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Developing an efficient antioxidant for anti-inflammatory therapy via

scavenging reactive oxygen species (ROS) remains a great challenge owing

to the insufficient activity and stability of traditional antioxidants. Herein, we

explored and simply synthesized a biocompatible carbon dots (CDs) nanozyme

with excellent scavenging activity of ROS for anti-inflammatory therapy. As

expected, CDs nanozyme effectively eliminate many kinds of free radicals

including •OH, O2
•−, and ABTS+•. Benefiting from multienzyme activities

against ROS, CDs nanozyme can decrease the levels of pro-inflammatory

cytokines, resulting in good anti-inflammatory effect. Taken together, this

study not only sheds light on design of bioactive antioxidants but also

broadens the biomedical application of CDs in the treatment of inflammation.
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Introduction

Inflammation is a component of numerous diseases and is an important immune

response to a variety of factors, including pro-inflammatory cytokines such as tumor

necrosis factor-α (TNF-α) (Ferrucci and Fabbri, 2018). Thus, TNF-α inhibitors are

constantly being developed to promote anti-inflammatory therapy (Rubin et al.,

2012). At present, many studies believe that the inflammation is a major feature of

the tissue microenvironments (Ahmed et al., 2017). In the related pathological process,

especially the initial inflammation response, has a close connection with the excessive

reactive oxygen species (ROS) including superoxide radical (O2
•−), hydrogen peroxide

(H2O2), and hydroxyl radical (•OH) (Pei et al., 2020). The balance between generation

and scavenging of ROS is precisely controlled by enzymes such as superoxide dismutase

and catalase. Once the balance is disrupted, abnormal ROS levels in the inflammatory
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microenvironment will lead to severe cellular damage. Therefore,

the effective regulation of intracellular levels of ROS is great

significance to inhibit the inflammatory reactions.

In the past decade, many strategies have been employed to

scavenge excessive ROS and alleviate inflammation responses,

among which emerging therapeutic approaches utilizing

enzymatically active nanomaterials as antioxidants have attracted

more and more attention (Thakur et al., 2019; Shah et al., 2020;

Wang L. et al., 2021). In recent years, many carbon-based

nanomaterials with antioxidant activities have been developed to

regulate abnormal ROS levels in organisms due to their efficient

catalytic activities like enzymes (Das et al., 2019; Dehvari et al., 2020;

Wang H. et al., 2021; Li et al., 2021; Xue et al., 2021; Ma et al., 2022).

Carbon dots (CDs) nanozyme, as a “new star” among nanozymes,

have potential anti-inflammatory therapeutic applications owing to

their high efficiency in promoting electron transfer for scavenging

ROS. Additionally, related studies have shown that since the

presence of abundant groups around the sp2 hybrid carbon core,

CDs exhibit the characteristics of enzymatic activity that can be

selectively activated (Xia et al., 2019). Chen et al. designed the

tellurium-doped carbon quantum dots which can scavenge H2O2 to

protect cells under ambient condition (Chen et al., 2020). Ma et al.

(2022) reported the CDs with excellent superoxide dismutase

enzymatic activity, which could scavenge ROS effectively (Ma

et al., 2022). More recently, Wang et al. presented a novel CDs

which exhibit well free radical scavenging activity and have potential

to be a new highly effective antioxidant relying on the phenol-like

groups (Wang X. et al., 2022). Therefore, the development of an

effective therapeutic carbon-based nanozyme drug with enhanced

and prolonged scavenging activities for multiple ROS is of great

significance for promoting the clinical treatment progress in

inflammatory disease.

In this study, a new type of CDs nanozyme were synthesized

through a solvothermal route with the precursor laccaic acid. The

presence of abundant functional groups such as carboxyl and

phenolic hydroxyl groups on the surface as electron transporters

endows CDs with diverse enzymatic activities. Additionally,

previous works have been demonstrated that the

anthraquinone structure has potential antioxidation effect

(Dong et al., 2021). Noticeably, the CDs nanozyme exhibit

great scavenging capability to various free radicals in vitro.

Moreover, the therapeutic effect of CDs nanozyme by

regulating the levels of pro-inflammatory cytokines in

inflammatory cells were further explored (Scheme 1).

Therefore, CDs nanozyme is a multifunctional nanoagents

that integrates antioxidant and anti-inflammatory therapeutic

functions.

Materials and methods

Materials

Laccaic acid was obtained from Wo Jia Biotechnology Co.,

Ltd. FeCl3·6H2O, N, N-Dimethylformamide, pyrogallol, and tris

(hydroxymethyl) aminomethane hydrochloride were purchased

from Aladdin Chemicals Co. Ltd. (Shanghai, China). Sodium

chloride, ferrous sulfate, hydrogen peroxide (30 wt.%), salicylic

acid, and ethanol were purchased from Sinopharm Chemical

Reagent Co., Ltd. (Shanghai, China). 2,7-dichlorofluorescin

diacetate (DCFH-DA), Lipopolysaccharide (LPS) and dimethyl

sulfoxide were obtained from Beijing Solarbio Science &

Technology Co., Ltd. Calcein-AM/PI double stain kit was

obtained from Yeasen Biological Technology Co., Ltd. Cell

SCHEME 1
Schematic illustration of CDs nanozyme with scavenging ability against ROS for anti-inflammatory therapy.
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Counting Kit-8 (CCK-8) was acquired from Saiguo Biotech Co.,

Ltd. HUVEC cells and RAW 264.7 cells were obtained from

Shanghai Institute of Cell Biology (Shanghai, China).

Characterization

The morphology of the CDs was recorded on a JEOL

2100 transmission electron microscope (TEM) operating at

200 kV. Fourier transform infrared (FT-IR) spectra were

collected using a Nicolet 6700 spectrometer. X-ray

photoelectron spectroscopy (XPS) was performed on an Axis

Ultra DLD instrument. Ultraviolet-visible (UV-vis) absorption

spectrum was recorded on a Lambda 950 spectrophotometer.

Fluorescence spectra were performed on a HORIBA FL3-111

spectrophotometer. Cell images were captured on a Leica

confocal laser scanning microscope (CLSM).

Preparation of carbon dots nanozyme

The CDs nanozyme were prepared by a classical

solvothermal method (Chen et al., 2018; Li et al., 2018). In

brief, laccaic acid (0.5 g) was first dissolved in N,

N-dimethylformamide, and the solution was transferred into

para polyphenyl -lined autoclaves, followed by heating at

160°C for 6 h in an oven. The crude products were then

purified by silica gel column chromatography using a mixture

of ethyl acetate and methanol as eluent. Finally, the purified

products were loaded into a dialysis membrane (MWCO 1000)

and dialyzed for 4 days, and then freeze-drying to obtain a red

powder.

Free radicals scavenging activities

Three typical free radicals (O2
•−, •OH, and ABTS+•) were

used to evaluate the antioxidant activities of CDs nanozyme

(Smirnoff and Cumbes, 1989; Li, 2012).

Cytotoxicity evaluation

Typical cytotoxicity as well as endogenous ROS generation

were evaluated in detail according to standard methods reported

in related reports by using human umbilical vein endothelial

(HUVEC) cells and RAW264.7 cells as cell model.

Intracellular reactive oxygen species
scavenging activities

Detection of intracellular ROS scavenging efficiency by CDs

nanozyme using commercial ROS probes (DCFH-DA). The

protective effect of CDs nanozyme against H2O2-induced

oxidative damage in a cell model was evaluated by live/dead

FIGURE 1
(A) TEM image (inset: HRTEM image) of CDs nanozyme. (B) FT-IR and (C) XPS spectra of the CDs nanozyme. (D)HR XPS C1s, (E)O1s, and (F)N1s
spectra of CDs nanozyme and fitting results.
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cell double staining kit, combined with flow cytometry to

measure intracellular ROS levels. Moreover, various

intracellular markers including SOD, GSH, and MDA levels

were detected by commercial assay kits.

Anti-inflammation in vitro

RAW264.7 cells were incubated with various concentrations

of CDs nanozyme and LPS (1 μg ml−1) for 24 h, respectively. The

TNF-α, IL-1β, and IL-6 level were measured by commercial

ELISA assay kits.

Results and discussion

Characterization of carbon dots
nanozyme

Transmission electron microscopy (TEM) image shows that

the laccaic acid-derived CDs nanozyme are monodisperse

spheroids with an average diameter of 5.51 nm (Figure 1A and

Supplementary Figure S1). The average lattice spacing of 0.23 nm,

which is corresponding to the (100) facet of graphite (Tang et al.,

2022), can be measured in the HR-TEM image of CDs nanozyme.

The chemical composition of the CDs nanozyme was determined

by Fourier transform infrared (FT-IR) spectroscopy and X-ray

photoelectron spectroscopy (XPS). The FT-IR spectra comparison

of laccaic acid (black line) and CDs nanozyme (red line) are shown

in Figure 1B. For laccaic acid, the stretching vibration peaks

of −OH, C=O, N−H, and C−O are above 3391 cm−1,

1644 cm−1, 1533 cm−1, and1019 cm−1 (Zou et al., 2022). These

peaks were also observed for CDs nanozyme, suggesting that

CDs nanozyme inherited the natural properties of the raw

materials during the preparation process. As shown in

Figure 1C, the CDs nanozyme mainly consist of C (284.6 eV,

at.% = 78.96), O (530.5 eV, at.% = 17.71), and N (398.5 eV, at.% =

3.33) elements. In Figure 1D, the high-resolution C 1s spectrum

reveals three peaks at 284.2, 285.1, 285.7, and 287.6 eV assigned to

C−C/C=C, C−N, C−O, and C=O/C=N, respectively (Dai et al.,

2022). The HR XPS O 1s spectrum has two peaks, which are

attributed to C=O (530.5 eV) and C−O (531.3 eV) bonds,

respectively (Figure 1E) (Chen et al., 2021). The N 1s XPS

spectrum (Figure 1F) can be fitted into three peaks at 397.9,

400.0, and 400.5 eV, indexing to pyridinic N, amino N, and

graphitic N (Jiang et al., 2019). In addition, the absorption and

fluorescence properties of CDs nanozyme were explored. As

shown in Supplementary Figure S2, the absorption peaks at

268 and 368 nm are attributed to π−π* and n−π*, respectively

(Guo et al., 2020; Li et al., 2020). The corresponding

photoluminescence (PL) spectrum shows emission at 503 nm as

shown in Supplementary Figure S3 (λex = 420 nm, in methanol).

Free radicals scavenging activities of
carbon dots nanozyme

The scavenging ability of CDs nanozyme to various free

radicals was studied in detail. •OH scavenging properties of CDs

nanozyme were determined by collecting absorbance at 510 nm.

As seen in Figure 2A, with the increase of the concentration, the

efficiency of scavenging •OH radicals reached a maximum of

86.8%. Similarly, Figure 2B shows the CDs nanozyme has a

scavenging ability of 89.8% for O2
•− at the highest concentration.

Likewise, the ABTS radical scavenging (ABTS+•) effects of CDs
nanozyme are presented in Figure 2C. The maximum scavenging

rate of ABTS+• free radicals by CDs nanozymes is about 75.8%.

Biocompatibility and reactive oxygen
species scavenging in vitro

To evaluate the potential biomedical applications of CDs

nanozyme, we performed cytotoxicity studies to investigate their

biocompatibility in vitro. The conventional CCK-8 method was

used to determine the cell viability of HUVEC cells treated with

FIGURE 2
(A)

•
OH, (B) O2

•−, and (C) ABTS+• scavenging test of various concentration of CDs nanozyme.
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CDs nanozyme for 24 h. The results show that the survival rate of

HUVEC cells still keep more than 80% even with the

concentration of CDs nanozyme reaching to 300 μg ml−1,

which agrees well with previous investigations (Figure 3A)

(Kuang et al., 2020). To explore the protective effect of CDs

nanozyme on HUVEC cells, oxidative stress model was

constructed with H2O2 (Figure 3B) (Miao et al., 2020).

HUVEC cells were cultured with H2O2, cell viability decreased

rapidly. However, the cell viability significantly enhanced after

introducing CDs nanozyme to the system. When the

concentration of CDs nanozyme was continuously increased,

the cell viability continued to recover, indicating that intracellular

ROS were effectively scavenged.

CDs nanozyme protect cells by regulating the level of

intracellular ROS (Figure 3C). Using commercially available

ROS detection probes, ROS levels were assessed during

incubation. Commercially available ROS detection probe (2′,
7′-dichlorodihydrofluorescein diacetate, DCFH-DA) was used to

assess ROS levels during incubation. After adding a certain

concentration of H2O2 (300 μmol L−1) to the HUVEC cell

culture medium, strong green fluorescence could be clearly

observed while no fluorescence was observed in the control

group. Significantly, as the concentration of CDs nanozyme

continued to increased, the intracellular fluorescence intensity

further reduced. Subsequently, the protective effect of CDs

nanozyme against H2O2-induced oxidative stress demage by

FIGURE 3
(A) Cell viability of HUVEC cells after treatment with various concentrations of CDs nanozyme for 24 h. (B) The protective effects of CDs
nanozyme on H2O2-induced oxidative stress in HUVEC cells (The concentration of H2O2 is 300 μmol L−1). (C) Fluorescence images of HUVEC cells
with ROS staining by DCFH-DA probe (a: 100 μg ml−1 CDs nanozyme; b: 200 μg ml−1 CDs nanozyme; c: 300 μg ml−1 CDs nanozyme, scale bar =
50 μm). (D) Fluorescence images of live and dead HUVEC cells stained with dyes, respectively (a: 100 μg ml−1 CDs nanozyme; b: 200 μg ml−1

CDs nanozyme; c: 300 μg ml−1 CDs nanozyme, scale bar = 50 μm). Effect of CDs nanozyme on (E) SOD, (F) GSH and (G) MDA in HUVEC cells.
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staining with live/dead cell double staining kit (calcein-AM and

propidium iodide dyes) was evaluated. As can be seen from

Figure 3D, H2O2 could induce most cell death after incubation,

while the addition of CDs nanozyme did not cause significant cell

death. Moreover, flow cytometry was used to determine the level

of ROS produced by HUVEC cells in control and sample groups

(Supplementary Figure S4). The result showed that the cells

cultured only with H2O2 had a strong fluorescence signal,

while the cells cultured with H2O2 and CDs nanozyme emit

the lowest fluorescence intensity (Lin et al., 2019). The above

results confirm that CDs nanozyme exhibit excellent ROS

scavenging activity to protect cells from oxidative stress damage.

In addition, the effects of CDs nanozyme on superoxide

dismutase (SOD), glutathione (GSH), and malondialdehyde

(MDA) levels in HUVEC cells was evaluated. As shown in

Figure 3E, the level of intracellular SOD was significantly

decreased after the introduction of H2O2, while the level of SOD

gradually increased after adding CDs nanozyme. The content of GSH

in cells can be used as another important factor to measure the level

of intracellular ROS. As shown in Figure 3F, the level of GSH in cells

decreased to about 25% under H2O2 stimulation, while the GSH

content gradually increased after the addition of CDs nanozyme.

Moreover, CDs nanozyme can efficiently inhibited H2O2-induced

elevation ofMDA activity (Figure 3G). The above results suggest that

CD nanozyme can act as an excellent ROS scavenger.

Anti-inflammatory effect of carbon dots
nanozyme in vitro

Inspired by their good biocompatibility and ROS scavenging

efficiency, the anti-inflammation function of CDs nanozyme was

evaluated in vitro. As shown in Figure 4A, the survival rate of

RAW264.7 cells remained high viability even when the CDs

nanozyme were cultured at relatively concentration reaching to

250 μg ml−1. To verify whether CDs nanozyme exhibit anti-

inflammatory ability, RAW264.7 cells were treated with

lipopolysaccharide (LPS) to construct a classic cellular

inflammation model (Da Silva et al., 2019; Wang Z. et al.,

2022; Chen et al., 2022; Kong et al., 2022). As shown in

FIGURE 4
(A) Cell viability of RAW264.7 cells after treatment with various concentrations of CDs nanozyme for 24 h. (B) The TNF-α, (C) IL-1β, and (D) IL-6
level of the supernatants of RAW264.7 macrophages after various treatments. The concentration of LPS is 1 μg ml−1.
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Figure 4B, the tumor necrosis factor-α (TNF-α) level of CDs

nanozyme + LPS (1 μg ml−1) group decreased significantly

compared with that of LPS group. Likewise, introduction of

CDs nanozyme significantly reduced interleukin-1 beta (IL-

1β) levels in inflammatory cell model as shown in Figure 4C.

Moreover, CDs nanozyme can effectively inhibit the increase of

interleukin-6 (IL-6) levels induced by LPS (Figure 4D).

Subsequently, western blot results showed that CDs nanozyme

upregulate the expression of P53 and Bcl-2 in HUVEC cells after

24 h of exposure (Supplementary Figure S5). In general,

p53 activated only when cells have undergone stress such as

ROS-induced apoptosis (Li et al., 2014). The expression of

p53 and Bcl-2 in HUVEC cells after treatment with CDs

nanozyme further confirmed the finding that the increased

cellular level of ROS was responsible for cell death through

apoptosis. The above results indicate that CDs nanozyme with

ROS scavenging ability can simultaneously downregulate the

levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) due

to the excellent electron donor and electron acceptor properties,

thereby protect the normal cells from oxidative stress damage.

Moreover, CDs nanozyme inherit antioxidant active groups such

as benzoquinone in the raw materials, which is also an important

reason for its oxidative stress and anti-inflammatory activities.

Conclusion

In summary, we succeeded in synthesizing a new type of CDs

nanozyme by a solvothermal method. The CDs nanozyme

exhibited excellent scavenging activity against various free

radicals in vitro. Benefiting from this, CDs nanozyme can

decrease the levels of pro-inflammatory cytokines (TNF-α, IL-
1β, IL-6) for the efficiency treatment of inflammatory diseases.

The present study indicates that CDs nanozyme can effectively

inhibit oxidative stress damage through enzyme-like activity for

anti-inflammatory therapy.
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