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Purpose: Recently, several attempts were conducted to transfer deep learning to medical image
reconstruction. An increasingly number of publications follow the concept of embedding the com-
puted tomography (CT) reconstruction as a known operator into a neural network. However, most of
the approaches presented lack an efficient CT reconstruction framework fully integrated into deep
learning environments. As a result, many approaches use workarounds for mathematically unambigu-
ously solvable problems.
Methods: PYRO-NN is a generalized framework to embed known operators into the prevalent deep
learning framework Tensorflow. The current status includes state-of-the-art parallel-, fan-, and cone-
beam projectors, and back-projectors accelerated with CUDA provided as Tensorflow layers. On top,
the framework provides a high-level Python API to conduct FBP and iterative reconstruction experi-
ments with data from real CT systems.
Results: The framework provides all necessary algorithms and tools to design end-to-end neural net-
work pipelines with integrated CT reconstruction algorithms. The high-level Python API allows a
simple use of the layers as known from Tensorflow. All algorithms and tools are referenced to a sci-
entific publication and are compared to existing non-deep learning reconstruction frameworks. To
demonstrate the capabilities of the layers, the framework comes with baseline experiments, which are
described in the supplementary material. The framework is available as open-source software under
the Apache 2.0 licence at https://github.com/csyben/PYRO-NN.
Conclusions: PYRO-NN comes with the prevalent deep learning framework Tensorflow and allows
to setup end-to-end trainable neural networks in the medical image reconstruction context. We
believe that the framework will be a step toward reproducible research and give the medical physics
community a toolkit to elevate medical image reconstruction with new deep learning techniques.
© 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.13753]
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1. INTRODUCTION

In recent years, major breakthroughs made deep learning
increasingly prevalent in more and more fields. It revolution-
izes the way of classification and regression tasks in speech
and image recognition1–3 and many other areas. Even in the
medical domain, where interpretability and reliability are one
of the most important driving forces, deep learning has led to
astonishing results.4 One of the most cited papers of recent
years is the U-net5 which outperforms classical machine
learning algorithms in segmentation tasks. In the subsequent
time, the U-net architecture emerged to many more tasks, for
example, artifact correction, image fusion, image-to-image
translation, and even into the context of medical image recon-
struction.6–8 However, this domain is fundamentally different
from those in which the advent of deep learning began, and
the question arises as to whether these learned signal recon-
struction pipelines are reliable and stable enough for a critical
area such as medical imaging.9 Two special issues: “Deep
learning in medical imaging”10 and “Machine Learning for
Image Reconstruction”11 in transactions on medical imaging

(TMI) in 2016 and 2018 discuss the increasing relevance of
deep learning methods in medical image reconstruction.

The presented approaches can be divided into either pre-
or post-processing approaches or fully end-to-end trained
methods. For the first type, the actual reconstruction pipeline
is based on well known signal reconstruction algorithms
omitting the end-to-end capability due to its complexity. For
the second type of approaches, the modeling of the end-to-
end pipeline can be realized under two different paradigms.
One way is to learn the whole signal processing pipeline, an
exceptionally clear representative of this paradigm is AUTO-
MAP.12 Directly in contrast to this is the emerging paradigm
of embedding known operators.13 This preserves the end-to-
end learning capability but includes the known operations of
the reconstruction chain to preserve the credibility of the sig-
nals, reduce the error bound of the learning process and
decrease the number of parameters and thus the amount of
necessary training data. This paradigm gets increasingly pop-
ular, with multiple publications following the way of embed-
ding known operators in the computed tomography (CT)
context and successfully including the CT reconstruction as
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known operators into the network architecture to be able to
benefit from the end-to-end training capability of deep learn-
ing.14–21 However, the publications that follow this path are
still less represented than those that use deep learning only as
pre- or post-processing. We believe that a major reason for
this is the non-trivial implementation of known operators in
existing deep learning frameworks. Even publications that
successfully take on this challenge often refer to their own
implementations as prototypical15 or provide frameworks on
abstract wrapped levels.16,22 An efficient and publicly usable
solution integrated into one of the popular deep learning
frameworks, however, remains pending.

To strengthen the paradigm of known operators, elaborate
the research in the medical image reconstruction, and to avoid
reimplementations and incompatibilities, we started to work
on an open source software framework PYRO-NN, which
allow an easy way to integrate known algorithms into the
deep learning framework Tensorflow.23 We provide multiple
forward and backward projectors for CT implemented in
CUDA based on scientific publications supported with a
high-level Python API for simple use of state-of-the-art CT
reconstruction, even from different setups of real CT scan-
ners. The profound integration into Tensorflow on C++/Cuda
level allows to handle occurring performance and memory
issues and, additionally, allows an easy customization of the
algorithms compared to a wrapper alternative like.22,24 Fur-
thermore, the high-level Python API offers an easy link
between deep learning and community driven frameworks.
For the CT domain this allows to use a wide range of tools
(e.g., filter, redundancy weights, etc.).24–27

We believe that this framework will help the community
leverage the power of end-to-end training of machine learning
algorithms directly from the data, while continuing to apply
mathematically sound solutions to uniquely solvable prob-
lems.

2. MATERIALS AND METHODS

The framework concept is designed to include native C++
and CUDA based algorithms into the deep learning frame-
work Tensorflow. In detail, PYRO-NN provides network lay-
ers as CUDA implementations to generate parallel-, fan-, and
cone-beam x-ray projections and to reconstruct them within
any neural network constructed with Tensorflow. Due to the
nature of the projection and reconstruction operation, we
intrinsically provide the analytical gradients for all of these
layers with respect to their inputs, which allows fully end-to-
end trainable networks. Furthermore, with PYRO-NN we
provide filters and weights based on scientific publications to
allow proper filtered-backprojection (FBP) reconstructions.
The PYRO-NN API is inspired by the CONRAD26 frame-
work to adapt the ability to reconstruct data from real clinical
scanners and by using PyConrad27 many more tools and
phantoms can easily be used in the deep learning context.
The current state of the framework features a CT reconstruc-
tion pipeline, while the basic design allows to transfer the
whole concept to other signal reconstruction domains within

one framework and, therefore, points out a direction to future
development and community contribution.

2.A. Software design/rationale

The development speed in the deep learning community is
tremendous. Like in the research itself, the toolkits and
frameworks are developing in the same speed, which often
causes conflicts in interoperability of self-developed solu-
tions and version mismatches between different frameworks
and toolkits. To ensure a robust version control, the frame-
work is directly included into the building process of the Ten-
sorflow sources.

2.A.1. PYRO-NN-layers

The known operators can be implemented as CUDA
kernels with an additional C++ class following the design
of the Tensorflow API for the embedding as a Tensorflow
layer. Unlike other frameworks that simply wrap the imple-
mentation at the Python level, this provides the advantage
of full control over device resources such as memory uti-
lization and implementation efficiency. The separation of
the operator implementation as a native CUDA kernel and
the information control allows an easy extension towards
other deep learning frameworks. The integration of
PyTorch is planned for the future. The integration of
known operators can be found under: https://github.com/
csyben/PYRO-NN-Layers.

2.A.2. PYRO-NN

We provide a high-level Python API to allow a convenient
use of the known operators as normal Tensorflow layers and
offers additional helper functions. The provided Python pack-
age automatically invokes the relevant algorithms to compute
the gradient with respect to the input of the layer in an effi-
cient way. The provision of the gradient is a necessity to
enable a gradient flow through the entire network and, thus,
allow fully end-to-end trainable networks with known opera-
tors. The package can be installed via pip or from: https://
github.com/csyben/PYRO-NN.

All together, these rationales offer the community with a
generic, version stable, framework to easily include known
operators into neural networks. The source code is publicly
available under the Apache 2.0 licence to be directly compati-
ble with Tensorflow and to allow uncomplicated community
contributions to existing projects. A detailed description of
the software architecture and the build process can be found
in the supplementary material Section 1.

2.B. CT reconstruction in neural networks

Based on the generic design of the framework, the current
state provides all necessary algorithms and tools for analytical
parallel-, fan-, and cone-beam reconstruction. The necessary
algorithms are implemented within Tensorflow as an own
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layer, while the respective tools, for example, filter, weights,
etc., are provided on the Python level to supply a high-level
API for CT reconstruction. In the following, we introduce the
mapping of the known operator to a layer for our case study
of CT reconstruction, followed by a description of the pro-
vided algorithms and tools.

2.B.1. The known operator

For the task of reconstructing object information from
acquired x-ray projections, an efficient analytical method is
well known and is called FBP. To embed these methods into
a neural network, the whole acquisition and reconstruction
procedure of a CT system needs to be described with discrete
linear algebra to embed them into a neural network. The
acquisition of projection data of the object can be described
with

Ax ¼ p; (1)

where A is the matrix describing the geometry, the so called
system matrix which can be algorithmically implemented as
the forward-projection operator. The object is denoted by x
and p are the acquired projections of object x under the sys-
tem described by A. The reconstruction according to the FBP
algorithm can be conducted using the Moore-Penrose pseu-
doinverse for the system matrix A>ðAA>Þ�1 which gives:

x ¼ A>FHKFp; (2)

where A> is the adjoint system matrix which can algorithmi-
cally implemented as the back-projection operator. According
to the FBP, the inverse bracket describes a filter operation,
which is conducted by a multiplication with the diagonal fil-
ter matrix K in the Fourier domain. Consequently F, FH is
the Fourier transform and the respective adjoint, that is,
inverse operation. Hence, the forward and backward model
can be expressed completely as discrete linear algebra, allow-
ing fully end-to-end trainable networks. As the publications
from W€urfl and Syben et al. show that A and A> are their
respective operators to calculate the gradient, therefore the
gradient flow through these layers can be ensured.17,19

2.B.2. The operator as a layer

From iterative reconstruction, it is known that the system
matrix is usually too large to store in memory; therefore, we
compute the operator on the fly using ray-based algorithms.
There are several ways for the computation. We introduce the
ray-driven forward-projection and the voxel-driven back-pro-
jection algorithmically as native CUDA kernels for the inte-
gration into Tensorflow. Note that when using a ray-driven
forward-projection algorithm to compute the result of the
multiplication with A, then the voxel-driven back-projection
algorithm is not the respective adjoint operation A>. They
are a so called an unmatched projector-/back-projector pair.
The implications of matched projectors and shear-warp pro-
jectors on the convergence and runtime are subject to future
work and are briefly discussed in Section 3.

The forward-projection to generate projections from
the input volume are implemented as CUDA kernels in a
ray driven manner. For each detector pixel, a ray r~ is
cast through the scene, accumulating the absorption val-
ues along the line. We provide forward projectors for
two-dimensional (2D) parallel- and fan-beam geometry
based on ray vectors and respective geometry parameters.
Furthermore, a three-dimensional (3D) cone-beam forward
projector based on projection matrices is implemented
according to Galigekere et al.28 The CUDA kernels are
parallelized over the detector pixels computing the line
integral along the ray.

The back-projection operators to reconstruct simulated or
real projection data are implemented as CUDA kernels in a
voxel-driven manner. For each pixel/voxel to be recon-
structed, the projection of the point on all projection images
is accumulated. The framework provides the respective 2D
parallel- and fan-beam back-projection algorithms based on
geometry parameters and ray vectors. Following the forward
projection, the 3D cone-beam back-projection is based on
projection matrices according to Scherl et al.29 Note that for
runtime efficiency, the distance weighting for the cone-beam
circular trajectory geometry is included within the kernel.
Currently, only circular trajectories are supported by default.
Thus, we recommend adapting the projectors for special
reconstruction accordingly. The back-projection kernel is par-
allelized over the voxels projecting the respective position on
the different detector coordinates interpolating the measured
line integral.

For the 3D cone-beam case, the framework offers the pos-
sibility to choose between a texture and a kernel interpolation
mode. While texture interpolation is associated with very
short computing times, Tensorflow’s memory management
in combination with CUDA implies that the data must be kept
twice in memory. For kernel interpolation, the situation is
exactly the other way around, the computations are slower
but no additional memory is needed. As both options are pro-
vided the user can decide on a per application bases. Further-
more, as the 3D cone-beam operators are based on projection
matrices, calibrated matrices from real systems can be used
as shown in the CONRAD framework.26

2.C. High-level python API

To supply the community with an easy-to-use version of
the described layers, we provide the necessary structure and
additional tools like filters, weights, phantoms, etc., within
the Python framework. In the following, the outline of the
necessary structure to utilize the layers is shown, followed by
a short introduction of the provided tools.

2.C.1. Reconstruction and geometry

The high-level Python API wraps the provided reconstruc-
tion layers in Tensorflow. Thus, the framework registers the
respective adjoint operation for the gradient computation
automatically. All attributes necessary for the provided
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forward-projection and backward-projection layers are cov-
ered with a base geometry class and corresponding special-
ized derived geometry classes, for example, cone-beam
geometry class dependent on projection matrices.

2.C.2. Phantoms

PYRO-NN contains a set of simple geometric objects, for
example, circle, ellipsoid, sphere, and rectangles to easily cre-
ate a more complex numerical phantom. Furthermore, the
framework provides an analytical description of the 2D
Shepp–Logan phantom30 as well as a 3D extension of it
based on the CONRAD implementation.26

2.C.3. Trajectories

The trajectory describes the geometric scanner setup over
the whole scan. For the 2D parallel- and fan-beam cases, the
trajectory is described by the central ray vector for each pro-
jection. For the 3D cone-beam case, the trajectory is
described by a set of projection matrices, which allows to use
calibrated projection matrices from real scanner systems.
Within the high-level Python API, we provide basic methods
to compute the respective rays or projection matrices based
on a given geometry. The open-source concept of the whole
framework allows to contribute to the diversity of provided
trajectories.

2.C.4. Filters

To allow a basic reconstruction in the context of neural
networks, PYRO-NN provides the Ramp and Ram-Lak filter
implemented according to Kak and Slaney.31 The filters can
be directly assigned as weights to a multiplication layer and
are a multiplication with a diagonal matrix in the Fourier
domain as shown in Eq. 2.

2.C.5. Correction weights

In order to support fan- and cone-beam reconstructions for
the short-scan case, the framework contains geometric and
redundancy correction weights implemented according to
Kak and Slaney.31

2.C.6. Network architectures

Following the paradigm of precision learning,13 different
network architectures can be setup or even derived as shown
by Syben et al.21 We provide various examples within the
framework to assist users in using the framework. The experi-
ments in the supplementary material cover a baseline network
able to reconstruct a short-scan cone-beam CT according to
the Feldkamp–Davis–Kress (FDK) algorithm32 (Section 2.A),
a reconstruction with raw-data and projection matrices from a
real system (Section 2.B), an example of learning the correct
reconstruction filter discretization (Section 2.C) and a novel
baseline network to perform iterative reconstruction within
few lines of code (Fig. 1; Section 2.D). A detailed description
of the experiments can be found in the supplementary mate-
rial Section 2.A–2.D. In addition, executable experiments are
made available online as a Code Ocean Capsule.33

3. DISCUSSION

Recently, there have been several different attempts to
transfer the astonishing capability of deep learning into the
field of medical image reconstruction. In order to transfer
deep learning toward medical image reconstruction and at the
same time address these problems, the idea of embedding
known operators into the neural networks is increasingly pur-
sued as the growing number of publications shows.

In this paper, we present a framework providing the known
operators for CT reconstruction and all necessary tools to
conduct experiments on real scenarios. We believe that such
an open-source framework will reduce the barriers of such
approaches and will elevate the research in the medical image
reconstruction domain. To encourage the research, we pro-
vide baseline experiments in the supplementary material and
example code within the framework, allow an starting point
for own research ideas.

To the best of our knowledge, PYRO-NN is the first
framework that provides CT reconstruction algorithms as
native CUDA kernels within neural networks. This allows full
control over the device resources in contrast to CT algorithms
wrapped on Python level. We choose to implement the pro-
jector and back-projector as a unmatched projector pair. The
implications of unmatched pairs are already analyzed in the

FIG. 1. PYRO-NN iterative reconstruction network. The training procedure solves: min jjAx� pjj22 þ kTVðxÞ. The seeked reconstruction is achieved when the
optimal training state is reached. [Color figure can be viewed at wileyonlinelibrary.com]
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context of iterative reconstruction by Zeng et al.34 Zeng et al.
concluded that unmatched-pairs can be beneficial due to the
algorithmic speedup, while the convergence of the algorithm
has to be kept in mind. While we have not noticed negative
effects on the training process in our experiments,19,21 we
want to investigate the implications of unmatched-projector
pairs to the training procedure in future work.

As the combination of deep neural networks and CT
reconstruction can, especially in the 3D case, easily
exceeds the GPU’s memory, the provided algorithms allow
the user a trade-off choice between computational- and
memory efficient implementations. Furthermore, the con-
cept of the framework enables a problem-specific solution,
since the algorithms and the gradients can be changed by
the user at any time. Additionally, as the core of PYRO-
NN is an extension of the existing Tensorflow build pro-
cess, every known operator which allows the calculation of
sub-gradients can easily be modeled as a Tensorflow layer.
Besides the actual CUDA implementation, there is only the
need of an information control class following the Tensor-
flow API guidelines. Therefore, the setup allows an easy
extension toward other frameworks like PyTorch as the
CUDA kernel implementation of the known operator stays
untouched.

We provide the known operators for CT reconstruction on
CUDA level with the respective necessary tools like filters
and weights on Python level. Nevertheless, the framework
design allows an easy extension to other fields, for example,
magnetic resonance imaging (MRI) and many more. With the
increasing amount of publications being supplemented by
open-source reference implementations, we believe that with
help of the community PYRO-NN can grow beyond the
application on CT reconstruction.

4. CONCLUSION AND OUTLOOK

PYRO-NN is an open-source software framework devel-
oped to elevate the use of known operators within neural
networks. This allows to transfer the power of deep learning
to medical image reconstruction while making use of exist-
ing knowledge about the physical principles. Currently, the
framework provides state-of-the-art CT reconstruction algo-
rithms within the Tensorflow deep learning environment,
supported by the necessary tools for the reconstruction pipe-
line. This allows to use existing CT reconstruction algo-
rithms in combination with neural networks in an end-to-
end trainable fashion. The generic design of the framework
makes it easy to extend it to other modalities. We hope that
our open-source framework will encourage other groups to
join these efforts making the framework a valuable element
in the deep learning medical image reconstruction field.
The main objective of the framework is to enable the com-
munity to use CT reconstruction algorithms in end-to-end
neural networks and to elevate the research in medical
image reconstruction. The software package is available
under https://github.com/csyben/PYRO-NN and https://
github.com/csyben/PYRO-NN-Layers.
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	 1.INTRODUCTIONIn recent years, major break�throughs made deep learn�ing increas�ingly preva�lent in more and more fields. It rev�o�lu�tion�izes the way of clas�si�fi�ca�tion and regres�sion tasks in speech and image recog�ni�tion.2.B.CT recon�struc�ti...

