tailed paired t-tests, as indicated. D Experimental and model peak displacement trial series for the de-
adaptation blocks at 180u and 0u, plotted as in panel C. E Experiment and model peak displacement trial series averaged over blocks for each
orientation (not including the initial adaptation blocks), plotted as in C. F Experimental peak displacement averaged across blocks for each
orientation in the final half of the experiment. P-value is for a two-tailed paired t-test. G Experimental adaptation measured using error-clamp trials
for each orientation. P-value is for a two-tailed paired t-test.
doi:10.1371/journal.pcbi.1002196.g005
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orientation. Peak displacement during de-adaptation blocks at the

various probe orientations gave a measure of context-dependent

transfer. Peak displacement during the subsequent re-exposure

blocks gave a measure of the context-dependent de-adaptation

associated with each probe orientation.

Analysis of the two error-clamp trials immediately before each

de-adaptation block (at the training orientation), shows no

difference in adaptation as a function of the probe orientation

(ANOVA F(4,55) = 0.084, p = 0.696 for group 1 and

F(4,55) = 0.151 p = 0.988 for group 2). Therefore, although each

subject experienced the probe orientations in a different sequence,

they were in a similar state of adaptation at the start of each de-

adaptation block. We therefore felt justified in averaging the peak

displacement data for the three de-adaptation blocks at each

orientation within and then across subjects for the 2 groups. This

allowed us to construct a composite trial series which included a

single de-adaptation and re-exposure block for each orientation

(see black traces in Figure 3B and E).

Consistent with the previous single-context experiment, during

initial exposure to the full object dynamics, subjects adapted

rapidly to the perturbing forces of the object (E0u and E180u in

Figure 3B and E). During the de-adaptation block at each probe

orientation (Dhu), peak displacement on the initial trials was small

for probe orientations that were far removed from the training

orientation, increased progressively as probe orientations ap-

proached that of the training orientation, and reached a maximum

value at the training orientation itself. Moreover, for probe

orientations close to or at the training orientation, the initially

large errors decreased rapidly across the 8 de-adaptation trials.

This orientation-dependence for the initial de-adaptation error

can be seen in Figure 3C and F (black symbols are means across

the first 4 de-adaptation trials for each orientation). A similar

pattern was observed during the re-exposure block (R0u and

R180u in Figure 3B and E). As can be seen in Figure 3D and G

(black symbols are means across the first 4 re-exposure trials for

each orientation), the smallest re-exposure errors occurred after

de-adaptation trials at probe orientations far removed from the

training orientation, whereas progressively larger errors were

observed as the de-adaptation orientation approached the training

orientation. As with de-adaptation errors, re-exposure errors fell

rapidly as subjects quickly re-adapted to the full dynamics of the

object (Figure 3B and E).

Multiple-context de-adaptation – Model fitting
As reported previously [32], the orientation-dependent behavior

described above can be well captured by a half Gaussian centered

on the training orientation (see black lines in Figure 3C, D, F and

G). This motivated the use of a Gaussian tuning function in the

multiple-context version of the model. Specifically, the individual

elements of the context-selection vector (c in Equations 9 and 10)

were set according to a Gaussian function centered on the current

orientation of the object (see Figure 1D). This version of the model

had 4 parameters (MCSRM4): the two rate constants (a and b)

and two additional parameters which specified the width (s) of the

Gaussian tuning function and its offset (d). To test our assumption

that the tuning function was Gaussian in form, we also fit a version

of the model in which the individual elements of the context-

selection vector were free parameters. This version of the model

Figure 6. Multiple-context adaptation (Experiment 6), experimental results and model predictions. A Subjects (n = 8) were exposed to
the full dynamics of the object at multiple orientations (0u, 245u, 290u, 2135u, 180u), with each orientation presented in multiple blocks of 20 trials.
Blocks were grouped into cycles (5 blocks per cycle consisting of 5620 = 100 trials) such that each orientation was presented once per cycle (in
pseudo-random order). Subjects performed 5 cycles (56100 = 500 trials). The first 2 trials and last 2 trials of each block were error-clamp trials (C). The
remaining 16 trials were exposure trials (E) under the full dynamics. B Experimental results for the initial adaptation (measured using error-clamp
trials). The 45u bin includes only absolute changes in orientation of 45u whereas the 90+u bin includes absolute changes in orientation of 90u or larger.
P-value is for a two-tailed paired t-test. C Experimental results for the final adaptation, plotted as in panel B. D The peak displacement trial series
across the 16 exposure trials for blocks in the 45u and 90+u bins (mean across subjects; error bars on first and last trials of each block are standard
error). P-values are for two-tailed paired t-tests as indicated.
doi:10.1371/journal.pcbi.1002196.g006
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had 10 parameters (MCSRM10; see Methods for full details).

Model selection was performed using BIC, as described above.

Both models were fit concurrently to the data from both groups

(0u and 180u). The best-fit parameters for the MCSRM4 were

a = 0.9811, b = 0.0451, s = 26.3u d = 0.09 (R2 = 0.8523; see model

fit in Figure 3B and E). Fitting the MCSRM10 yielded similar

values for the rate parameters (a = 0.9812, b = 0.0624) with a small

improvement in the fit (R2 = 0.8581). The individual values fit for

the context-selection vector are plotted in the inset of Figure 3B

(black points) and are shown with the Gaussian tuning function

from the MCSRM4 fit for comparison (red line). The difference in

BIC values between the two models was 23.8, providing strong

evidence in favor of the MCSRM4 (see Methods). As such,

allowing the individual elements of the context-selection vector to

vary independently provided only a small (and unjustified)

improvement in the ability of the model to fit the experimental

data. Thus, the assumption that the tuning function is Gaussian in

form appears to be valid.

The 95% confidence limits for the MCSRM4 parameters were

a = 0.9760–0.9870, b = 0.0300–0.0540, s = 24.2–30.1u and

d = 0.08–0.13 (estimated using a boot-strap procedure, see

Methods). The 95% confidence limits for the model fits to the

experimental data are also shown in Figure 3B and 3E (pink

shading on the red line). Note that values for the b parameter

differ substantially between Experiment 1 (b = 0.2150) and

Experiment 2 (b = 0.0451). This lower value for Experiment 2 is

expected because in the MCSRM the multiple states associated

with neighboring contexts contribute to adaptation. In contrast, in

the SRM a single context-independent state is responsible for

adaptation, which results in a larger value for the b parameter.

Peak displacement data from the MCSRM4 fit was analyzed in

the same way as the experimental data in order to produce plots

summarizing the orientation-dependent behavior of the model.

Results from this analysis of the model data can be compared with

the equivalent analysis of the peak displacement data from the

experiment. In both cases, the de-adaptation error (Figure 3C and

F) and the re-exposure error (Figure 3D and G) from the model

well captured the orientation-dependent behavior seen experi-

mentally (red versus black symbols and lines).

In addition to fitting the MCSRM4 concurrently to the data for

both groups of subjects, we also fit the model independently to

data from each group. This allowed us to test the generality of the

parameters with different groups of subjects who experienced the

object across a different range of orientations. Importantly, the

parameters were similar when the model was fit separately to data

from the two groups. For group 1 (training at 0u) the best-fit

parameters were a = 0.9798, b = 0.0635, s = 24.4u d = 0.15

(R2 = 0.8598) and for group 2 (training at 180u) the best-fit

parameters were a = 0.9817, b = 0.0412, s = 25.9u d = 0.06

(R2 = 0.8956). This represents an important validation for the

model because the peak displacement data varies substantially

between the two groups (compare especially Figure 3B and E, and

Figure 3C and F).

Experiment 3 – Adaptation to different masses
The third experiment examined adaptation to objects of varying

mass (Figure 4A). In separate blocks, subjects (n = 8) were exposed

(training orientation 0u) to the dynamics of objects with three

different masses (0.7%, 1.0% and 1.3% of the subject’s body mass).

Adaptation was then examined using error-clamp trials at the

training orientation and a novel transfer orientation (290u).
Because the mass of the object varied in this experiment, the level

of adaptation was expressed relative to the 1.0% BM object.

Adaptation increased with the mass of the object at both the training

orientation (Figure 4B, blue squares) and the transfer orientation

(Figure 4B, red circles). Subject-by-subject linear fitting yielded

slopes that were significantly different between the training and

transfer orientation (0.5960.17 for training, 0.2260.15 for transfer;

two-tailed paired t-test p,0.005; data previously reported [32]).

Adaptation to different masses – Model simulation
A simulation of Experiment 3 was performed using the best-fit

parameters for the MCSRM4 determined from Experiment 2.

The model reproduced the pattern of adaptation seen experimen-

tally (compare Figure 4B and C) and made a prediction regarding

the final peak displacement associated with each mass. We

confirmed this prediction in a new analysis (Figure 4D). Specif-

ically, the model predicted that the final peak displacement would

increase with the mass of the object. This was confirmed

statistically in an analysis of the experimental data (ANOVA

F(2,21) = 0.0839 p,0.005), showing that subjects tolerate larger

errors for heavier objects.

Single-context adaptation versus multiple-context
adaptation

The experiments described thus far have involved exposing

subjects to the full dynamics of the object in a single context (a

single orientation). Even in experiments 2 and 3, in which the

object was presented at multiple orientations, exposure to the full

dynamics was restricted to a single training orientation. In the case

of exposure at two or more orientations, the MCSRM makes

several predictions. These predictions are tested in two new

experiments described below.

Experiment 4 – Dual-context adaptation
In the case of dual-context adaptation, in which the object

alternates between two orientations in short blocks (180u and 0u;
Figure 5A), the MCSRM4 makes two predictions. First, due to the

relatively narrow tuning curve in the model (26.3u), there should

be little transfer between orientations separated by more than 60u.
Therefore, adaptation during the initial exposure for each context

should be largely independent. As such, after first adapting to the

dynamics at 180u, subjects should adapt essentially ‘‘from scratch’’

to the dynamics at 0u, with little benefit (transfer) from the

exposure at 180u. The model similarly predicts that de-adaptation

for each context in the post-exposure phase should be largely

independent. As such, after first de-adapting to the dynamics at

180u, subjects will have to de-adapt essentially ‘‘from scratch’’ to

the dynamics at 0u. Second, the model has a relatively small

retention constant (a = 0.9811) which means that non-active

contexts should de-adapt quickly. Specifically, after the initial

adaptation at both orientations, and as the blocks continue to

alternate, there will be some amount of de-adaptation in the non-

active context. As such, during subsequent blocks at a particular

orientation, there will be a small about of re-adaptation within

each block.

The results from the MCSRM4 simulation, using the best-fit

parameters from Experiment 2, well matched the peak displace-

ment trial series (mean across subjects; n = 8) for the experimental

data (Figure 5B; R2 = 0.5996). ). In some cases, the model over- or

under-estimated the experimental peak displacement by a few

millimeters (for example, the first few trials in the initial exposure

blocks, see Figure 5C). However, the model results are a

simulation (not a fit) based on parameters obtained from different

groups of subjects. As such, small discrepancies, especially for the

large displacements associated with initial exposure, are not

unexpected.

Context-Dependent Adaptation to Object Dynamics
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With regards to the first prediction, the experiment confirmed

that during the initial adaptation there would be little transfer

between the initial exposure in the first context and the initial

exposure in the second context (see Figure 5C). The largely

independent adaptation at each orientation was confirmed

statistically by comparing peak displacement values on the first

and last trials of each of the initial exposure blocks (E180u and E0u
in Figure 5C, p,0.0001 in both cases). In addition, upon

transition to the second context, peak displacement increased

significantly, consistent with the limited transfer predicted by the

model (Figure 5C, E180u to E0u p,0.0001; two-tailed paired

t-test). The experiment also confirmed that during the final post-

exposure blocks there would be little transfer of de-adaptation

between the two contexts (see Figure 5D). The largely independent

de-adaptation at each orientation was confirmed statistically by

comparing peak displacement values on the first and last trials of

each of the post-exposure blocks (Figure 5D, p = 0.0141 for

D180u, p = 0.0051 for D0u; two-tailed paired t-tests). In addition,

upon transition to the second context, peak displacement

increased significantly, consistent with the limited transfer

predicted by the model (Figure 5D, D180u to D0u p = 0.0230;

two-tailed paired t-test).

With regards to the second prediction, the experiment

confirmed that, after the initial two adaptation blocks, there

would be a small amount of re-adaptation within each block, due

to de-adaptation in the non-active context. The re-adaptation

within each block can be seen in the peak displacement trial series

(Figure 5B), although individual blocks are noisy. The re-

adaptation is best appreciated and statistically confirmed when

multiple blocks are averaged for each orientation (Figure 5E).

Comparing the first and last trial in the average block trial series

for each orientation shows that a significant reduction in error

occurred within the block (Figure 5E, p = 0.012 for E180u,
p = 0.001 for E0u; two-tailed paired t-tests).

Due to the varying compliance associated with the object at

180u and 0u (see Figure S2 in Text S1), the model made a third

prediction regarding the peak displacement and adaptation

associated with each orientation. Specifically, the relatively higher

compliance associated with the object at 180u should result in a

higher peak displacement for 180u blocks than for 0u blocks. This

was statistically confirmed when peak displacement was averaged

across blocks for each orientation (Figure 5F, p = 0.003). In

addition, the model predicts that the higher peak displacement

experienced at 180u should drive a larger adaptation to the

dynamics of the object at this orientation, relative to 0u. This was

similarly confirmed when error-clamp trials were analyzed

(Figure 5G, p,0.001).

Experiment 5 – Multiple-context adaptation
The prediction described above regarding de-adaptation in

non-active contexts was investigated further in Experiment 5

which examined the case of multiple-context adaptation

(Figure 6A). In this experiment, subjects (n = 8) experienced the

object at 5 orientations (0u, 245u, 290u, 2135u, 180u), with each

orientation presented in blocks of 20 trials. Five cycles of 5 blocks

were performed and a block for each orientation was presented

once per cycle in pseudo-random order.

The MCSRM4 (using the best-fit parameters from Experiment

2) predicts that the degree of de-adaptation that occurs in a

particular non-active context will depend on how far it is removed

from the active context. For example, during an exposure block in

which the object is presented at 245u, the amount of de-

adaptation occurring at 0u and 290u will be less than that

occurring at 2135u and 180u. This is because for orientations

close to the active context, some amount of adaptation occurs (due

to spread of adaptation from the active context to its non-active

neighbors). This spread of adaptation from the active context

offsets the effects of de-adaptation (which occurs equally in all

contexts). In contrast, at orientations further removed from the

active context, the effects of de-adaptation dominate.

As described in the Methods, the peak displacement and

adaptation data from the model and experiment were binned

based on the relative change in orientation between consecutive

blocks. This yielded two bins (45u and 90+u). The model predicted

that the initial adaptation at the start of each block should be

larger for the 45u bin than for the 90+u bin, whereas the final

adaptation at the end of each block should be the same for the two

bins. This prediction was confirmed in the experimental results.

Specifically, the initial adaptation (measured using two error-

clamp trials at the start of each block) was larger for the 45u bin

than for the 90+u bin (Figure 6B; p = 0.003 two-tailed paired t-

test), whereas the final adaptation (measured using two error-

clamp trials at the end of each block) was the same for the two bins

(Figure 6C; p = 0.93).

Model predictions were also confirmed in the experimental peak

displacement trial series for the binned blocks (Figure 6D).

Specifically, the higher level of adaptation for the 45u bin relative

to the 90+u bin was reflected by a lower peak displacement for the

45u bin relative to the 90+u bin (p = 0.015, two-tailed paired t-test

between the first trial of the 45u and 90+u bins, as shown in

Figure 6D). By the end of the block this difference in peak

displacement between the two bins had reduced to non-significant

levels (p = 0.172, two-tailed paired t-test between the last trial of

the 45u and 90+u bins, as shown in Figure 6D). In additional, the

degree of re-adaptation within the binned blocks also confirmed

model predictions. Specifically, a small (non-significant) amount of

re-adaptation occurred during the block for the 45u bin (p = 0.077,

two-tailed paired t-test between the first and last trials of the 45u
block, as shown in Figure 6D), whereas a larger (significant)

amount of re-adaptation occurred during the block for the 90+u
bin (p = 0.040, two-tailed paired t-test between the first and last

trials of the 90+u block, as shown in Figure 6D).

The results from the two multiple-context adaptation experi-

ments described above show that, even when subjects receive

constant exposure to the object dynamics, non-active contexts de-

adapt in a manner consistent with the MCSRM.

Previous object manipulation studies
The MCSRM4 also successfully captured results from two

previous studies of object manipulation (see Figure S6 in Text S1).

These studies examined grip force adaptation during a bimanual

manipulation task. The model concurrently fit the data from four

experiments across the two studies, two which characterized the

time-course of adaptation and de-adaptation (Figure S6-B and S6-

C in Text S1) [30] and two which characterized the pattern of

context-specific generalization (Figure S6-D and S6-E in Text S1)

[31]. The best-fit parameters were a = 0.8122, b = 0.2568,

s = 18.2u and d = 0.16 (R2 = 0.8419).

In addition, to facilitate comparison across the different object

manipulation tasks considered in the current study, exponential

functions were fit to two studies which have characterized the

time-course of adaptation. The first study was the bimanual task

described above [30], which yielded a time constant for grip force

adaptation of 0.9 trials. The second study examined adaptation

during a task in which subjects lifted an object with an

asymmetrically offset centre of mass [29], which yielded a time

constant for compensatory torque adaptation of 0.9 trials (see

Figure S7 in Text S1).

Context-Dependent Adaptation to Object Dynamics
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Discussion

We have used a context-dependent state-space model to

examine how subjects adapt when manipulating objects with

familiar dynamics. The model reproduces results from our

previous study [32], including the time-course of adaptation and

de-adaptation (Figure 2) as well as the context-specific behavior

associated with exposure to the dynamics of the object at a single

orientation (Figure 3 and 4). In addition, adaptation and de-

adaptation were found to occur at similar rates, which we show to

be diagnostic of a single-rate process. Thus, in contrast to the dual-

rate process thought to underlie adaptation to novel dynamics

[17], adaptation to familiar dynamics appears to be mediated by a

process which adapts at a single rate. We also confirm predictions

of the model with two new experiments in which subjects were

exposed to the dynamics of the object at multiple orientations

(Figure 5 and 6). A key aspect of the model is that separate states

are associated with different visual contexts of the object. This

context-specific state represents the subject’s estimate of object

mass for a particular visual orientation. The state (mass estimate) is

updated based on the kinematic error experienced on each trial

and a generalization function determines how errors in the active

context affect the states associated with the non-active contexts. In

addition, each state undergoes spontaneous trial-based decay

independent of the current context. Finally, by considering a

version of the model in which the individual elements of the

context-selection vector were free parameters, we show that the

generalization function is Gaussian in form.

Having shown that the model can account for our previous

results obtained during exposure to the dynamics of the object at a

single orientation, we test predictions of the model with two new

experiments in which subjects experienced the dynamics at

multiple orientations. We first examined the case of dual-context

exposure, in which the object alternated between two different

orientations (0u and 180u). The model correctly predicted that, due

to the relatively narrow generalization function, adaptation and

de-adaptation would be partially independent in each context

(Figure 5C and D, respectively). Specifically, after initial

adaptation (or de-adaptation) in the first context, the model

correctly predicted that there would be little benefit (transfer) to

the second context. In addition, the spontaneous decay in the

model predicted that small decreases in performance would occur

each time the context alternated (Figure 5E). This partial de-

adaptation in the non-active context was further examined in the

second new experiment, in which the object switched randomly

between five different orientations. In this case, the model

correctly predicted that partial de-adaptation would occur in all

non-active contexts, but would be greater for those contexts

furthest removed from the active one (Figure 6). Taken together,

the modeling and experimental results from the current study

provide further support that internal models of familiar object

dynamics are mediated my multiple context-specific representa-

tions.

Whereas a dual-rate process is thought to mediate adaptation to

novel dynamics [17], results from the current study suggest that

adaptation to the familiar dynamics of everyday objects is

mediated by a single-rate process. Specifically, in the case of

novel dynamics, a dual-rate model (DRM) has been proposed

which has fast and slow adaptation processes acting in parallel

[17]. Such a model explains various phenomena observed during

adaptation to novel dynamic perturbations, such as fast de-

adaptation, spontaneous recovery and savings (see Figure S3 and

the associated discussion in Text S1). In Experiment 1 of the

current study (Figure 2), we found no evidence for fast de-

adaptation (see inset of Figure 2C). However, due to methodo-

logical constraints associated with our task, we were unable to test

for spontaneous recovery and savings. Rather, in simulations and

an extensive search of the DRM parameter space (see Figure S4

and Figure S5 of Text S1), we show that the absence of fast

adaptation is a diagnostic feature of single-rate adaptation

processes. Specifically, we show that DRM solutions which do

not exhibit fast adaptation, exhibit neither spontaneous recovery

nor savings. Such solutions are single-rate parameterizations of the

DRM. Results of the current study thus suggest that the adaptation

processes engaged when subjects are exposed to novel dynamics

differ from the processes engaged during the manipulation of

everyday objects.

Fast adaptation to the dynamics of familiar objects is consistent

with the idea that there are two components to learning: structural

learning and parameterization [41,42]. In structural learning, the

motor system extracts the structural form of the sensorimotor

transformation that underlies a particular task. Once the structure

has been learned, adaptation to different tasks that share the same

structure can proceed rapidly through parameterization of the

existing structure. When considering a set of similar objects, the

structure can be represented by the form of the equations which

describe the dynamics, whereas the parameters represent the

values that vary across objects (such as mass and moment of

inertia). As such, when manipulating familiar objects with

dynamics which are captured by an existing structure, adaptation

can be rapid because it primarily involves parameterization. For

example, when lifting an object of unknown mass, subjects adapt

their predictive load and grip forces rapidly within a few trials

[5,23,24,25]. Similarly, rapid adaptation of digit forces occurs

when subjects lift objects with an asymmetrical centre of mass

[26,27,28,29]. Rapid adaptation was also observed in the current

study, in which the time constant for adaptation was 3.3 trials. In

contrast, when subjects are presented with objects which have

novel and unusual dynamics they adapt much more slowly. For

example, objects with internal degrees of freedom can take

hundreds of trials to learn [43,44]. Similarly, adaptation to novel

state-dependent dynamics has a long time course [22]. For

example, the time constant for adaptation to velocity-dependent

curl fields is around 40 trials (see Figure S3-B of Text S1). We

suggest that this longer time course reflects the requirement to

learn the unfamiliar structure of the dynamics.

The formulation of the current model draws upon various state-

space models that have been previously applied to adaptation in

the motor system [15,16,17,18,19,20]. For example, dynamic

perturbation studies which examined velocity-dependent force-

fields showed that context-specific adaptation could be modeled

using a multiple-state model that included a generalization

function tuned to the current context [15,16]. In this case, the

context was the target direction which thus involved a change in

the kinematics of the movement. In contrast, in our experiments

the movement kinematics were constant because the arm

remained in the same configuration and subjects made the same

movement on all trials. What varied in our experiments was the

visual orientation of the object. Results from the current study

show that, in addition to kinematic contexts and novel state-

dependent dynamics, multiple-context state-space models can also

be applied to visual contexts and the familiar dynamics of objects.

The role of visual context was particularly striking in Experiment 2

(see Figure 3). In this experiment, subjects experienced the

dynamics of the object at a single orientation only. The context-

dependent behavior observed in this experiment was in response

to changes in the visual orientation of the object; the dynamics and

kinematics associated with probe trials remained constant.

Context-Dependent Adaptation to Object Dynamics
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Moreover, based on fitting the model to this experiment, we were

able to predict how subjects would behave when they experienced

the dynamics of the object at multiple orientations.

Our results suggest that the dynamics of familiar objects are not

represented globally, but rather as a set of local representations

that are selectively engaged by the current context of the object (its

visual orientation). Previous studies have also examined the ability

of contextual cues to engage separate representations in the motor

system. For example, a number of studies have focused on the

ability of subjects to learn opposing dynamic or kinematic

perturbations, in which the direction of the perturbation alternates

over successive blocks. In the absence of an appropriate contextual

cue, the opposing perturbations compete for a single representa-

tion and concurrent adaptation is not possible

[45,46,47,48,49,50,51,52]. However, if a suitable contextual cue

is associated with each perturbation, separate representations are

engaged and concurrent adaptation can be achieved [19,20,53,

54,55,56,57]. In the current study, the dual-context experiment

similarly required subjects to adapt to opposing dynamic

perturbations because the forces produced by the object reversed

direction as it alternated between 180u and 0u (Figure 5). In this

case, however, subjects had perfect contextual information (the

visual orientation of the object) which allowed them to produce

forces in the appropriate direction from the very first trail. Rather,

the observed changes in performance when the context switched

(Figure 5E) were associated with adaptation (and de-adaptation) of

force magnitude.

Of relevance to the current study, two previous studies of object

manipulation have also characterized the rate of adaptation and

de-adaptation [30], and the pattern of generalization [31] of

familiar object dynamics. In these previous studies, grip force

adaptation was examined during a bimanual object manipulation

task. Importantly, the current model successfully reproduced key

features from these previous results (Figure S6 in Text S1).

Specifically, results from four experiments (two experiments from

each previous study) were concurrently fit by the model, which

reproduced the time-course of adaptation and de-adaptation

reported in the first study and the local context-dependent pattern

of generalization reported in the second study. Interestingly, the

rate of de-adaptation of grip force in the first study was found to be

slower than the rate of adaptation [30]. This result could be

reproduced by the current model by assuming that grip force de-

adaptation is not an active error-driven process, but rather occurs

through passive decay (as captured by the retention constant). This

assumption seemed justified because, in the task examined by

these previous studies, producing a grip force response on the

unlinked de-adaptation trials did not cause the virtual object to

displace. In the absence of a kinematic error, de-adaptation in the

task may thus rely on passive trial-by-trial decay. The relatively

low value for the retention constant (a = 0.8122) obtained when

fitting the model is consistent with this suggestion, which would

allow grip force to rapidly decay. Similarly, the relatively high

learning-rate constant (b = 0.2568) would allow grip force to adapt

quickly despite this high rate of passive decay. In the current study,

passive decay was also found to be an important process,

responsible for the progressive de-adaptation of non-active

contexts despite ongoing exposure to the object.

We have suggested that because the structure of dynamics

which are familiar is already represented by the sensorimotor

system, adaptation is rapid and engages a single-rate process. This

is in contrast to adaptation to novel force-fields, which proceeds

more slowly and is mediated by a dual-rate process. However, this

view is not the only interpretation of our results. For example,

adaptation to the dynamics of the object in our task may be

inherently easier. Alternatively, there may be something inherently

difficult about adapting to velocity-dependent force-fields. This

argument is weakened by the variety of previous studies reviewed

above. Specifically, in studies of familiar dynamics, adaptation is

always rapid. Moreover, for those cases of familiar dynamics

examined in the current study (the current task, and the bimanual

object manipulation and lifting tasks in Figure S6 and Figure S7 in

Text S1, respectively) such adaptation appears to be mediated by a

single-rate process. In contrast, in previous studies of novel

dynamics reviewed above, adaptation is always slow, and in the

case of velocity-dependent force-fields, is mediated by a dual-rate

process. In further support of our view, the rate of adaptation to a

sensorimotor task can increase dramatically when subjects become

familiar with the structure of the task [41]. Thus, we hypothesize

that familiarity plays a key role in determining the rate of

adaptation and may explain the observed differences in the

processes which mediate adaptation to familiar versus novel

dynamics.

In summary, by using state-space models, the current study has

highlighted similarities and differences in the processes which

mediate adaptation to novel and familiar dynamics. In both cases,

adaptation is mediated by multiple context-specific representa-

tions. In the case of novel dynamics, these representations are

selected based on the kinematic context of the movement. In the

case of familiar object dynamics, the representations can be

selected based on the visual context of the object. And whereas the

relatively slow adaptation to novel dynamics is mediated by a dual-

rate process, the rapid adaptation observed when subjects

manipulate objects with familiar dynamics appears to be mediated

by a single-rate process. Thus, the human ability to skillfully

manipulate objects appears to be mediated by multiple represen-

tations. These representations, which capture the local dynamics

associated with specific contexts of the object, can be selectively

engaged by visual information alone, and are updated based on

the dynamics of specific objects via a single-rate adaptation

process.

Supporting Information
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