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Abstract

Motivation: With rapid accumulation of sequence data on several species, extracting rational and sys-

tematic information from multiple sequence alignments (MSAs) is becoming increasingly important.

Currently, there is a plethora of computational methods for investigating coupled evolutionary changes

in pairs of positions along the amino acid sequence, and making inferences on structure and function.

Yet, the significance of coevolution signals remains to be established. Also, a large number of false

positives (FPs) arise from insufficient MSA size, phylogenetic background and indirect couplings.

Results: Here, a set of 16 pairs of non-interacting proteins is thoroughly examined to assess the

effectiveness and limitations of different methods. The analysis shows that recent computationally

expensive methods designed to remove biases from indirect couplings outperform others in

detecting tertiary structural contacts as well as eliminating intermolecular FPs; whereas traditional

methods such as mutual information benefit from refinements such as shuffling, while being

highly efficient. Computations repeated with 2,330 pairs of protein families from the Negatome

database corroborated these results. Finally, using a training dataset of 162 families of proteins, we

propose a combined method that outperforms existing individual methods. Overall, the study

provides simple guidelines towards the choice of suitable methods and strategies based on

available MSA size and computing resources.

Availability and implementation: Software is freely available through the Evol component of

ProDy API.

Contact: bahar@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With sequence data being generated at an ever increasing rate in the

post-genomic era, it is becoming crucially important to develop effi-

cient and accurate methods at the interface between evolutionary

biology, computational biology and molecular biophysics to learn

and make inferences from sequence data (Liberles et al., 2012).

Structural and functional properties of proteins go hand-in-hand

with their evolutionary properties. For instance, maintaining protein

stability usually involves interactions between conserved residues at

the core of the structure. Likewise, biochemical activities such as ca-

talysis involve conserved residues. Recognition sites, on the other
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hand, may show correlated mutations that maintain the balance be-

tween specificity and adaptability (Tokuriki and Tawfik, 2009a, b).

Recent studies also highlight how sequence evolution correlates with

structural dynamics (Liu et al., 2010; Liu and Bahar, 2012).

Coevolution patterns derived from multiple sequence alignments

(MSAs) provide valuable constraints that assist in structure predic-

tion (Marks et al., 2011, 2012; Morcos et al., 2011; Weigt et al.,

2009). The idea of inferring inter-residue contacts for structure pre-

diction, using sequence correlation data indeed goes back to the

early 1990s (e.g. Göbel et al., 1994). Such applications may be

particularly useful in the case of membrane proteins that can often

be difficult to resolve (Hopf et al., 2012). Detection of correlated

mutation sites could also assist in identifying hot spots, and provide

guidance for protein design and engineering.

In line with increased sequence data and, thereby, increased

opportunity for detecting and interpreting sequence correlations

across the members of protein families, a broad range of theory and

methods have been introduced for correlated mutations analysis

(CMA) in the last decade. Mutual information (MI) (Gloor et al.,

2005) from information theory was one of the first rigorous metrics

adopted for quantifying the extent of cross-correlations between

amino acid substitutions in proteins. A corrected version, MIp, where

the background noise and phylogenetic effects were largely eliminated

by subtracting an average product correction (APC) (Dunn et al.,

2008) proved to enhance signals associated with amino acids that are

proximal in the structure. Also, non-MI-based methods have been

shown to help identify correlated mutations, such as the observed-

minus-expected-squared (OMES) method (Kass and Horovitz, 2002)

and the statistical coupling analysis (SCA) (Halabi et al., 2009;

Lockless and Ranganathan, 1999). More recently, advanced

approaches that require more expensive computations have been

introduced, focused on removing indirect (or transitive) couplings

that may obscure the detection of direct correlations between se-

quence positions. Such methods include direct coupling analysis

(DCA or DI for direct information) (Morcos et al., 2011; Weigt et al.,

2009), Protein Sparse Inverse COVariance (PSICOV) (Jones et al.,

2012), a Bayesian network algorithm for disentangling direct from in-

direct dependencies between residues (Burger and van Nimwegen,

2010), the pseudolikelihood maximization DCA (plmDCA) method

due to Ekeberg et al. (2013), Gremlin’s pseudo-likelihood method

(Kamisetty et al., 2013) and a network deconvolution approach based

on spectral decomposition of the correlation matrix (Feizi et al.,

2013). These studies have shown success in detecting correlations

that relate to contacts in the three-dimensional (3D) structure, and in

reverse engineering the 3D structure from correlations.

In a control study, Horovitz and coworkers (Noivirt et al., 2005)

demonstrated that CMA methods may erroneously yield coevolu-

tionary signals even between non-interacting proteins. This study

performed for a set of 16 non-interacting protein pairs

(Supplementary Table S1) further showed that shuffling algorithms

could be adopted to improve signal-to-noise ratio and reduce these

false positives (FPs). Of interest is to see if methods developed for

improving the detection of 3D contact-making residues are equally

effective in eliminating intermolecular FPs. In a broader context, it

is not often clear which method might be most suitable for a given

set of data, or what are their limits of applicability. Which fraction

of signals outputted by these methods can be reliably used for mak-

ing structural or functional inferences? How does the size of the

MSA affect the results? Can we estimate the minimum size of the

MSA to achieve a certain level of accuracy? Can we design hybrid

approaches, or combined methods, that take advantage of the

strengths of different methods to outperform individual methods?

In the present study, we present a critical assessment of the per-

formance of nine methods/approaches developed for predicting pair-

wise correlations from MSAs. Proteins in Supplementary Table S1 (see

also Supplementary Information (SI), Supplementary Table S2) are

adopted as a benchmark dataset for a detailed analysis, which is further

consolidated by extending the analysis to a dataset of 2330 structurally

resolved protein pairs extracted from Negatome 2.0 database (Blohm

et al., 2014) of non-interacting proteins. Two basic performance crite-

ria are considered: first, does the method correctly filter out intermo-

lecular correlations (FPs) if the analyzed pairs of proteins are known to

be non-interacting? Second, if one focuses on intramolecular signals,

does the method detect the pairs that make tertiary contacts in the 3D

structure (termed intramolecular true positives, TPs)? The study shows

that the abilities of the existing methods to discriminate intermolecular

FPs are comparable, but their abilities to identify intramolecular TPs

vary, with DI and PSICOV outperforming others. We also analyse the

relationship between the size of MSAs and the effectiveness of shuffling

algorithm. We examine the similarities/dissimilarities, or the level of

consistency, between the outputs from different methods, and provide

simple guidelines for estimating how accuracy varies with coverage.

Finally, using a naı̈ve Bayesian approach with a training dataset of 162

families of proteins (SI, Supplementary Table S3), we propose a com-

bined method of PSICOV and DI that provides the highest levels of ac-

curacy. Overall, the study provides a clear understanding of the

capabilities and deficiencies of existing methods to help users select

optimal methods for their purposes.

2 Materials and methods

2.1 Dataset
We used two datasets for our computations: Dataset I, comprised of

16 pairs of non-interacting proteins (Supplementary Table S1) intro-

duced by Horovitz and coworkers as a benchmarking set for CMA

(Noivirt et al., 2005) and Dataset II derived from the Negatome 2.0

database of non-interacting proteins/domains (Blohm et al., 2014).

Dataset I contained 15 distinctive families of proteins, the prop-

erties of which are detailed in the SI, Supplementary Table S2. We

present in Supplementary Table S1 the numbers of sequences/rows

(m) as well as the number of columns (N) for each of the 16 MSAs

generated for Dataset I. Supplementary Table S2 lists the corres-

ponding Pfam (Punta et al., 2012) domain names, representative

UNIPROT (UniProt Consortium, 2014) identifiers and Protein Data

Bank (PDB) (Bernstein et al., 1977) structures, along with the MSA

sizes (m and N) used for analyzing separately the intramolecular

coevolutionary properties of the individual proteins. About half of

the proteins in this set contained more than one Pfam domain

(Supplementary Table S2). Only those domains that appeared in

more than 80% of the sequences were considered for further ana-

lysis. For those domains, full MSAs (except for PF00005; see

Supplementary Table S2) and representative structures were ob-

tained from Pfam (Supplementary Table S2).

Dataset II comprised 2330 pairs (formed by 453 distinctive Pfam

proteins/domains). These were selected from the Negatome 2.0

PDB-stringent dataset of 4161 pairs upon removing all pairs that

involved multidomain proteins. The three panels in Supplementary

Figure S1 display the histograms for (a) the number of columns, (b)

the number of rows and (c) the average sequence identities between

all pairs of rows, for the MSAs corresponding to Dataset II. Note

that Dataset II contains two orders of magnitude larger data (2330

versus 16 pairs of proteins) compared with Dataset I, but the corres-

ponding MSAs contained fewer sequences (rows) and smaller
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proteins (columns). The respective averages for the two sets

were <N>I¼495 and <N>II¼230, and <m>I¼1681 and

<m>II¼334. We used Dataset I for a detailed analysis and Dataset

II for further validation of major results.

The following filters were applied in refining the MSAs: All se-

quences having less than 80% row occupancy (sequences having

>20% gaps) were removed using ProDy (Bakan et al., 2014). The

refined MSAs for individual proteins in Dataset I were concatenated

whenever a protein was composed of more than one domain.

Likewise, for each protein family pair, we concatenated the se-

quences from the same species to form a combined MSA. The se-

quence with the lowest average sequence identity with respect to all

others in a given MSA was removed until the average sequence iden-

tity was above 25%. No upper sequence identity threshold was

adopted for Dataset I, as the average sequence identities (last col-

umn in Supplementary Table S1) varied between 31% and 58%;

and even in the case of the MSA containing the highest proportion

of similar sequences, those pairs with more than 85% sequence iden-

tity were 3þ standard deviations apart from the mean. Dataset II

showed a broader distribution, depicted in Supplementary Figure S1

(c). In this case, the pairs sharing more than or equal to 99% se-

quence identity amounted to 0.75% of the data, yielding on the

average two to three such pairs per MSA. The effect of this small

subset of highly similar paralogs can thus be expected to be negli-

gible. We also confirmed the above by repeating calculations for

Dataset II with 95% upper sequence identity cutoff (data not

shown). The results showed that the effect of this small subset of

highly similar paralogs was negligibly small. Finally, columns whose

occupancy was lower than 90% (positions with >10% gaps) and

those fully conserved were removed for coevolution analysis.

2.2 Methods for sequence coevolution analysis
The methods we used in our comparative study are MI (Gloor et al.,

2005), MIp (Dunn et al., 2008), OMES (Kass and Horovitz, 2002),

SCA (Halabi et al., 2009; Lockless and Ranganathan, 1999),

PSICOV (Jones et Al., 2012) and DI (Morcos et al., 2011; Weigt et

al., 2009). A summary of the methods included in our comparative

study is presented in SI. Details may be found in the original studies.

In each case, we evaluated the N�N sequence covariance matrix;

the off-diagonal elements of which represent the degree of coevolu-

tion between pairs of amino acids. MI, MIp, OMES and SCA matri-

ces were calculated using the Evol module of ProDy (Bakan et al.,

2014), PSICOV by the code listed online (Jones et al., 2012) and DI

by the code provided by Morcos et al. (2011).

2.3 Shuffling algorithm
The shuffling algorithm introduced earlier (Noivirt et al., 2005) was

adopted here. Accordingly, for a given MSA of m sequences and N

residues/columns, we shuffle the m elements within each column

(e.g. column k) randomly while the other columns are kept un-

changed. A new correlation matrix (MI, MIp or OMES) is calcu-

lated for each shuffling procedure. This process is repeated

P¼10 000 times for each column (1�k�N); and because each pos-

ition is evaluated twice on either position shuffling, we obtain a total

of 20 000 shuffled results for each pair. The new ‘random’ correl-

ation value is compared with its original counterpart and we assign

a P-value. For instance, if we observe a shuffled value more than or

equal to original value in 200 times out of 20 000 iterations for a

given pair, the P-value for the corresponding (original) covariance

value is assigned as 200/20 000¼0.01. We set the P-value signifi-

cance threshold to 0.005, i.e. only those pairs with P-values<0.005

were considered to be statistically significant. The newly generated

covariance matrices are designated as MI(S), MIp(S) or OMES(S). The

shuffling algorithm can be practically implemented for these three

methods among the six listed above. This is because DI and PSICOV

require the inversion of the entire C at each iterative step, and re-

peating this task approximately 104 times for each column is pro-

hibitively expensive. Likewise, SCA does not lend itself to efficient

iterative re-evaluation, and hence was not subjected to shuffling

refinement.

3 Results

3.1 Rationale
We assessed the performance of MI, MI(S), MIp, MIp(S), OMES,

OMES(S), SCA, PSICOV and DI based on two criteria: exclusion of

intermolecular FPs, and ability to capture intramolecular contact-

making pairs (TPs). The former criterion is assessed by examining

the protein pairs that are known to be non-interacting (Datasets I

and II; see Supplementary Table S1). We construct MSAs by juxta-

posing the sequences of such pairs of proteins, e.g. A and B, each

row corresponding to a given species/organism. The resulting co-

variance matrix is composed of four blocks/sub-matrices, two

describing the intramolecular (A–A and B–B) correlations, and two,

off-diagonal, associated with intermolecular (A–B or B–A) correl-

ations (Fig. 1a). In principle, the latter two sub-matrices should not

contain any signals as they are for non-interacting proteins, or the

observed signals are FPs. The most accurate method is, therefore,

the one where these FPs are negligible if not totally eliminated.

The second criterion, referred to as accurate detection of intra-

molecular contacts is assessed by examining if the coevolving pairs

Fig. 1. Two criteria for assessing the performance of different methods: (I) ex-

clusion of intermolecular FPs and (II) detection of residue pairs that make

intramolecular contacts. (a) and (b) The MIp and MIp(S) matrices obtained for

a pair of proteins [in this case, porphobilinogen deaminase (protein A) and

ribosomal 50S L1 protein (protein B)] (Supplementary Table S1). Residue

pairs yielding the top-ranking 1% signals are displayed by dots. Shuffling re-

duces the percentage of intermolecular signals (FPs) from 9.57 to 6.69%. (c)

and (d) The individual proteins are separately analyzed and the physical dis-

tance between coevolving pairs is evaluated by examining the corresponding

structure in the PDB
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make inter-residue contacts in the 3D structure of the protein. Two

residues are considered to make 3D contacts if at least one pair of

atoms (belonging to the respective residues) is separated by a

distance smaller than 8Å. Previous detailed examination of the

coordination geometry of non-bonded residues in PDB

structures has shown that this distance range includes all pairs

within a first coordination shell (Bahar and Jernigan, 1996). A

threshold of 8.0 Å (for Ca–Ca pairs) has been adopted in similar

studies for defining inter-residue contacts (Burger and van

Nimwegen, 2010; Kamisetty et al., 2013). The occurrence of a 3D

contact is strong evidence for the biological or physical significance

of the detected covariation. Methods that identify a larger number

of such pairs (among the top-ranking coevolving pairs) are deemed

to perform better.

3.2 Illustrations for selected pairs
Figure 1 illustrates the above two criteria for porphobilinogen deam-

inase and ribosomal 50S L1 protein (pair 11 in Supplementary

Table S1), designated as proteins A and B, analyzed by MIp(S). Panel

(a) displays the MI map calculated after subtracting the APC, MIp.

For clarity, only the strongest 1% signals are shown by dots. Among

them, 90.43% lie in the lower-left and upper-right diagonal blocks,

corresponding to the respective intramolecular signals within A and

within B (A–A and B–B groups); and 9.57% lie in the other two

blocks corresponding to intermolecular correlations (A–B or B–A;

the matrix is symmetric). The latter subset constitutes the FPs in

view of the lack of known physical interaction between these two

proteins. Panel (b) shows that the application of shuffling algorithm

to MIp to generate MIp(S) reduces the percentage of FPs to 6.69%.

Panels (c) and (d) illustrate the screening of the results for individual

proteins against their PDB structures to identify the fraction of intra-

molecular signals that correspond to 3D contact-making pairs. In

this example, 26.37% of residue pairs, shown by the orange dots,

make physical (atom–atom) contacts.

Figure 2 illustrates the analysis of the intramolecular signals ob-

tained for c-glutamyl phosphate reductase and pantetheine

phosphate adenylyl transferase (pair 2 in Supplementary Table S1).

Panel a compares the relative ability of the nine different methods to

detect contact-making pairs of residues. Results are displayed for a

range of signal strengths (or covariance scores), from top-ranking

0.1–20%. Clearly, the fraction of accurately predicted contacts

drops as larger subsets are considered, but the results also show a

strong dependency on the selected method. SCA and MI show the

weakest performance: contact-making residue pairs amount to less

than one-third of the identified pairs in either case, even when the

strongest 0.1% signals are considered. On the other hand, at the

same signal strength, a large majority (>85%) of residue pairs pre-

dicted by PSICOV make contacts in the 3D structures. PSICOV is

closely followed by DI. Of note is the high performance of MIp(S) in

the range 5–20%, indicating little decrease with coverage compared

with other methods. The improvement in MIp upon implementation

of the shuffling algorithm is remarkable; whereas MI and OMES

hardly change upon shuffling. Panels (b) and (c) display the loca-

tions of residue pairs that are accurately detected by at least seven

methods within the respective proteins.

3.3 Results for the complete Dataset I
Results obtained for the complete Dataset I are presented in Figure 3

and SI, Supplementary Figure S2. First, we compare the ability of

the nine methods [SCA, MI, OMES, MIp, PSICOV and DI (solid

colored curves) and MI(S)
, OMES(S) and MIp(S) (dashed colored

curves)] to detect coevolving pairs that make intramolecular

contacts (Fig. 3a and Supplementary Fig. S2b). To this aim, we

examined the location of the top-ranking signals in the PDB struc-

ture of each investigated protein (Supplementary Table S2) and eval-

uated the percentage of 3D-contact-forming pairs (see

Supplementary Fig. S3). The results are shown (z-axis) for increas-

ingly larger subsets of predictions, starting from the strongest 0.1%

coevolution signals, up to 20%. Results for individual proteins are

displayed as a bundle of gray dashed curves. The averages over all

proteins yielded the colored curves as a function of signal strength.

A broad range of performance is observed. PSICOV and DI exhibit

the highest performance; 87–88% of coevolving pairs predicted by

these two methods that rank in the top 0.1% subset make 3D con-

tacts. These are TPs whose coevolutionary behaviour may be rational-

ized by their physical interactions. The performance of these two

methods drops with coverage, e.g. to 52–54% when the top 1%

predictions are considered. In contrast, MI, MI(S) and SCA exhibit

the poorest performance; the corresponding fractions of TPs are

30–34% and 19–20% for the respective subsets. The lower panel in

Figure 3b provides a clear comparison of these results obtained by DI,

PSICOV, SCA and MI(S), OMES(S) and MIp(S) averaged over all

proteins and their standard deviations (see also Supplementary Fig.

S2b). The two best performing methods, DI and PSICOV, are

followed by MIp(S), and then OMES, in the range less than 1%.

Notably, MIp(S) outperforms all others when a higher fraction of pre-

dictions (e.g. top 20%) is considered, as will be further discussed

below.

Most methods were found to successfully eliminate intermolecu-

lar FPs. The upper panel in Figure 3b shows that the percentage of

intermolecular signals (FPs) is approximately 5–30% (or that of

intramolecular signals 70–95%) in general, with a small dependence

on the method and overall decrease with increasing coverage (see

also SI, Supplementary Fig. S2a). PSICOV and DI practically have

no FPs among the top 0.5% coevolving pairs; and MIp, MIp(S),

OMES and OMES(S) show equally good performance. In all these

six cases, the fraction of FPs (intermolecular signals) remains smaller

Fig. 2. Comparison of the performance of different methods. The ability of the

methods to detect residue pairs that make 3D contacts is illustrated for the

pair 2 in Supplementary Table S1. Panel (a) displays the percentage of TPs

among intramolecular predictions (based on subsets of different size, from

top 0.1% to top 20%), TPs being defined as residue pairs that make contacts

in the 3D structure. Panels (b) and (c) show the residue pairs (blue stick repre-

sentation) within c-glutamyl phosphate reductase (top) and pantetheine phos-

phate adenylyl transferase (bottom) predicted among the top 1% signals by

all nine methods (red lines), or eight methods (orange lines) or seven meth-

ods (yellow lines)

1932 W.Mao et al.

-
&amp;
-
-
Selected Pairs
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv103/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv103/-/DC1
mutual information
-
-
-
-
Figure 1. Two criteria for assessing the performance of different methods: (I) exclusion of intermolecular FPs and (II) detection of residue pairs that make intramolecular contacts. (a) and (b) Shown are the MIp and MIp(S) matrices obtained for a pair of proteins (in this case, porphobilinogen deaminase (protein A) and ribosomal 50S L1 protein (protein B) (Table S1). Residue pairs yielding the top-ranking 1&percnt; signals are displayed by dots. Shuffling reduces the percentage of intermolecular signals (FPs) from 9.57 to 6.69&percnt;. (c) and (d) The individual proteins are separately analyzed and the physical distance between coevolving pairs is evaluated by examining the corresponding structure in the PDB.   
-
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv103/-/DC1
 to 
C
1/3
-
to
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv103/-/DC1
(
))
ures
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv103/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv103/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv103/-/DC1
.
-
co-evolutionary behavior
-
-
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv103/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv103/-/DC1
<
-
-
 Figure
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv103/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv103/-/DC1


than 8% among the top-ranking 1% signals; whereas in the case of

MI(S) and SCA, the same fraction increases to 20–25%. Notably, the

performance of MIp(S) shows the least deterioration with increasing

coverage, as already noted in the above illustrative case.

As an additional test, we examined the ability of these methods

to predict not only contact-making pairs, but those pairs that are

not nearest neighbours along the sequence. These will be termed

non-local contacts (they are localized in space, but not along the se-

quence). The horizontal lines on the bars in Figure 3b (lower panel)

indicate the proportions of contacts of different orders, starting

from order 1 (bottom), then orders 2, 3 and finally more than or

equal to 4 (top portion) which are viewed as non-local. A contact of

order k means a contact made between residues i and iþk. In prin-

ciple, it is conceivable that some of the neighbouring residues

coevolve, compensating for some properties on a local scale. More

interesting are the non-local couplings, which can serve as con-

straints for structure prediction. PSICOV yields the highest propor-

tion of non-local contacts, followed by DI, again demonstrating the

superior performance of these two methods.

3.4 Validation with Dataset II
As a further validation, we repeated the same analysis with Dataset

II of 2330 protein pairs extracted from the Negatome database.

Supplementary Figure S4 shows that the results obtained for Dataset

II closely reproduced those obtained with Dataset I. The major

difference was the larger variances in this case (shown by error

bars), which resulted from the broader distribution of chain lengths

(N) as well as the relatively small size of some of the MSAs

included in Dataset II (see Supplementary Fig. S1). Note that the

outputs here correspond to the MI, MIp and OMES in the absence

of shuffling (which does not lend itself to high-throughput

evaluation of thousands of MSAs). This mainly affects the perform-

ance of MIp at around 20% as can be seen in the figure. This further

set of computations confirmed the robustness of the results pre-

sented in Figure 3, and firmly established the significantly higher

ability of DI and PSICOV to detect residue pairs making 3D

contacts.

3.5 Dependence on MSA size and efficacy of shuffling

algorithm
The above computations indicated an improved performance

upon implementation of shuffling algorithms in the case of MIp,

while the effects on MI and OMES were negligible on average.

However, by looking closely at individual cases, we found that

shuffling may be very effective for particular pairs (e.g. pairs 1

and 2) whose MSAs comprise fewer sequences. We speculated

that the effectiveness of the shuffling algorithm correlates with

the size of the MSA; those MSA containing fewer sequences bene-

fiting more from this type of refinement. A systematic examin-

ation indeed showed that the level of improvement upon shuffling

strongly depends on the size m of the MSAs. Figure 4 demon-

strates the above observation. In order to obtain those results, we

generated a series of MSAs with varying sizes in the range

[50�m�2000] by choosing random subsets of concatenated se-

quences from the MSAs generated for Dataset I, as summarized in

SI, Supplementary Table S4; and computations were performed

for these test MSAs, using the three methods that lend themselves

to shuffling, MI, MIp and OMES.

As can be clearly seen in Figure 4, upon implementation of the

shuffling algorithm, all methods exhibit some improvement in their

ability to eliminate intermolecular FPs (panels a–c) and their ability to

detect pairs supported by physical interactions in the 3D structures

(panels d–f). The improvements are more pronounced when the input

MSAs are smaller. Furthermore, shuffling helps when larger subsets

of predictions (e.g. top 20%) are considered. In summary, shuffling

emerges as a useful tool in the absence of a sufficiently large number

of sequences that can be used in the MSA, and/or for alleviating the

decrease in accuracy with increasing coverage.

As a further assessment, we repeated the calculations for all nine

methods and examined their ability to detect coevolving pairs that

make contacts in the 3D structure as a function of MSA size. The re-

sults, based on the strongest 1% coevolution signals are presented in

Figure 5. Their counterparts for the 0.1% and 10% subsets are pre-

sented in the respective panels a and b of Supplementary Figure S5.

Notably, if the MSA size is of the order of a few hundreds of se-

quences (as opposed to a few thousands), MIp(S) emerges as the

Fig. 3. Comparative analysis of the performance of different methods. (a)

Ability to detect residue pairs that make contacts in the 3D structure. The frac-

tion of contact-making pairs is plotted for increasingly larger subsets of pairs

predicted to be coevolving (between the strongest 0.1% and 20% signals ob-

tained by the indicated methods). DI and PSICOV outperform all other

methods. (b) Results from two tests: elimination of intermolecular signals for

non-interacting pairs (top) and detection of intramolecular contact-making

pairs (bottom) displayed for six methods as a function of coverage. See more

details in SI, Supplementary Figure S2. The bars in the lower plot are broken

down into four pieces corresponding to contacts of various orders (1, 2, 3,

and �4, starting from bottom) permitting us to distinguish between local

(near-neighbours along the sequence) and non-local (spatially close but se-

quentially distant) contacts. Top-ranking predictions made by PSICOV contain

the largest proportion of non-local contacts
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Figure 2. Comparison of the performance of different methods. The ability of the methods to detect residue pairs that make 3D-contacts is illustrated for the pair 2 in Table S1. Panel a displays the percentage of TPs among intramolecular predictions (based on subsets of different size, from top 0.1&percnt; to top 20&percnt;), TPs being defined as residue pairs that make contacts in the 3D structure. Panels b and c show the residue pairs (blue stick representation) within &gamma;-glutamyl phosphate reductase (top) and pantetheine phosphate adenylyl transferase (bottom) predicted among the top 1&percnt; signals by all nine methods (red lines), or 8 methods (orange lines) or seven methods (yellow lines).
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Figure 4. Effectiveness of shuffling algorithm as a function of MSA size and coverage the labels in the figure are not clear. The performance of three methods before (lower surface) and after (upper surface) implementation of shuffling algorithm is compared, with respect to their ability to eliminate intermolecular FPs (a-c) and to identify evolutionarily correlated pairs that make direct contacts in the 3D structure (d-f). Shuffling algorithm partially compensates for the loss in accuracy that originates from the use of smaller size MSAs (containing for example a few hundreds of sequences) as well as that occurring with increasing coverage
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method of choice: it allows for the detection of the highest propor-

tion of contact-making pairs. This distinctive feature is particularly

striking when the MSA contains 50–100 sequences (Figure 5), or

when a larger coverage (of potentially contact-making residue) is of

interest (see Supplementary Fig. S5b).

3.6 Development and validation of a hybrid method
The above analysis exposes the different strengths of various meth-

ods in detecting of contact-making residue pairs, in discriminating

intermolecular FPs and in dealing with small MSAs or providing

more coverage at a relatively small loss in accuracy. Of interest is to

examine the consistency of the predictions, i.e. to see whether the

different methods are detecting different subsets of correlated pairs.

Such an assessment of the overlap between predictions would also

help in designing a hybrid method that takes advantage of the

strengths of different methods. To this aim, we calculated the aver-

age correlation coefficients, s(a, b), between the top 20% predictions

from each pair of methods (a, b).

The results are shown in Figure 6. This analysis reveals that the

DI and PSICOV yield consistent results with correlation coefficient

s(DI, PSICOV)¼0.67, which may be attributed to the fact that both

methods use a global optimization scheme that retrieves direct con-

tacts. Likewise, MI and OMES (and their shuffled versions) show

some overlap. MI and OMES are based on different formulations,

but they both measure the observed departure from the expected re-

sults, which may explain their correlation of s(MI, OMES)¼0.48.

MIp shows moderate correlations with all methods (except OMES),

which vary between s(MIp, MI)¼0.39 and s(MIp, PSICOV)¼0.51.

In contrast, SCA yields weak correlations (<0.26) with all methods,

except with MIp (s¼0.44).

The above analysis suggests that one might combine methods

that exhibit different strengths to devise hybrid methods that may

potentially outperform the individual methods. The construction of

a model based on two methods has been successfully accomplished

by Eloffson and coworkers (Skwark et al., 2013), by combining

plmDCA and PSICOV to build the PconsC method. Recent

application of PConsC (Michel et al., 2014) was found to improve

protein models by improving contact predictions.

Towards this goal, we focused first on PSICOV and DI as they

exhibit superior performance (see Fig. 3 and Supplementary Fig. S2).

We designed a combined naı̈ve Bayes classifier utilizing these two

methods (Fig. 7). 162 Pfam families were utilized as training set, the

properties of which are detailed in SI, Supplementary Table S3,

along with the criteria for their selection from the entire dataset of

Pfam families. PSICOV and DI matrices were calculated for all the

162 families, and each residue pair was classified as positive (þ)

(within interatomic distance range of 8Å in the 3D structure) or

negative (�) (if otherwise). The density distributions of the positive

and negative classes were modeled by kernel density estimation

based on PSICOV and DI values (Fig. 7b). The kernel width was

determined by Silverman’s rule (Silverman, 1986). For a given

Fig. 4. Effectiveness of shuffling algorithm as a function of MSA size and

coverage. The performance of three methods before (lower surface) and after

(upper surface) implementation of shuffling algorithm is compared, with re-

spect to their ability to eliminate intermolecular FPs (a–c) and to identify evo-

lutionarily correlated pairs that make direct contacts in the 3D structure (d–f).

Shuffling algorithm partially compensates for the loss in accuracy that origin-

ates from the use of smaller size MSAs (containing for example a few hun-

dreds of sequences) as well as that occurring with increasing coverage

Fig. 5. Dependence of the performance of different methods on the size of the

MSA. The abscissa shows the number m of sequences included in the MSAs.

The ordinate shows the percentage of 3D contact-making pairs among the

most strongly coevolving (top 1%) pairs of residues predicted by different

methods. PSICOV and DI show a strong dependence on m. MIp(S) is distin-

guished by its superior performance when the number of sequences is as

low as 50. See also the results for top 0.1% and 10% covarying residues in SI,

Supplementary Figure S5. The latter case further exposes the distinctive ef-

fectiveness of MIp(S) for identifying 3D contact-making pairs

Fig. 6. Correlation between the predictions of different methods. The entries

represent the correlation coefficients calculated for the top 20% predictions

made by the different methods, averaged over all proteins
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combination of DI and PSICOV scores, the combined method pro-

vides the posterior probability for positive as

PðþjDI;PSICOVÞ¼ PðDI;PSICOVjþÞPðþÞ
PðDI;PSICOVjþÞPðþÞþPðDI;PSICOVj�ÞPð�Þ

(1)

Application of this classifier to our dataset showed that an improve-

ment, albeit incremental (e.g. 4.12% with respect to PSICOV for the

subset of top 0.5% predictions), can be achieved over either method in

so far as the prediction of contact-making pairs is concerned (Fig. 7d).

We note that for PconsC, on average nearly three quarters of the

top N predictions seemed to be correct (Michel et al., 2014). This

means, for a protein of 200 residues for example, the top 200 predic-

tions, i.e. the top 1% (i.e. f¼0.1% using fN(N�1)/2¼N for

N¼200), and this fraction will be N-dependent. The performance

of 75% of PconsC is thus achieved in our case if f<0.4%, which

would correspond to a protein length of N>500. In the case of

smaller proteins, e.g. N¼300, the fraction of contact-making resi-

dues drops to 65%. The hybrid method at that level of coverage

shows an improvement of about 2–4% above either of the individ-

ual (DI and PSICOV) methods. We also checked whether the com-

bined method can also eliminate intermolecular FPs as efficiently as

PSICOV (which showed the best performance), and although the

method was not trained on these properties, a performance compar-

able to that of PSICOV was obtained (Fig. 7c).

Finally, we examined whether one might obtain more accurate

results upon selecting the intersection of the best methods.

Examination of the intersection of PSICOV and DI did not pro-

vide an improvement over the individual methods when the same

level of coverage was aimed, i.e. the top-ranking 1000 overlapping

results from DI and PSICOV picked up entries ranking lower in

the output list, which contained negative results. On the other

hand, given the consistency of MIp with a broad range of meth-

ods, we examined the consensus predictions (or intersection) from

MIp, DI and PSICOV. At the same level of coverage, the intersec-

tion led to a considerable improvement (e.g. 6.5% compared with

DI, at top 2% signals) in eliminating intermolecular FPs, as de-

picted by the green curve in Figure 7c, but not in identifying 3D

contact-making pairs (Fig. 7d).

4 Conclusion

The above comparative analysis led to the following conclusions sum-

marized below in the context of three groups of outputs/regimes, col-

ored light green, yellow and pink in Supplementary Figs. S2 and S7:

strong coevolution signals (ranked in the top 0.5% subset), intermedi-

ate signals (0.5–5%) and relatively weak signals (5–20%).

First, among all studied methods, PSICOV and DI yielded the

best performance in the strong signal regime. Both methods were

successful in accurately detecting coevolving pairs of residues that

Fig. 7. Development of hybrid methods. (a) Assessment of prior probability of 3D contact, P(þ), by a regression analysis of a training set of 162 structurally known

protein sequences. (b) Density distributions of positive and negative signals, P(DI, PSICOVjþ) and P(DI, PSICOVj�) (see Equation 1), modelled by kernel density

estimation. (c and d) Comparative performance of the individual methods DI (gray) and PSICOV (red), and the combined naı̈ve Bayes classifier method

(Equation 1) (black), based on the fraction of intramolecular signals (c) and fraction of 3D contact-making pairs (d). The predictions based on the intersection of

MIp, DI and PSICOV are shown by the green curve
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make contacts in the 3D structure (Fig. 3a and b and Supplementary

Figs. S2b and S4) including non-local contacts, or in eliminating the

intermolecular FPs (Fig. 3b and Supplementary Fig. S2a). Their per-

formance was particularly impressive when the strongest coevolu-

tionary signals (top 0.1%) were considered. For a protein of

N¼300 residues, 0.1% means 0.001�N(N�1)/2�45 pairs.

Thirty-nine of them predicted by these methods were, on average,

observed to form inter-residue contacts in the structure; likewise,

among the top 0.5% signals, 157 pairs (out of 224) would make

contacts. The predictions thus help not only in elucidating evolu-

tionarily relationships, but also in assisting in structure prediction.

These methods are therefore uniquely useful in cases where no suit-

able template structures are available. DI indeed showed remarkable

success in predicting the structures of membrane proteins (Hopf

et al., 2012).

Second, in the intermediate regime, while the proportion of

contacts among coevolving pairs predicted by PSICOV and DI re-

mains high, we note that the discriminatory ability of OMES and

MIp (and their shuffled versions) between intermolecular and intra-

molecular interactions start to pick up and outperform that of DI.

Notably, MIp(S) exhibits the highest performance in the relatively

weak (but high coverage) regime, both in terms of elimination of

FPs and identification of 3D contact-making TPs. This superior

performance of MIp in situations where DI and PSICOV start to

underperform is noteworthy. Two such situations are: (i) the search

for a large number of predictions (or higher coverage) albeit at lower

accuracy, and (ii) the search for coevolving pairs that potentially

make 3D contacts, in the absence of a sufficient number of

sequences (see Figs. 5 and Supplementary Fig. S5). MIp(S) emerges as

the method of choice in those situations. For example, if one is inter-

ested in exploring coevolutionary patterns within a small (sub)fam-

ily of 50–200 sequences, one-third of predictions made by MIp(S)

would be, on the average, making contacts in the 3D structure

among the top 10% signals; see Supplementary Fig. S5b). This sub-

set of signals contains 4500 pairs for N¼300, of which 1500 would

be physically interacting. This is a large majority of native contacts,

based on inter-residue coordination number of z¼12 within 10 Å.

Third, the study highlights how the size m of MSA, a parameter

known to be an important determinant of the statistical significance

of results, affects different methods. It is well known that larger

MSAs usually give better results, and some methods have specified

lower bounds for m: 100 sequences for SCA, 250 for sensitive results

from DI, and 1000 for full DI performance (Morcos et al., 2011).

PSICOV doesn’t specify a lower bound, but there is a clear correl-

ation between performance and MSA size (Jones et al., 2012).

However, the present study further shows that the deficiency arising

from small MSAs can be partially offset by the shuffling algorithm

(Fig. 4). Shuffled MIp(S) in particular emerges as a better choice than

DI and PSICOV when dealing with small MSAs. Generally speaking,

we need more than m¼250 sequences to justify the use of the compu-

tationally expensive DI and PSICOV methods; otherwise, MIp might

be preferred together with a shuffling algorithm (Fig. 5 and

Supplementary Fig. S5).

On a practical side, both PSICOV and DI involve the inversion

of a covariance matrix and/or global optimization algorithms which

may take hours, even days, depending on the size of the MSA.

Specifically, PSICOV and DI need each about 2.5 GB memories to

analyse a 400-residue MSA. The memory requirement increases

quadratically with sequence size, and this O(N2) dependence may

become prohibitively expensive for large proteins. The computing

time for inverting the DI covariance matrix scales between N2.373

(Williams, 2012) and N3 depending on the algorithm and

parameters. MI, MIp and OMES, on the other hand, are very fast.

As such, they lend themselves to high-throughput analysis, thus

allowing for statistical inferences about sequence-structure-

dynamics-function relations (see e.g. Liu and Bahar, 2012). Even

though shuffling is time-consuming, it needs very small memory and

we could speed up the calculation by adjusting the number k of

shuffles because the computing time scales linearly with k, as

O(kN2m). So, vis-à-vis the tradeoff between accuracy and efficiency,

MIp(S) could serve as an optimal approach, especially for MSAs of

large proteins containing a small number of sequences.

Finally, our analysis permitted us to develop a hybrid method

that takes advantage of the strengths of DI and PSICOV. The

improvement in performance is incremental due to an already high

overlap of 0.68 between the predictions of DI and PSICOV. Yet, one

may advantageously adopt this hybrid method to maximize the frac-

tion of contact-making predictions, especially in the intermediate

coverage regime. Another useful recipe for case studies is to select

the intersection of DI, PSICOV and MIp, which appears to be par-

ticularly useful for eliminating FPs. All methods are accessible via

the Evol extension of ProDy (Bakan et al., 2014).
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