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a b s t r a c t 

Background: Although preclinical models reveal the neurobiological pathways altered through opioid abuse, comprehensive assessments of gene expression in human 

brain samples are needed. Moreover, less is known about gene expression in response to fatal overdose. The primary goal of the present study was to compare gene 

expression in the dorsolateral prefrontal cortex (DLPFC) between brain samples of individuals who died of acute opioid intoxication and group-matched controls. 

Methods: Postmortem tissue samples of the DLPFC from 153 deceased individuals ( M age = 35.4; 62% male; 77% European ancestry). Study groups included 72 brain 

samples from individuals who died of acute opioid intoxication, 53 psychiatric controls, and 28 normal controls. Whole transcriptome RNA-sequencing was used 

to generate exon counts, and differential expression was tested using limma-voom . Analyses were adjusted for relevant sociodemographic characteristics, technical 

covariates, and cryptic relatedness using quality surrogate variables. Weighted correlation network analysis and gene set enrichment analyses also were conducted. 

Results: Two genes were differentially expressed in opioid samples compared to control samples. The top gene, NPAS4 , was downregulated in opioid samples 

(log 2 FC = -2.47, adj. p = .049) and has been implicated in opioid, cocaine, and methamphetamine use. Weighted correlation network analysis revealed 15 gene 

modules associated with opioid overdose, though no intramodular hub genes were related to opioid overdose, nor were pathways related to opioid overdose enriched 

for differential expression. 

Conclusions: Results provide preliminary evidence that NPAS4 is implicated in opioid overdose, and more research is needed to understand its role in opioid abuse 

and associated outcomes. 
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. Introduction 

According to the Centers for Disease Control and Prevention, more

han 80% of drug overdose deaths in the United States involve opioids

 O’donnell et al., 2020 ). Moreover, the use of illicitly manufactured fen-

anyl in the United States is rising, with two-thirds of opioid-related

verdose deaths involving synthetic opioids ( Scholl et al., 2019 ). In ad-

ition to the loss of life, opioid misuse and abuse is estimated to cost

mericans as much as $78.5 billion per year ( Florence et al., 2016 ). The

ndividual and societal costs of opioid abuse underscore the need to clar-

fy the molecular underpinnings of opioid abuse and its consequences,

hich will aid in the development of therapeutic targets and subsequent

nterventions to effectively treat opioid use disorder. Although preclin-

cal models are an essential first step in understanding the neurobiolog-

cal mechanisms underlying opioid abuse, examination of gene expres-

ion in human brain tissue is critical to accurately characterize neurobi-

logical differences between opioid users and non-users ( Egervari et al.,

019 ). The goal of the present study was to compare transcriptome-

ide patterns of gene expression in the dorsolateral prefrontal cortex
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DLPFC) of postmortem human adult brains among individuals who died

f acute opioid intoxication and group-matched controls. The DLPFC

as selected based on preclinical and clinical evidence demonstrating

ts role in addiction ( Volkow and Morales, 2015 ; Kalivas et al., 2005 ;

ruyer and Chioma, 2020 ). 

.1. Neurobiology of opioid use 

It is well established that persistent drug use contributes to alter-

tions in the functioning of reward-processing networks in the brain,

amely the mesocorticolimbic dopamine system ( Hyman et al., 2006 ).

his system consists of the mesocortical and mesolimbic pathways,

hich span key brain structures involved in addiction, such as the ven-

ral tegmental area (VTA), nucleus accumbens (NAc) and prefrontal cor-

ex (PFC). Dopamine neurons that originate in the VTA and terminate

n the NAc contribute to the acute rewarding effects of drug use. Opi-

ids, specifically, impact these reward pathways through the activation

f various opioid receptors, primarily μ-opioid receptors. M-opioid re-

eptors are widely expressed in the brain, including structures within

he dopamine reward system (e.g., VTA). Prior work has shown that ac-
rch 2022 
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ivation of μ-opioid receptors reduces the release of GABA neurons in

he VTA, rostromedial tegmental nucleus (RMTg), and ventral pallidum

 Galaj and Xi, 2021 ). By reducing the release of GABA (an inhibitory

euron), dopamine neurons in the VTA are disinhibited, resulting in a

urge of dopamine in the NAc, which contributes to the acute rewarding

ffects of opioids ( Ellis et al., 2021 ). 

Prolonged changes in functioning of dopaminergic and glutamater-

ic transmission in the mesocorticolimbic system are associated with

rug cravings ( Jones et al., 2016 ), deficits in learning, memory, and

ttention ( Arias et al., 2016 ), and increased impulsivity, which can

ast for years after abstinence ( Biernacki et al., 2016 ). Moreover, evi-

ence demonstrates that the PFC and NAc interact in a manner such

hat dopamine-related adaptations in the PFC influence behavioral re-

ponses to drug-related stimuli, while simultaneous glutamate-related

daptations in the NAc contribute to compulsive drug-seeking behavior

 Kalivas et al., 2005 ). These findings underscore the interdependence of

hese brains regions and value in exploring changes in gene expression

ithin the PFC. 

.2. Gene expression and opioid use 

To date, several studies have assessed gene expression in the human

rain in response to long-term opioid abuse. Alberston and colleagues

tudied changes in gene expression within the NAc of long-term heroin

sers ( n = 7) compared to controls ( n = 7), finding decreased expression

f several genes encoding proteins involved in presynaptic release of

eurotransmitters among heroin users ( Albertson et al., 2006 ). Sillivan

nd colleagues examined gene expression in the striatum of heroin users

 n = 22) compared to controls ( n = 27), finding decreased expression of

-opioid receptors, in addition to dysregulation of ERK signaling path-

ays, specifically, in heroin users compared to controls ( Sillivan et al.,

013 ). 

More recently, Saad and colleagues examined transcriptome-wide

ifferences in gene expression in the midbrain between opioid users

 n = 30) and controls ( n = 20) ( Saad et al., 2019 ). The authors found 545

ifferentially expressed genes in the midbrain of deceased opioid users,

ost of which were protein coding genes that were upregulated. In ad-

ition, weighted correlation network analysis revealed a gene cluster

ssociated with inflammation. Lastly, Seney and colleagues examined

ranscriptome-wide differences in gene expression within the DLPFC and

Ac between individuals diagnosed with an opioid use disorder ( n = 20)

nd controls ( n = 20) ( Seney et al., 2021 ). The authors found numerous

ifferentially expressed genes among cases compared to controls, and

any differentially expressed genes overlapped across these two brain

egions. Moreover, differential expression was enriched in pathways re-

ated to inflammation, lending support to the finding by Saad et al. that

rolonged opioid use alters inflammatory processes in the body. 

Although the evidence, to date, supports differential gene expres-

ion across multiple brain regions in response to long-term opioid use,

hanges in gene expression associated with overdose are less well char-

cterized. Moreover, existing studies are limited in their sample sizes

nd available information on drug use history, which are common chal-

enges in working with postmortem brain tissue. Although differential

ene expression in response to an overdose may not reflect long-term

pioid abuse, it can provide valuable insight into the molecular effects

f acute intoxication at high relative doses of opioids. Thus, the goal

f the present study was to examine differential gene expression in the

LPFC between human postmortem brain samples of individuals who

ied of an opioid overdose compared to controls. 

. Materials and methods 

.1. Sample collection 

Postmortem brain samples ( n = 160) were donated to the Lieber In-

titute for Brain Development from the Offices of the Chief Medical Ex-
2 
miner of the State of Maryland (MDH protocol #12–24) and of Western

ichigan University Homer Stryker School of Medicine, Department of

athology (WIRB protocol #1,126,332); One brain sample was acquired

hrough a material transfer agreement from the National Institute of

ental Health (NIMH; donated through the Office of the Chief Medical

xaminer of the District of Columbia: protocol NIMH#90-M-0142), all

ith the informed consent of legal next-of-kin at the time of autopsy.

ubsequent analysis of DNA or RNA derived from human postmortem

rain tissue is exempt from institutional ethics committees as research

onducted on postmortem tissue is not considered Human Subjects Re-

earch by the Department of Health and Human Services. 

At the time of donation, a 36-item next-of-kin informant telephone

creening was conducted to obtain medical, social, demographic, and

sychiatric history. Macroscopic and microscopic neuropathological ex-

minations were conducted on every case by a board-certified neu-

opathologist to exclude for neurological problems, neuritic pathology,

r cerebrovascular accidents. A retrospective clinical diagnostic review

as conducted on every brain donor, consisting of the telephone screen-

ng, macroscopic and microscopic neuropathological examinations, au-

opsy and forensic investigative data, forensic toxicology data, exten-

ive psychiatric treatment, substance abuse treatment, and/or medical

ecord reviews, and whenever possible, family informant interviews. All

ata were compiled into a comprehensive psychiatric narrative sum-

ary that was reviewed by two board-certified psychiatrists to arrive

t lifetime DSM-V psychiatric diagnoses (including substance use disor-

ers/intoxication) and medical diagnoses. 

The present analysis consisted of 153 postmortem human brain sam-

les ( M age of death = 35.4; 62% male; 77% European ancestry). These sam-

les consist of 72 opioid cases, 53 group-matched psychiatric controls,

nd 28 group-matched normal controls Table 1 . contains demographic

nformation on the study samples, split by group status. Non-psychiatric

ealthy controls were free from psychiatric and substance use diagnoses,

nd their toxicological data were negative for drugs of abuse. Psychiatric

ontrols may have had a lifetime DSM-V psychiatric diagnosis (includ-

ng substance use disorders/intoxication) and their toxicological data

ay have been positive for drugs of abuse, but an overdose involving

pioids was not the cause of death. In a previous publication using this

ame cohort ( Shu et al., 2021 ), we described the primary psychiatric

iagnoses among the sample groups. Here, we provide additional data

n any lifetime diagnoses of specific substance use disorders (e.g., opi-

id use disorder), based on the psychiatric narrative summaries. Of the

riginal 160 brain samples, five psychiatric controls were removed for

he cause of death involving opioids, and two addition samples (one opi-

id sample, one psychiatric control) were excluded due to mismatching

enotyped and reported sex, resulting in the final sample of 153 brain

pecimens. Every brain donor had forensic toxicological analysis, which

ypically covered ethanol and volatiles, opiates, cocaine/metabolites,

mphetamines, and benzodiazepines. Some donors also received supple-

ental directed toxicological analysis using National Medical Services,

nc., including nicotine/cotinine testing, cannabis testing, and the ex-

anded forensic panel in postmortem blood (or, in rare cases, in post-

ortem cerebellar tissue) to cover any substances not tested. The follow-

ng substances were considered opioids: codeine, morphine, oxycodone,

ydrocodone, oxymorphone, hydromorphone, methadone, fentanyl, 6-

onoacetylmorphine, and tramadol. 

.2. Sample extraction and RNA measurement and preprocessing 

Brains were hemisected and cut into 1.0–1.5-cm-thick coronal slabs,

ash frozen, and stored at − 80 °C. DLPFC gray matter approximating

A46/9 was dissected using a dental drill. Dissected DLPFC was pul-

erized and stored at − 80 °C. Total RNA was extracted from ∼100 mg of

ulverized tissue using the QIAGEN AllPrep DNA/RNA Mini Kit with on-

olumn DNase treatment according to the manufacturer’s protocol. The

NA quality was assessed with high-resolution capillary electrophore-

is on an Agilent Bioanalyzer 2100 (Agilent Technologies). Paired-end
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Table 1 

Demographic characteristics by study group. 

Analytic Sample ( n = 153) Opioid Samples ( n = 72) Psychiatric Controls ( n = 53) Normal Controls ( n = 28) 

Demographic Categories n (%) Mean ( SD ) n (%) Mean ( SD ) n (%) Mean ( SD ) n (%) Mean ( SD ) 

Sex 

Female 58 (38%) – 22 (31%) – 21 (40%) – 15 (54%) –

Male 95 (62%) – 50 (69%) – 32 (60%) – 13 (46%) –

Race 

African American 35 (23%) – 10 (14%) – 10 (19%) – 13 (46%) –

European American 118 (77%) – 62 (86%) – 43 (81%) – 15 (54%) –

Age of Death – 35.42 years ( 9.42 ) – 33.49 ( 8.86 ) – 36.22 ( 9.37 ) – 38.87 ( 10.03 ) 

Postmortem Interval – 27.42 h ( 9.60 ) – 27.12 ( 8.95 ) – 27.67 ( 10.45 ) – 27.73 ( 9.87 ) 

RNA Integrity Number – 7.79 ( 1.17 ) – 7.40 ( 1.35 ) – 8.18 (0 .78 ) – 8.07 (0 .96 ) 
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trand-specific sequencing libraries were prepared from 300 ng total

NA using the TruSeq Stranded Total RNA Library Preparation kit with

ibo-Zero Gold ribosomal RNA (rRNA) depletion. Resulting RNA-seq

ibraries were sequenced on an Illumina HiSeq 3000 at the Lieber Insti-

ute for Brain Development Sequencing Core. Average sequencing depth

as approximately 99.4 million reads per sample. RNA quality was ad-

quate, with an average RNA integrity number (RIN) of 7.79 across all

rain samples. Raw sequencing reads were processed into gene counts

sing a previously described pipeline ( Collado-Torres et al., 2019 ).

riefly, reads were aligned to the genome using HISAT2 ( Kim et al.,

019 ) and the 58,037 Gencode v25 genes were quantified from result-

ng alignments using featureCounts using paired-end stranded count-

ng ( Liao et al., 2014 ). We calculated the reads per kilobase of tran-

cript, per million mapped reads (RPKM) from these counts, and genes

ith an average RPKM < 0.20 were excluded from downstream anal-

ses. This resulted in 25,644 genes used in the differential expression

nalysis. 

We also calculated principal components (PCs) and examined cor-

elations between the top 10 PCs and phenotypic and technical covari-

tes. Technical covariates included: RIN, rRNA assignment rate, exonic

ssignment rate, mitochondrial mapping rate (i.e., chrM Map Rate),

oncordant mapping rate (for paired-end sequencing), overall mapping

ate, and External RNA Controls Consortium (ERCC) spike-in control

ranscripts. The top 10 PCs accounted for 49.6% of the variance in the

ata. The first two PCs were significantly correlated with all technical

ovariates, and the first PC was significantly correlated with observed

ex. Thus, these variables were included among the list of covariates in

he differential expression analysis. Lastly, because cell composition can

onfound the association between gene expression and outcomes of in-

erest, we estimated nine cell types using Bisque ( Jew et al., 2020 ) (see

ection 2.3.1 ) for inclusion in our differential expression analysis. 

.3. Statistical methods 

.3.1. Estimation of cell composition 

Cell composition in bulk DLPFC tissue was estimated using Bisque

 Jew et al., 2020 ). Briefly, post-processed bulk tissue RNA-seq data was

ecomposed using a reference sample ( n = 3) of single-nucleus RNA-

eq data Tran et al. (2021) . Estimates were derived for nine cell types:

strocytes, excitatory neurons, inhibitory neurons, macrophages, mi-

roglia, mural cells, oligodendrocytes, oligodendrocyte progenitor cells

OPC), and T cells. Cell type proportions were inspected and plotted

sing stacked bar charts (see Fig. S1). Given the small proportion of

ertain cell types (i.e., < 5% of total cells) across all samples, only the

ollowing four cell types were carried forward as potential covariates

or the differential expression analysis: astrocytes, excitatory neurons,

nhibitory neurons, and oligodendrocytes. However, when included in

he model with the quality surrogate variables (qSVs), each cell type was

trongly correlated with the fourth qSV (all p ’s < 1e-5). In an effort to

ot over-fit the differential expression model, these cell type estimates

ere excluded from the final analytic model. 
3 
.3.2. Differential expression analysis 

Group-wise differences in gene expression between opioid-positive

amples and controls were tested in R version 4.1 ( R Core Team, 2021 )

sing limma - voom ( Ritchie et al., 2015 ). Specifically, a linear model

as fit where gene expression was regressed on opioid overdose status

yes/no) across each of 25,644 expressed genes. Prior to the analysis,

e collapsed the psychiatric and healthy control samples. We also iden-

ified 21 opioid-positive samples that, although cause of death was an

pioid overdose, tested positive for cocaine or one of its metabolites at

he toxicology screen. Thus, we added a covariate to the model to ac-

ount for this. The analytic model is presented below, where Y ij reflects

verage gene expression for sample i at gene j . The model adjusted for

he following covariates: age of death, sex, race (Black/White), positive

or cocaine (yes/no), postmortem interval (PMI), seven technical co-

ariates, and 10 surrogate variables identified through quality surrogate

ariable analysis (qSVA) ( Jaffe et al., 2017 ). Briefly, qSVA is an exten-

ion of surrogate variable analysis ( Leek and Storey, 2007 ) and accounts

or confounding due to brain degradation. Scalar variables, represent-

ng unmeasured sources of confounding, are identified through qSVA

nd can be included as covariates in an analytic model. Multiple testing

orrection was applied using the false discovery rate (FDR) procedure

 Benjamini and Hochberg, 1995 ). This method controls the expected

roportion of false positives among all statistical tests. It is less conser-

ative than the commonly used Bonferroni correction, which controls

or any expected false positive, but benefits from increased statistical

ower. Statistical significance was determined by an FDR corrected p -

alue < 0.10 ( Benjamini and Hochberg, 1995 ). 

 𝑖𝑗 = 𝛽0 + 𝛽1 Opioid s 𝑖𝑗 + 𝛽2 Age of Deat h 𝑖𝑗 + 𝛽3 Se x 𝑖𝑗 + 𝛽4 Rac e 𝑖𝑗 + 𝛽5 PM I 𝑖𝑗 
 𝛽6 Cocaine Positiv e 𝑖𝑗 + 𝛽7 RI N 𝑖𝑗 + 𝛽8 rRNA Assignment Rat e 𝑖𝑗 
 𝛽9 Exonic Assignment Rat e 𝑖𝑗 + 𝛽10 chrM Map Rat e 𝑖𝑗 
 𝛽11 Concordant Map Rat e 𝑖𝑗 + 𝛽12 Overall Map Rat e 𝑖𝑗 + 𝛽13 ERCC SpikeIn s 𝑖𝑗 
 𝛽14 qSVA 1 𝑖𝑗 …+ 𝛽23 qSVA 10 𝑖𝑗 + 𝜀 

.3.3. Weighted gene co-expression network analysis 

Weighted gene co-expression network analysis (WGCNA) was con-

ucted using the WGCNA package in R ( Langfelder and Horvath, 2008 ).

lso known as weighted correlation network analysis, WGCNA is a sys-

ems biology method for describing correlation patterns among genes

ased on their expression profiles. Researchers can then examine corre-

ation patterns of genes within these gene clusters, or modules, and test

orrelations between the modules and phenotypic traits of interest. 

Prior to WGCNA, counts were transformed to log2-counts per million

logCPM) using voom , and the influence of covariates was regressed out.

ext, we examined the data to ensure that neither genes nor samples had

xcessive missing values, and that there were no sample outliers. No

amples or genes were excluded during this step. The “pickSoftThresh-

ld() ” function was then used to identify the soft thresholding power, 𝛽,

o which co-expression similarity is raised to calculate adjacency (i.e.,

onnectivity). The function returns various indices, namely a graph indi-

ating the lowest power for which the scale-free topology fit index curve

attens (i.e., when the curve of R 

2 values flattens). Lastly, the WGCNA
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Table 2 

Top hub genes from WGCNA. 

Yellow Module Green Module 

DANT2 CFL1 

XKR6 CUEDC2 

LINC00632 DRAP1 

HECW1-IT1 CUTA 

TNRC6A TIMM50 

GJA6P FXR2 

SETD5 FKBP2 

RPS3AP29 GAPDH 

GPATCH8 COX4I1 

PCDHB13 MICOS13 

MBD5 PSMB6 

Note . Hub genes were identified as genes with a gene-module membership 

> 0.80 and gene-trait significance greater than an absolute value of 0.30. 
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unction, “blockwiseModules() ”, is used to create correlation matrices

ased on similarity in the expression profiles of genes in the dataset.

hese correlation matrices are raised to the soft-thresholding power se-

ected in the previous step, and hierarchical clustering is used to create

odules and merge modules that are highly similar. In the present study,

he “blockwiseModules() ” function was implemented with the following

arameters: power = 10, TOMType = “unsigned ”, minModuleSize = 30,

ergeCutHeight = 0.25, maxBlockSize = 26,000, corType = “bicor. ”

Once the number of modules was determined, module eigengenes

i.e., the first principal component of a given module) were used to test

orrelations between each module and variables included in the analytic

odel, excluding quality surrogate variables. These results were then

isualized using a heatmap. Modules that were significantly correlated

ith opioid overdose status were then selected and examined for hub

enes. Lastly, modules correlated with opioid overdose status were used

n gene-set enrichment analyses. 

.3.4. Hub gene identification and enrichment analysis 

If a module from the WGCNA was significantly correlated with opi-

id overdose status (i.e., p < .05), these modules were further inspected

or intramodular hub genes ( Langfelder and Horvath, 2008 ). Intramod-

lar hub genes were identified as genes with high gene-module mem-

erships (i.e., > 0.80) and gene-trait significance (i.e., absolute value >

.30). Lastly, the hub genes were used in gene ontology (GO) enrich-

ent analyses using GOrilla ( Eden et al., 2009 ). Specifically, hub genes

n each module were entered as an unranked target list, separately, along

ith all genes in the study ( n = 25,644) as the background list. We tested

or enrichment within biological process, molecular function, and cellu-

ar component pathways. Significant enrichment was determined using

n FDR adjusted p < .10. 

. Results 

.1. Drug use history 

Every case in the study was assessed for a lifetime history of alco-

ol and substance use disorders. Among the opioid samples, 66 had a

istory of an opioid use disorder; two had a history of a cocaine use dis-

rder; and four did not meet criteria for a lifetime substance use disorder

espite dying of an opioid overdose. Average age of death was approx-

mately 33 years ( M = 33.49, SD = 8.86); and manner of death (i.e.,

he ruling by the medical examiner as to the determination of how the

cute opioid intoxication death occurred) was either accidental ( n = 19)

r undetermined ( n = 53). Age of onset for substance use was obtained

or 58 of the 72 opioids samples, with the average age of onset being ap-

roximately 18 years old ( M = 17.97, SD = 6.35; min = 10, max = 37).

mong 24 opioid samples with data on age of first drug detox treatment,

he average age was approximately 25 years old ( M = 25.08, SD = 7.21;

in = 15, max = 44). 

.2. Differential gene expression 

To ascertain differences in gene expression between opioid-positive

amples compared to controls, we performed RNA-sequencing on post-

ortem brain specimens from those who died of acute opioid intoxica-

ion (n = 72) and group-matched controls (n = 81), as described in the

ethods. Differential expression analysis revealed two genes that sur-

ived multiple testing correction (i.e., adj. p < .10; see Fig. 1 ), both of

hich were downregulated. The complete list of differentially expressed

enes can be found in the supplementary material (Table S1). Notably,

he top differentially expressed gene was Neuronal PAS Domain Protein

 ( NPAS4 ; log 2 fold change [log 2 FC] = − 2.47, adj. p = .049), which is

n immediate early gene (IEG) that has been implicated in opioid, co-

aine, and methamphetamine use ( Taniguchi et al., 2017 ; Martin et al.,

012 ). The other significantly downregulated gene was RP11–667K14.3 ,
4 
 long intergenic non-protein coding gene. Other notable genes that ap-

roached our significance threshold were Regulator of G Protein Sig-

aling 2 ( RGS2 ; log 2 FC = − 0.51, adj. p = .18), and another IEG, Early

rowth Response 4 ( EGR4 , log 2 FC = − 0.76, adj. p = .20). 

.3. Weighted gene co-expression network analysis 

Next, we conducted WGCNA to cluster genes into modules based on

orrelations of expression patterns. The cluster and eigengene dendro-

rams from this analysis can be found in Figs. S2 and S3. Sixteen mod-

les (labeled as colors; see Fig. 2 ) were identified, with the smallest mod-

le (light cyan) containing 41 genes and the largest module (turquoise)

ontaining 3810 genes. It is important to note that the grey module in

ig. 2 containing 9017 genes is not a distinct module, but rather a list

f genes that were not assigned to a specific module. So, although it is

ignificantly correlated with opioid overdose status, we did not include

t in downstream enrichment analyses given the limited conclusions that

ould be drawn from this subset of unassigned genes. 

As can be seen in Fig. 2 , 10 modules were significantly correlated

ith opioid overdose status. Four modules were positively correlated

ith opioid status: purple ( r = 0.008; 235 genes), tan ( r = 0.36; 192

enes), midnight blue ( r = 0.38; 94 genes), and yellow ( r = 0.45; 2434

enes); and seven modules were negatively correlated with opioid over-

ose status: black ( r = − 0.19; 632 genes), green ( r = − 0.33; 1387

enes), cyan ( r = − 0.26; 106 genes), pink ( r = − 0.21; 282 genes), red

 r = − 0.30; 1326 genes), and turquoise ( r = − 0.22; 3810 genes). Sur-

risingly, NPAS4 was among the unassigned gene list within the grey

odule. 

.4. Hub gene identification and enrichment analysis 

We then selected the two modules with the strongest positive (yel-

ow) and negative (green) correlation with opioid overdose status and

nspected for intramodular hub genes, which had a gene-module mem-

ership > 0.80 and gene-trait significance > + / − 0.30. The yellow mod-

le contained 88 hub genes and the green module contained 79 hub

enes. The top 10 hub genes from each module are presented in Table 2 ,

nd the complete list of hub genes for the yellow and green modules can

e found in Table S2 and Table S3, respectively. None of the hub genes

e identified are clearly linked to opioid or substance use behaviors. 

Lastly, we conducted gene-set enrichment analyses for the hub genes

n these two modules using GOrilla ( Eden et al., 2009 ). There was no evi-

ence of significant enrichment of differential expression among the yel-

ow hub genes. We did detect significant enrichment among numerous

rocess, molecular function, and cellular component pathways among

he green module hub genes; however, none of these GO terms were

elevant to opioid use (see File S1). Given the lack of information from

he yellow hub genes, we conducted similar enrichment analyses of hub

enes from the tan and midnight blue modules, which were positively
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Fig. 1. Volcano plot of differentially expressed genes. 

Fig. 2. Heatmap of gene modules from WGCNA and study variables. Opioids = opioid overdose status (yes/no); Cocaine = cocaine or cocaine metabolite present 

during toxicology screen (yes/no); RIN = RNA integrity number; PMI = postmortem interval; ERCCsumLogErr = External RNA Controls Consortium spike-in control 

transcripts; overallMapRate = overall mapping rate; concordMapRate = concordant mapping rate; mitoRate = mitochondrial mapping rate; totalAssignedGene = ex- 

onic assignment rate; rRNA_rate = rRNA assignment rate. 
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s  
ssociated with opioid overdose status. We did not detect enrichment in

ny pathways of differential expression for the midnight blue module;

owever, among genes in the tan module, there was significant enrich-

ent of differential expression in genes that lie in pathways related to

lutamatergic synapse function (GO:0,098,978). Otherwise, the results

ere similarly nondescript. 

. Discussion 

The primary goal of this study was to examine transcriptome-wide

ifferences in gene expression within the human DLPFC following acute

pioid intoxication. Although there is evidence to support differential

xpression of numerous genes within the midbrain, NAc, and DLPFC in

esponse to long-term use of opioids, to our knowledge, no human stud-

es have exclusively focused on fatal overdose. We detected two FDR-

ignificant differentially expressed genes between opioid-positive and

ontrol samples. The most notable of these genes was NPAS4 , which

as been identified in preclinical work related to cocaine and metham-

hetamine use ( Taniguchi et al., 2017 ; Martin et al., 2012 ). Several other

enes ( RGS2, EGR4 ) previously implicated in opioid and cocaine use

 Senese et al., 2020 ; Bisagno and Cadet, 2019 ) were also among the top-

anking genes in our analysis, although they did not meet our stringent

ignificance threshold. Weighted correlation network analysis revealed

everal gene modules associated with opioid overdose status; however,

nrichment analyses did not reveal meaningful enrichment in pathways

elated to opioid use. Nonetheless, the present findings advance our un-

erstanding of gene expression in relation to an opioid overdose, and

oint toward a gene of interest that may be relevant to both opioid

buse and acute intoxication. 

The results support acute opioid intoxication influencing expression

f at least one gene directly linked to substance use behaviors. The pri-

ary finding from this study was that NPAS4 was significantly under-

xpressed in opioid-positive samples compared to controls. NPAS4 is a

rotein coding gene that aids in the strengthening of neural connectivity

nd influences expression of brain-derived neurotrophic factor ( BNDF )

 Lin et al., 2008 ). As an IEG, NPAS4 is transcribed quickly in response

o extracellular stimuli and serves as a transcription factor that regu-

ates downstream gene expression ( Sun and Lin, 2016 ). For example,

PAS4 has been shown to control GABAergic synapse development in

n activity-dependent manner, and GABAergic deficits have been impli-

ated in psychiatric disorders such as substance use disorders and major

epressive disorder ( Luscher et al., 2011 ). Recent work examining the

Ac of Sprague Dawley rats showed that cocaine inhibits HDAC5 – a his-

one deacetylase enzyme – from entering the cell nucleus and limits pro-

uction of Npas4 ; subsequent up-regulation of Npas4 is associated with

ncreased drug-environment associations ( Taniguchi et al., 2017 ). Inter-

stingly, NPAS4 was downregulated in the present analysis. Preclinical

vidence suggests that acute opioid use is associated with upregulation

f NPAS4 ( Bisagno and Cadet, 2019 ; Piechota et al., 2010 ). However,

reclinical studies of methamphetamine use suggest that Npas4 is sig-

ificantly downregulated hours after initial upregulation ( Martin et al.,

012 ). The reasons for the discrepancy in findings related to NPAS4

ake interpretation of this finding difficult. Based on next-of-kin inter-

iews and psychiatric narratives, the opioid-positive samples likely were

ong-term users, though polysubstance use could affect patterns of gene

xpression. 

It is also interesting to note several other genes implicated in sub-

tance use that approached significance, specifically, RGS2 and EGR4.

GS2 is particularly relevant given other known G-protein coupled

eceptors, namely μ-opioid receptors, that are affected by opioid use

 Sutton et al., 2016 ) Sutton et al. (2016) . demonstrated that, in response

o morphine administration, deletion of Rgs7 increased reward and anal-

esia, while heightening withdrawal, in mice. EGR4 is interesting given

he role of IEGs. As previously noted, IEGs are responsible for encod-

ng transcription factors, which can interact with gene promoters to

ffect changes in gene expression at downstream genes ( Bisagno and
6 
adet, 2019 ). Preclinical evidence suggests that Egr1 , which is in the

ame gene family as EGR4 , is differentially expressed in the forebrain

f mice after morphine administration ( ZióŁ kowska et al., 2015 ). Fur-

her examination of these genes and their potential role in opioid abuse

nd overdose may elucidate alternative mechanisms through which opi-

id dependence, cravings, and other drug-related behaviors develop and

ersist. 

Lastly, results from WGCNA and pathway analyses did not provide

vidence of enrichment of differential expression along pathways rele-

ant to opioid use. Moreover, there was no evidence of hub genes rele-

ant to opioid use or overdose status. These results could be explained,

n part, due to the limited samples size, or opioid overdose may in-

eed involve a unique biological response that does not overlap with

ong-term abuse. Given these null findings, in addition to the differen-

ial expression of NPAS4 , replication is needed in long-term abuse and

verdose samples to disentangle these findings. 

.1. Strengths and limitations 

The primary strength of this study is the sample size. To date, the

argest study to examine transcriptome-wide differences in gene expres-

ion within the DLPFC was carried out by Seney et al., who examined

ifferential expression in 20 cases and 20 controls. In comparison, we

ad access to 81 control samples and 72 opioid-positive samples. As do-

ation of postmortem brains and access to this tissue increases, it will be

mperative to attempt to replicate extant studies to detect true signals.

his study also benefitted from access to drug use history data. Posthu-

ous psychiatric information is often difficult to obtain on postmortem

amples. Although there is potential bias in next-of-kin interviews re-

arding drug use history, this information is valuable when attempting

o interpret study findings. Lastly, our focus on opioid overdose sheds

ight on the biological response in the context of acute intoxication of

 high level of opioids. Our finding regarding NPAS4 may or may not

eflect both long-term and acute opioid use but provides an avenue for

uture work given extant evidence for NPAS4 in relation to use of several

ubstances, including opioids. 

This study also has several limitations to consider when interpreting

he findings. First, although opioid users died of acute opioid intoxica-

ion, clearly defining a homogeneous sample of those with opioid use

isorder, and no other substance use disorders, using postmortem next

f kind interviews is difficult. This presents a challenge in teasing out

ffects due to chronic versus acute use, and polysubstance use. Exami-

ation of tissue within a single brain region also presents a limitation

n interpretation of results. Although the PFC is implicated in addic-

ion, the NAc is often the focus in studies of addiction ( Volkow and

orales, 2015 ; Kalivas et al., 2005 ). Although Seney et al. demonstrated

 high degree of overlap in differential gene expression between the

LPFC and NAc in opioid users, unique differences exist, and future

tudies should aim to examine multiple brain regions simultaneously.

astly, future studies will benefit from more racially and ethnically di-

erse samples, as well as samples including individuals across various

evelopmental stages. The latter may elucidate differential effects of

pioid abuse depending on brain maturation and aging. 

.2. Conclusions 

This study represents the first transcriptome-wide analysis of gene

xpression in the human DLPFC in response to acute opioid intoxication

esulting in fatal overdose. Evidence suggests that opioid overdose is

ssociated with differential expression of NPAS4 , which is implicated in

rug cravings and drug-environment cues in the contexts of cocaine and

ethamphetamine use. Additional genes implicated in substance abuse

 RGS2, EGR4 ) provide promising avenues for continued research. Future

tudies examining chronic versus acute opioid use and polysubstance

se, and those with larger, more racially and developmentally diverse

amples will clarify these associations and aid in determining the value
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