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Abstract

Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular
component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes
responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a
loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid
peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid
peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga
Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by
ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and
photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon
emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay.
Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular
oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon
emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that
the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission.
Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species
formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the
ultra-weak photon emission can be used as a non-invasive tool for the detection of lipid peroxidation in the cell
membranes.
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Introduction

The response of cyanobacteria, algae and plants to the abiotic

and biotic stress environmental factors is associated with the

formation of reactive oxygen species (ROS) [1,2,3,4,5]. When ROS

are not properly scavenged by low molecular mass antioxidant

(ascorbate, tocopherol, phenol) or antioxidant enzymes (superoxide

dismutase, peroxidases, catalase), the excessive production of ROS

is responsible for the oxidative damage of cellular components [6].

The main cellular components susceptible to the oxidative damage

by ROS are lipids, proteins and nucleic acids [7,8,9,10]. Typically,

the oxidation of polyunsaturated fatty acid is initiated by radical

ROS (hydroxyl radical, perhydroxyl radical), non-radical ROS

(singlet oxygen, hydrogen peroxide) or by enzymatic reaction

pathway (lipoxygenase) [11,12,13]. The non-enzymatic and enzy-

matic lipid peroxidation results in the formation of lipid alkyl radical

(LN) known to form lipid peroxyl radical (LOON) by interaction with

molecular oxygen. The attack of lipid peroxyl radical on another

polyunsaturated fatty acids results in the formation of lipid

hydroperoxide [11,14,15,16].

Several techniques have been developed to monitor lipid

peroxidation under in vitro conditions. These techniques are based

mainly on the detection of 1) loss of the substrate (polyunsaturated

fatty acid), 2) formation of the primary peroxidation products (lipid

peroxides) and 3) formation of the secondary peroxidation

products (aldehyde, epoxide, keto or hydroxy compounds) [17].

In spite of the fact that the mechanistic principles of lipid

peroxidation are well described under in vitro conditions, their

application under in vivo conditions has raised a number of the

unresolved issues [18,19]. Under in vivo conditions, chemilumines-

cence techniques have been previously employed to study the lipid

peroxidation [20,21]. Due to the fact that chemiluminescence

signal is very weak, the chemiluminescence has been denoted as

ultra-weak photon emission [22,23,24]. As terminology for the

ultra-weak photon emission is not unique so far, the other terms

such as low-level biological chemiluminescence, ultra-weak bio-

chemiluminescence or more widespread term biophoton emission

have been frequently used [25,26,27,28,29,30].

In the past, various types of chemical and physical probes were

used to enhance the photon emission [31,32,33,34]. Chemical
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probes are capable to enter in the lipid reaction chain and form

excited state by its interaction with the product of lipid

peroxidation. Luminol has been employed as the most frequently

used chemical probe to enhance the chemiluminescence signal of

lipid peroxidation [31]. On the opposite side, the physical probes

can accept an excitation energy from the excited product of lipid

peroxidation such as triplet excited carbonyl (3(C = O)*) and singlet

oxygen (1O2) and emit the photons with a much higher quantum

efficiency (hundred and thousand time). Among of the physical

probe the fluorescence dye, coumarin was employed as an efficient

enhancer of chemiluminescence signal of lipid peroxidation [32].

Alternative approach to enhance chemiluminescence signal was

exposure of photosynthetic organisms to high temperature. High

temperature-induced chemiluminescence has been successfully

applied for the detection of lipid peroxidation [34,35]. Two major

bands in the high temperature-induced chemiluminescence has

been precisely described in the temperature range of 70–90uC and

120–140uC [35,36,37,38].

Recent development in the detection techniques enables to use

chemiluminescence signal for the study of lipid peroxidation

without the participation of exogenous enhancers [39,40,41,42].

Using sensitive charged coupled device (CCD) camera, Flor-

Henry and co-workers (2004) demonstrated that the mechanical

wounding of Arabidopsis thaliana leaves caused a significant increase

in the ultra-weak photon emission. The authors proposed that the

products of lipid peroxidation such as 3(C = O)* might be

responsible for photon emission. Havaux (2006) demonstrated

that the ultra-weak photon emission and the formation of

secondary end product of lipid peroxidation malondialdehyde

(MDA) from Arabidopsis thaliana double mutant lacking both

ascorbate and zeaxanthin were significantly higher, when

compared to photoresistant wild type. An alternative explanation

for the ultra-weak photon emission was provided by Bennett and

co-worker (2005), who related ultra-weak photon emission to the

gene-for-gene mediated hypersensitive cell death.

The authors proposed that the ultra-weak photon emission is

related to the formation of reactive nitrogen species (RNS); however,

the participation of ROS-related lipid peroxidatiion was not

completely ruled out. The hypothesis has been extended by Mansfield

(2005), who made a correlation between the hypersensitive reaction

leading to the generation of RNS and the lipid peroxidation leading

to the ultra-weak photon emission. Using ROS scavengers,

Kobayashi et al. (2007) demonstrated that ROS generated during

the oxidative burst of hypersensitive reaction are involved in the ultra-

weak photon emission. As far as we know, no direct evidence on the

involvement of lipid peroxidation in the ultra-weak photon emission

from photosynthetic organisms has been provided yet.

Here, we provide direct evidence on the involvement of lipid

peroxidation in the ultra-weak photon emission from the unicellular

green alga Chlamydomonas reinhardtii. The presented data show that

the addition of linoleic acid in the cells significantly enhanced the

ultra-weak photon emission. The ultra-weak photon emission was

considerably suppressed by scavenging of HON, inhibition of

intrinsic lipoxygenase and removal of molecular oxygen. Based on

the presented results it is proposed that the ultra-weak photon

emission can serve as a powerful non-invasive tool for monitoring of

lipid peroxidation in cyanobacteria, algae and plants.

Results

Spontaneous ultra-weak photon emission from intact
Chlamydomonas reinhardtii cells

Spontaneous ultra-weak photon emission was measured in the

green alga Chlamydomonas reinhardtii using CCD camera. Figure 1

shows two-dimensional image of ultra-weak photon emission (A–D)

and corresponding photograph (E) of the cells placed on the Petri

dish. Two-dimensional image of ultra-weak photon emission

indicates that the cells spontaneously emit photons (Fig. 1A). To

quantify ultra-weak photon emission, the photon emission was

measured using highly sensitive photomultiplier tube (PMT). When

the cells were placed below the PMT window, the count rate of 4

counts s21 was observed (Fig. 2A). The count rate observed from the

pure growth media was 2 counts s21, the value of which is

comparable to the dark count (data not shown). After subtraction of

the count rate from the growth media, the spontaneous ultra-weak

photon emission from the cells was determined to be 2 counts s21.

The effect of mannitol, HON scavenger, (Fig. 2B) and catechol, an

inhibitor of lipoxygenase, (Fig. 2C) on the ultra-weak photon

emission was studied in the intact cells which show no significant

decrease in the ultra-weak photon emission. The observation that

the spontaneous ultra-weak photon emission remains unchanged

during the several hours confirmed that the spontaneous ultra-weak

photon emission is an intrinsic property of the cells.

Spontaneous ultra-weak photon emission from disrupted
Clamydomonas reinhardtii cells

To study the effect of cell disruption on the spontaneous ultra-weak

photon emission, the photon emission was measured in the cells

previously exposed to the mechanical disruption under liquid nitrogen.

When the cells were immersed in liquid nitrogen and subsequently

warmed to room temperature, the spontaneous ultra-weak photon

emission was enhanced (Fig. 1B). The measurement of ultra-weak

photon emission using PMT shows that after the cell disruption the

count rate was 15 counts s21 (Fig. 2D). These observations reveal

that the cell disruption results in the enhancement in spontaneous

ultra-weak photon emission. The effect of mannitol (Fig. 2E) and

catechol (Fig. 2F) on the ultra-weak photon emission was studied

in the disrupted cells which shows slight decrease in the ultra-weak

photon emission. However, to observe a significant difference in the

ultra-weak photon emission in the presence of mannitol and catechol,

linoleic acid-induced ultra-weak photon emission was employed.

Effect of linoleic acid on ultra-weak photon emission
from Chlamydomonas reinhardtii cells

To test the involvement of lipid peroxidation in the ultra-weak

photon emission, the effect of exogenous linoleic acid on the ultra-

weak photon emission was studied in the both intact and disrupted

cells. When linoleic acid was added to the intact cells, an

enhancement in the two-dimensional ultra-weak photon emission

was observed (Fig. 1C). Figure 3A (trace b) shows that the addition

of linoleic acid to the intact cells results in a gradual increase in

photon emission to 15 counts s21. Similarly, the addition of

linoleic acid to the disrupted cells caused a significant increase in

the two-dimensional ultra-weak photon emission (Fig. 1D).

Figure 3B (trace b) shows that the addition of linoleic acid to the

disrupted cells results in the enhancement in photon emission to

220 counts s21 followed by a gradual decrease. Based on these

observations it is concluded that the oxidation of linoleic acid

results in the enhancement in ultra-weak photon emission with the

most pronounced effect observed in the disrupted cells.

Determination of (TBA)2-MDA adduct in Chlamydomonas
reinhardtii cells

Spectroscopic detection of the thiobarbituric acid reactive

substances (TBARS) was used to monitor the formation of lipid

hydroperoxides in the both intact and disrupted cells. In this

method, the decomposition of lipid peroxides results in the

Role of Lipid Peroxidation in Photon Emission
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formation of MDA, which reacts with thiobarbituric acid forming

(TBA)2-MDA adduct [11,43]. Figure 3C shows the absorption

spectrum of (TBA)2-MDA adduct obtained in the intact cells (trace

a) and the disrupted cells (trace b) after the addition of linoleic acid

with the unique absorption maximum at 532 nm. The absorption

spectra show that the enhancement in absorbance at 532 nm

observed in the disrupted cells was considerably higher, when

compared to the intact cells. The quantitative determination of

(TBA)2-MDA adduct shows that the addition of linoleic acid to the

intact cells results in the formation of 4062 nmol MDA/2.16108

cells, whereas it was increased to 100610 nmol MDA/2.16108

cells in the disrupted cells. These results indicate that the oxidation

of linoleic acid by intrinsic lipoxygenase initiates lipid peroxidation

in the cells.

Figure 1. Two-dimensional imaging of the ultra-weak photon emission from the intact (A, C) and the disrupted (B, D) cells
measured in the absence (A, B) and the presence (C, D) of linoleic acid. Prior to the measurements, the cells suspended in Tris-Acetate
Phosphate buffer (pH 7.2) were placed on the Petri dish and kept for 30 min in the dark. In (B, D), prior to the dark adaptation the cells were frozen in
liquid nitrogen and subsequently warmed to room temperature. In (C, D), 2 mM linoleic acid was added to the cells prior to the measurements. (E)
represents photograph of the cells placed on the Petri dish taken under weak light illumination. Ultra-weak photon emission imaging was measured
using a highly sensitive CCD camera with an integration time of 30 min.
doi:10.1371/journal.pone.0022345.g001

Role of Lipid Peroxidation in Photon Emission
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Effect of mannitol, lipoxygenase inhibitor and molecular
oxygen on ultra-weak photon emission from
Chlamydomonas reinhardtii cells

To study the involvement of hydroxyl radical (HON) in the ultra-

weak photon emission, the effect of mannitol, HON scavenger, on

the ultra-weak photon emission was studied in the disrupted cells.

The scavenging of HON by addition of mannitol in the disrupted

cells caused a pronounced suppression in ultra-weak photon

emission (Fig. 4A, trace b). These observations indicate that HON is

involved in the ultra-weak photon emission.

The involvement of intrinsic lipoxygenase in the ultra-weak

photon emission was explored by monitoring the effect of catechol,

an inhibitor of lipoxygenase, on the ultra-weak photon emission. The

addition of catechol to the disrupted cells results in the significant

suppression in the ultra-weak photon emission (Fig. 4B, trace b).

These observations reveal that the oxidation of linoleic acid by

intrinsic lipoxygenase is involved in the ultra-weak photon emission.

To test the involvement of molecular oxygen in the ultra-weak

photon emission, the photon emission was measured after removal

of molecular oxygen using enzyme system glucose/glucose

oxidase. When the disrupted cells were incubated with glucose/

glucose oxidase for 15 min, a pronounced decline in the ultra-

weak photon emission was observed (Fig. 4C, trace b). This

observation shows that molecular oxygen participate in the ultra-

weak photon emission.

Spectral properties and effect of histidine on ultra-weak
photon emission from Chlamydomonas reinhardtii cells

To characterize excited species involved in the ultra-weak

photon emission, the spectral properties of ultra-weak photon

Figure 2. Ultra-weak photon emission from the intact (A) and the disrupted (D) cells. Prior to the measurements, the cells suspended in
Tris-Acetate Phosphate buffer (pH 7.2) were placed on the Petri dish and kept for 30 min in the dark. In (D), prior to the dark adaptation the cells were
frozen in liquid nitrogen and subsequently warmed to room temperature. Ultra-weak photon emission was measured using a highly sensitive PMT
tube. Effect of 200 mM mannitol on the ultra-weak photon emission from the intact (B) and disrupted (C) cells. Ultra-weak photon emission under the
effect of 5 mM catechol were measured from the intact (E) and disrupted (F) cells. The arrow indicates the interval at which mannitol and catechol
were subsequently added.
doi:10.1371/journal.pone.0022345.g002
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emission were measured in the disrupted cells. To distinguish

between the photon emission from the blue and the red region of

the spectrum, the cut-off filters were mounted in the front of

PMT. When the blue region of the spectrum was cut off, no

significant change in the ultra-weak photon emission was

Figure 3. Effect of exogenous linoleic acid on the ultra-weak
photon emission from the intact (A) and the disrupted cells (B).
In A (trace b) and B (trace b), 2 mM linoleic acid was added to the cells
prior to the measurements. Other experimental conditions as in Fig. 1.
(C), Absorption difference spectra of the (TBA)2-MDA adduct measured
in the cells in the intact (trace a) and the disrupted cells (trace b).
Absorption difference spectrum represents the difference in the
absorption spectrum of the (TBA)2-MDA adduct obtained before and
after the addition of linoleic acid.
doi:10.1371/journal.pone.0022345.g003

Figure 4. Effect of mannitol (A), catechol (B) and molecular
oxygen (C) on the ultra-weak photon emission from the
disrupted cells measured in the presence of linoleic acid. In
(A), ultra-weak photon emission was observed in the absence (trace a)
and the presence of 200 mM mannitol (trace b). In (B), ultra-weak
photon emission was observed in the absence (trace a) and the
presence (trace b) of 5 mM catechol. Catechol was added to the cells
prior to the addition of linoleic acid. Other experimental conditions as in
Fig. 1. In (C), ultra-weak photon emission was observed under aerobic
(trace a) and anaerobic (trace b) conditions. To remove molecular
oxygen, the cells were treated with 1 mM glucose and 50 U ml21

glucose oxidase for 15 min. Other experimental conditions as in Fig. 1.
doi:10.1371/journal.pone.0022345.g004
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observed (Fig. 5A, trace b). Interestingly, when the red region of

the spectrum was cut off, the ultra-weak photon emission was

significantly suppressed (Fig. 5A, trace c). These observations

indicate that the excited species with the photon emission in the

red region of the spectrum contribute to the ultra-weak photon

emission.

To explore the involvement of 1O2 in the ultra-weak photon

emission, the effect of histidine, 1O2 scavenger, on the ultra-weak

photon emission was measured in the disrupted cells. When

histidine was added to the disrupted cells, no change in the ultra-

weak photon emission was observed (Fig. 5B, trace b). These

observations show that 1O2 is unlikely involved in the ultra-weak

photon emission.

To investigate the photon emission in the red region of

the spectrum in more detail, the set of interference filters

in the range of 640 to 710 nm was used. Figure 5C shows

that the maximum photon emission peak at the red region

of the spectrum is at 680 nm. Based on this observation,

it is assumed that emission originates from chlorophyll

molecules.

Discussion

Lipid peroxidation is considered as a free radical chain

reaction initiated by the oxidation of polyunsaturated fatty

acid [11,15,16]. Linoleic acid is one of the main fatty acids

in the membrane, which has unsaturated bonds between

C9–C10 and C12–C13 carbons. The oxidation of linoleic

acid followed by the hydrogen abstraction results in the

formation of LN, which in the presence of molecular oxygen

forms LOON. The oxidation of linoleic acid proceeds via the

non-enzymatic reaction pathway mediated by free oxygen

radicals or via the enzymatic reaction pathway mediated by

lipoxygenase.

Non-enzymatic oxidation of linoleic acid
In the non-enzymatic reaction pathway, the free oxygen

radical readily abstracts a hydrogen atom from the hydrocarbon

chain of polyunsaturated fatty acids, leading to the formation of

LN (Fig. 6). Our observation that the scavenger of HON

(mannitol) significantly suppressed the ultra-weak photon

emission indicates that the lipid peroxidation is initiated by

HON (Fig. 4A, trace b). Hydroxyl radical is formed by the

reduction of H2O2 by free metals through Fenton-type

chemistry [44]. Lipid alkyl radical reacts with molecular oxygen

at the diffusion-limited rate to form LOON (Fig. 6). The

observation that the removal of molecular oxygen results in

the significant suppression in ultra-weak photon emission

indicates that molecular oxygen is involved in the ultra-weak

photon emission (Fig. 4C, trace b).

Enzymatic oxidation of linoleic acid
In the enzymatic reaction pathway, the oxidation of

polyunsaturated fatty acids is catalyzed by lipoxygenase. The

first step in the enzymatic reaction is the abstraction of the

hydrogen atom from C-11 by the ferric non-heme iron of the

enzyme (Fe3+–OH) to generate LN, whereas the active site of the

enzyme is reduced to the ferrous non-heme iron (Fe2+–OH2)

[45]. Catechol (an inhibitor of lipoxygenase) is known to bind to

the ferric non-heme iron of the enzyme and thus prevents the

formation of LN [46]. Our observation that catechol considerably

suppressed the ultra-weak photon emission indicates that the

formation of LN is catalyzed by the intrinsic lipoxygenase (Fig. 4B,

trace b). The interaction of LN with molecular oxygen results in

Figure 5. Spectral properties (A,C) and the effect of histidine
(B) on the ultra-weak photon emission from the disrupted cells
measured in the presence of linoleic acid. In (A), ultra-weak
photon emission was measured in the absence of filter (trace a) and in
the presence of filters passing the photon emission in the range of
wavelength .600 nm (trace b) and 310–600 nm (trace c). Other
experimental conditions as in Fig. 1. In (B), ultra-weak photon emission
was observed in the absence (trace a) and presence of 10 mM histidine
(trace b). In (C), ultra-weak photon emission was measured in the red
region of the spectrum from 640 nm to 710 nm using a set of
interference filters with a bandwidth of 10 nm. The different bars on the
bar graph represent the photon emission observed with the
interference filters centered at 641 nm, 651 nm, 662 nm, 671 nm,
683 nm, 691 nm and 702 nm.
doi:10.1371/journal.pone.0022345.g005

Role of Lipid Peroxidation in Photon Emission

PLoS ONE | www.plosone.org 6 July 2011 | Volume 6 | Issue 7 | e22345



the formation of LOON and the re-oxidation of ferrous non-heme

iron (Fe2+–OH2) to ferric non-heme iron (Fe3+–OH). The

observation that the removal of molecular oxygen significantly

suppressed the ultra-weak photon emission indicates that

molecular oxygen is involved in the ultra-weak photon emission

(Fig. 4C, trace b).

Figure 6. Mechanism of generation of electronically excited species by oxidation of polyunsaturated fatty acids. Abstraction of allylic
hydrogen from polyunsaturated fatty acids (L) results in the formation of lipid alkyl radical (LN). Lipid alkyl radical reacts with molecular oxygen
to generate a lipid peroxyl radical (LOON). Peroxyl radical reacts with the adjacent peroxyl radical by the Russell-type mechanism forming
carbonyl, molecular oxygen and lipid hydroxides (LOH). The carbonyls are formed either in the triplet excited (L = O*) or the ground (L = O)
state, whereas molecular oxygen is correspondingly in the triplet ground state (3O2) or the singlet excited state (1O2). The excitation energy
transfer from the triplet excited carbonyls to chlorophyll molecules results in the formation of singlet excited state of chlorophyll (1Chl*). An
electronic transitions from the singlet excited state to the ground state of chlorophyll is accompanied by the emission of photons in the red
region of the spectrum.
doi:10.1371/journal.pone.0022345.g006
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Ultra-weak photon emission reflects formation of lipid
hydroperoxides

The attack of LOON on the adjacent polyunsaturated fatty

acids yields C9-OOH and C13-OOH hydroperoxides with a

concomitant formation of a conjugated dienes on the adjacent

carbons. The short-lived lipid hydroperoxides decompose to a

variety of the secondary product such as aldehyde, epoxide, keto

or hydroxy compounds [47]. Among the aldehyde products,

MDA is the secondary product formed by the oxidation of

polyunsaturated fatty acid. Our results showed that the addition

of linoleic acid to the cells results in the formation of MDA

(Fig. 3C). The enhancement in the MDA formation in the

disrupted cells is caused by enhanced formation of ROS or higher

accessibility of the linoleic acid to the lipoxygenase in the

disrupted cells.

Triplet excited carbonyl and singlet oxygen formation
The attack of LOON on the adjacent polyunsaturated fatty acid

results in the formation of another LN, which initiates the

formation of another LOON. When the concentration of LOON

increased, the interaction of LOON with another LOON becomes

feasible. Self-reaction of LOON by Russell-type of mechanism

yields 3(C = O)* and molecular oxygen or the ground state of

carbonyls (C = O) and 1O2 (Fig. 6). It has been previously

demonstrated that the formation of 3(C = O)* and 1O2 proceeds

via a tetraoxide intermediate [48]. The electronic transition of
3(C = O)* to the singlet ground state is accompanied by the blue-

green phosphorescence (lmax at 450–550 nm), whereas the

bimolecular reaction of 1O2 leads to the dimol red emission

(lmax at 634 and 703 nm).

Excitation energy transfer from triplet excited carbonyls
to chlorophylls

Our observation that the photon emission in the blue region of

the spectrum is neglectable (Fig. 5A, trace c) shows that 3(C = O)*

does not contribute significantly to the ultra-weak photon

emission. The findings that the photons are emitted predominantly

in the red region of the spectrum might indicate that 1O2 is the

main emitter of ultra-weak photon emission. However, our

observation that 1O2 scavenger (histidine) has no effect on the

ultra-weak photon emission reveals that 1O2 is unlikely involved in

the ultra-weak photon emission (Fig. 5, trace b). The detail

exploration of spectral properties in the red region of the spectrum

showed that the maximum photon emission is at 680 nm which

corresponds to the photon emission of chlorophyll molecules

(Fig. 5C).

These considerations reveals that in the chlorophyll-contain-

ing sample, the excitation energy from 3(C = O)* is transferred to

chlorophyll molecule (Fig. 6). In the triplet-singlet energy

transfer mechanism, the triplet excitation energy from carbonyls

is transferred to chlorophyll molecule forming singlet excited

state of chlorophyll (1Chl*) [49,50]. In the triplet-triplet energy

transfer mechanism, the triplet excitation energy from carbonyls

is transferred to the chlorophyll molecule forming the triplet

excited state of chlorophyll (3Chl*) which is converted to 1Chl* by

reverse intersystem crossing [51]. In the agreement with our

observation, it has been previously demonstrated that the

exposure of thylakoid membranes to heat stress is accom-

panied by the photon emission from chlorophyll molecules

[21,27,38,52]. More recently, Kobayashi and co-authors (2007)

demonstrated that a chlorophyll molecule serves as the final

emitter of photons during hypersensitive response to cucumber

mosaic virus in cowpea.

Conclusion
The present study provides the evidence on the involvement of

lipid peroxidation in the ultra-weak photon emission measured in

Chlamydomonas reinhardtii cells. It is proposed that the ultra-weak

photon emission can be a useful non-destructive tool to follow the

extent of lipid peroxidation in the photosynthetic organism under

in vivo conditions. Detection of ultra-weak photon emission, which

provides both temporal and spatial information on the lipid

peroxidation opens new possibilities to better characterize the

response of cyanobacteria, algae and plants to various stresses. The

direct detection of ultra-weak photon emission using CCD

camera, which provides an information on the spatial distribution

of the photon emission in the sample, characterizes the different

responses of plant to the stress factors in the different parts of the

leaves. Highly sensitive PMT, which provides an information on

the kinetics of ultra-weak photon emission, enables to follow the

temporal characteristics of the plant response to the environmental

stress factors. The use of ultra-weak photon emission as a non-

invasive diagnostic tool for monitoring of lipid peroxidation helps

to better understand the mechanistic insights into the plant

response to the numerous abiotic and biotic stresses.

Materials and Methods

Clamydomonas reinhardtii grown conditions
Chlamydomonas reinhardtii algae strain (wild type: CC-002) was

obtained from the Chlamydomonas Genetic Center (Duke

University, Durham, NC, USA). The cells were grown in a

continuous white light (100 mmol m22 s21) in Tris-Acetate-

Phosphate (TAP) medium in which acetate represents the main

carbon source. The algal culture was placed on a multi-position

magnetic stirrer RT 5 power (IKA Werke GmbH, Staufen,

Germany) and permanently stirred to obtain constant CO2

concentration in the growing medium. The cells were studied

during the stationary growth phase at a density of approximately

76107 cells ml21. Cell density was determined by a manual

microscopic cell count.

Ultra-weak photon emission measurement
Chlamydomonas reinhardtii cells in TAP medium (total volume of

2 ml) placed on the glass Petri dish (3 cm diameter) were put in the

front of CCD camera or PMT window. For two-dimensional

photon emission imaging, the photons were reflected by the mirror

to the vertically situated window of the CCD camera. For one-

dimensional photon counting, Petri dish was placed at a distance

of 3 cm below the horizontally situated PMT window. To

eliminate the interference by delayed luminescence, the cells were

dark-adapted for 30 min prior to the measurements. During the

measurements, 2 mM linoleic acid was added to the cells and

mixed thoroughly. In some measurements, 200 mM mannitol,

5 mM catechol and 10 mM histidine were added to the cells prior

to the measurements. Molecular oxygen was removed by glucose/

glucose oxidase enzymatic system by the addition of 1 mM glucose

in 50 U ml21 glucose oxidase (EC 1.1.3.4, from Aspergillus niger)

(Fluka). During the addition of oxygen trap, the air was removed

from the upper part of the cuvette by a gentle stream of nitrogen

gas and the cuvette was sealed with the help of a 1 cm thick rubber

cap and paraffin wax. The presented traces are representative of

data which is measured at least 3 times.

Highly sensitive CCD camera and photon counting
Highly sensitive CCD camera VersArray 1300B (Princeton

instruments, Trenton, NJ, USA) was used for two-dimensional

photon imaging. To reduce the dark current, CCD camera was
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cooled down to 2110uC using a liquid-nitrogen cooling system.

The CCD camera was equipped with a 50-mm focal distance lens

with an f-number of 1.2 (F mount Nikkor 50-mm, f:1.2, Nikon) to

enhance the light collecting efficiency. Spectral sensitivity of CCD

camera was within the range of 200–1000 nm with the almost

90% quantum efficiency in the visible range of the spectrum. The

spectral sensitivity was limited to 350–1000 nm by the lenses. The

data correction was made by subtracting the background noise

before every measurement. The measurement was done in the

image format of 134061300 pixels. CCD camera parameters were

as follows: scan rate, 100 kHz; gain, 3; accumulation time, 30 min.

One-dimensional photon counting was measured using low-

noise photon counting unit C9744 (Hamamatsu Photonics K.K.,

Iwata city, Japan). To reduce the thermal electrons, PMT was

cooled down to 230uC using thermoelectric cooler C9143

(Hamamatsu Photonics, K.K., Iwata city, Japan). The PMT was

kept vertically to minimize the dark counts to approximately 2

counts s21 at 21150 mV. The spectral sensitivity of the PMT was

within the range of 160–710 nm.

The CCD camera and PMT were situated in the experimental

dark room with a dimension 3 m61.5 m62.5 m. The whole

interior of the experimental dark room was painted with black

color. The door in the experimental dark room was protected

completely with a black curtain to restrict any external light. The

data recording computer was installed in the operation dark room.

For the spectral analysis of ultra-weak photon emission in the

blue and the red region of the spectrum, the bandpass filter BG 14

(310–650 nm) (Schott & Gen., Jena, Germany) and the edge filter

RG 6 (spectral range .600 nm) (Schott & Gen., Jena, Germany)

were used. Further, the spectral analysis of photon emission in the

red region of the spectrum was explored with a set of interference

filters with a bandwidth of 10 nm centered at 641 nm, 651 nm,

662 nm, 671 nm, 683 nm, 691 nm and 702 nm (Andover

Corporation, Salem, USA).

Determination of Thiobarbituric acid reactive substance
(TBARS)

The extent of lipid peroxidation under the exogenous

application of linoleic acid was estimated by measuring the

formation of thiobarbituric acid reactive substance (TBARS) as

described in Halliwell and Chirico [18] with minor modifications.

After addition of linoleic acid to the cell culture (3 ml), butylated

hydroxytoluene at a final concentration of 0.01% (w/v) was used

to terminate the lipid peroxidation chain reaction. The cells were

harvested by centrifugation at 50006g. The pellet was mixed with

2 ml of 80 mM TBA and heated in a boiling water bath for

10 min. After cooling down to 25uC, the reaction mixture was

centrifuged at 85006 g for 5 min to obtain a clear supernatant.

Thiobarbituric acid reactive substance was determined by

absorbance at 532 nm using Spectrophotometer Unicam UV

550 (ThermoSpectronic, Cambridge, UK). The amount of

(TBA)2-MDA adduct was determined using of a molar extinction

coefficient 1.546105 M21 cm21 [11]. The presented data are

expressed as mean and standard error of the mean of at least three

measurements (mean6S.E.M, n = 3).
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35. Hideg É, Vass I (1993) The 75u thermoluminescence band of green tissues:

chemiluminescence from membrane-chlorophyll interaction. Photochem Photo-

biol 58: 280–283.

36. Stallaert VM, Ducruet JM, Tavernier E, Blein JP (1995) Lipid peroxidation in

tobacco leaves treated with elicitor cryptogein: evaluation by high-temperature

thermoluminescence emission and chlorophyll fluorescence. Biochim Biophys

Acta 1229: 290–295.

37. Vavillin DV, Ducruet JM, Matorin DN, Venediktov PS, Rubin AB (1998)

Membrane lipid peroxidation, cell viability and photosystem II activity in the

green alga Chlorella pyrenoidosa subjected to various stress conditions.

Photochem Photobiol B 42: 233–239.
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