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Abstract

The incidence of endometrial cancer (EC) has increased over the past years and mainly

affects women above the age of 45 years. Metabolic diseases such as obesity and type II

diabetes mellitus as well as associated conditions like polycystic ovary syndrome (PCOS),

insulin resistance and hyperinsulinemia lead to elevated levels of circulating estrogens.

Increased estrogen concentrations, in turn, further trigger the proliferation of endometrial

cells and thus promote EC development and progression, especially in the absence of pro-

gesterone as seen in postmenopausal women. Elevated blood glucose levels in diabetic

patients further contribute to the risk of EC development. Metformin is an insulin-sensitizing

biguanide drug, commonly used in the treatment of type II diabetes mellitus, especially in

obese patients. Besides its effects on glucose metabolism, metformin displayed anti-cancer

effects in various cancer types, including EC. Direct anti-cancer effects of metformin target

signaling pathways that are involved in cellular growth and proliferation, e.g. the AKT/PKB/

mTOR pathway. Further proteins and pathways have been suggested as potential targets,

but the underlying mechanism of action of metformin’s anti-cancer activity is still not

completely understood. In the present study, the effects of metformin on protein expression

were investigated in the human EC cell line HEC-1A using an affinity proteomic approach.

Cells were treated with 0.5 mmol/L metformin over a period of 7 days and changes in the

expression pattern of 1,300 different proteins were compared to the expression in untreated

control cells as well as insulin-treated cells. Insulin treatment (100 ng/mL) was incorporated

into the study in order to implement a model for insulin resistance and associated hyperinsu-

linemia, conditions that are often observed in obese and diabetic patients. Furthermore, the

culture medium was supplemented with 10 nmol/L ß-estradiol (E2) during treatments to

mimic increased estrogen levels, a common risk factor for EC development. Based on the

most prominent and significant changes in expression, a set of 80 proteins was selected

and subjected to a more detailed analysis. The data revealed that metformin and insulin tar-

geted similar pathways in the present study and mostly acted on proteins related to prolifera-

tion, migration and tumor immune response. These pathways may be affected in a tumor-

promoting as well as a tumor-suppressing way by either metformin treatment or insulin sup-

plementation. The consequences for the cells resulting from the detected expression
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changes were discussed in detail for several proteins. The presented data helps identify

potential targets affected by metformin treatment in EC and allows for a better understand-

ing of the mechanism of action of the biguanide drug’s anti-cancer activity. However, further

investigations are necessary to confirm the observations and conclusions drawn from the

presented data after metformin administration, especially for proteins that were regulated in

a favorable way, i.e. AKT3, CCND2, CD63, CD81, GFAP, IL5, IL17A, IRF4, PI3, and

VTCN1. Further proteins might be of interest, where metformin counteracted unfavorable

effects that have been induced by hyperinsulinemia.

1. Introduction

Endometrial cancer (EC) is the 6th most common cancer in women and constitutes the leading

malignancy of the female reproductive system in developed countries [1]. EC can be subdi-

vided into an estrogen-dependent type I, and a less common (15–25%) but more aggressive

and invasive, estrogen-independent type II [2–4]. The incidence of EC has increased over the

past years and mainly affects postmenopausal women while it is uncommon to be diagnosed

under the age of 45 years [5, 6]. The high incidence and mortality in developed countries

could be related to a higher prevalence of common risk factors such as obesity and type II dia-

betes mellitus [1, 7, 8]. Obesity and obesity-associated diseases such as polycystic ovary syn-

drome (PCOS) lead to elevated levels of circulating estrogens that, in turn, increase

proliferation of endometrial cells and promote EC development, especially in the absence of

progesterone [9–11]. Elevated blood glucose levels of diabetic patients may further contribute

to the risk of EC development via an increased glycolytic-lipogenic metabolism and the insu-

lin-like growth factor (IGF) signaling pathway [12, 13].

Metformin is an insulin-sensitizing biguanide drug, commonly used in the treatment of

type II diabetes mellitus [14], especially in obese patients [15]. Besides its effects on glucose

metabolism, metformin displayed anti-cancer effects in various human cancer cell lines and

diabetic patients with various cancer types [16–18], including EC [19–21]. The effects of met-

formin on malignant tissue may be direct or indirect. Indirect effects include a reduction in

circulating glucose and insulin levels via a blockage of gluconeogenesis in the liver, which

diminishes insulin resistance due to an inhibition of the IGF1 signaling pathway in tumor cells

[22–24]. Direct anti-cancer effects of metformin target signaling pathways that are involved in

cellular growth and proliferation, e.g. by activation of adenosine monophosphate-activated

protein kinase (AMPK), a key regulator in energy homeostasis. Upon activation by liver kinase

B1 (LKB1), AMPK induces various tumor suppressor genes, e.g. phosphatase and tensin

homolog (PTEN), and thus downregulates growth-related pathways, especially mammalian

target of rapamycin (mTOR) signaling [25]. Alterations in the phosphoinositide 3-kinase

(PI3K)/protein kinase B (AKT/PKB)/mTOR pathway mediate EC growth and development

and can be caused by a loss of PTEN or mutations of PI3K family members [26–30]. Addition-

ally, metformin may act on growth and proliferation independent of AMPK, e.g. via downre-

gulation of the proliferation marker Kiel-67 antigen (MKI67), via the transcription factor

paired box gene 2 (PAX2), or via Ras-related guanosine triphosphate hydrolases (Rag

GTPases) [25, 31–33]. Growing attention was also given to the inhibition of mitochondrial

respiratory-chain complex 1 (NADH:ubiquinone oxidoreductase) by metformin in recent

years. Like AMPK, the complex is involved in cellular energy homeostasis, but a direct involve-

ment of AMPK in this mechanism is still a matter of debate [22, 34–36]. Further affected
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proteins and pathways like the inhibition of signal transducer and activator of transcription 3

(STAT3) [37], various routes of apoptosis induction [38], or regulation of microRNA

(miRNA) [39] have been suggested as potential targets for the biguanide drug, but the underly-

ing mechanism of action of metformin’s anti-cancer activity is still not completely understood.

In the present study, the effects of metformin on the human EC cell line HEC-1A were

investigated using an affinity proteomic approach. HEC-1A cells were derived from a moder-

ately differentiated grade 2 endometrial adenocarcinoma of a 71-year-old woman and are

characterized by a poor expression of estrogen receptor α (ERα) [40, 41]. However, HEC-1A

cells express ERβ and G protein-coupled estrogen receptor 1 (GPER) and therefore maintain a

low estrogen sensitivity. Therefore, HEC-1A cells represent a postmenopausal model with low

sensitivity for ß-estradiol (E2), which are able to form E2 from estrone (E1) to some extent

[42]. Cells were treated long-term with metformin over a period of 7 days and changes in the

expression pattern of 1,300 different proteins were compared to the expression in untreated

control cells as well as insulin-treated cells. Insulin treatment was incorporated into the study

in order to implement a model for insulin resistance and related hyperinsulinemia, conditions

that are often observed in obese and prediabetic patients [43]. Although the HEC-1A cell line

is characterized by low estrogen sensitivity, cells were additionally provided with E2 in order

to mimic increased estrogen levels in the present study. Elevated estrogen levels represent a

common risk factor for EC development and progression and are therefore essential for a real-

istic in vitro simulation of the environment in EC patients and women with increased risk for

EC development [9–11]. It was shown that E2 stimulates cellular proliferation, migration and

growth of HEC-1A cells independent of ERα via a GPER-mediated activation of diacylglycerol

kinase α (DGKα) [44]. With the presented data, we contribute to a better understanding of the

anti-cancer activity of metformin as well as its underlying mechanism of action in EC cells.

2. Methods

2.1. Cell culture and metformin treatment

The human EC cell line HEC-1A (moderately differentiated grade 2 adenocarcinoma;

HTB112, ATCC, Manassas, VA, USA) [40, 41] was cultured in Eagle’s minimal essential

medium (MEM, 5.5 mmol/L glucose, equivalent to 100 mg/dL; Sigma-Aldrich, Munich, Ger-

many) supplemented with 10% (v/v) charcoal-stripped fetal bovine serum (FBS; Gibco, Wal-

tham, MA, USA), 1% (v/v) non-essential amino acids (Sigma-Aldrich), 100 μg/mL

streptomycin and 100 U/mL penicillin G (Gibco) at 37˚C and 5% CO2 in a humidified atmo-

sphere. Cells were subcultured by detachment with 0.25% (v/v) trypsin/ethylenediaminetetra-

acetic acid (EDTA; Gibco) once a week and the medium was changed every 2–3 days.

Experiments were carried out in 25 cm2 cell culture flasks (Greiner, Kremsmünster, Austria)

with a seeding density of 1.0 × 105 cells in 5 mL medium in duplicates. After seeding, cells

were allowed to attach and grow for 24 h before treatment.

Cells were treated with either 0.5 mmol/L metformin or 100 ng/mL insulin in culture

medium supplemented with 10 nmol/L ß-estradiol (E2; all reagents purchased from Sigma-

Aldrich) for 7 days with medium changes and renewed treatments every 2 days. Control cells

were treated with substance-free medium supplemented with 10 nmol/L E2.

2.2. Cell lysis and protein extraction

Cells were detached from the substrate surface by incubation with trypsin after a treatment

period of 7 days. The medium was removed and substituted by fresh substance-containing

medium 2 h prior harvesting. Aliquots of 5.0 × 106 cells were transferred to 1.5 mL tubes,
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washed with ice-cold phosphate-buffered saline (PBS; Sigma-Aldrich) and pellets were col-

lected from three independent experiments and stored at -80˚C until further analysis.

2.3. Proteomic analysis

Proteins were extracted with scioExtract buffer (Sciomics, Heidelberg, Germany) and total

protein concentrations were measured with the bicinchoninic acid assay (BCA; Thermo Fisher

Scientific, Waltham, MA, USA) according to the manufacturer’s protocol. The samples were

labelled at an adjusted protein concentration with scioDye 1 and scioDye 2 (Sciomics) for 2 h.

The reaction was stopped by an exchange of the buffer to PBS and proteins were analyzed in a

dual-color approach using a reference-based design on nine scioDiscover antibody microar-

rays (Sciomics) targeting 1,300 different proteins with 1,830 antibodies in quadruplicates.

Arrays were blocked with scioBlock (Sciomics) on a Hybstation 4800 (Tecan, Maennedorf,

Switzerland) and afterwards incubated competitively using a dual-color approach. After incu-

bation for 3 h, slides were washed with PBSTT, rinsed with 0.1% (v/v) PBS as well as water and

subsequently dried with N2.

2.4. Data acquisition and bioinformatic analysis

Slide scanning was conducted using a PowerScanner (Tecan) with identical instrument laser

power and adjusted photomultiplier tube (PMT) settings. Spot segmentation was performed

with the GenePix Pro 6 software (Molecular Devices, San José, CA, USA). Acquired raw data

were analyzed using the linear models for microarray data (LIMMA) package [45] of R-Bio-

conductor [46] after uploading the median signal intensities. For normalization, a specialized

invariant Lowess method was applied [47]. For the sample analysis, a one-factorial linear

model was fitted with LIMMA resulting in a two-sided t-test or F-test, based on moderated sta-

tistics. All presented p values were adjusted for multiple testing by controlling the false discov-

ery rate according to Benjamini and Hochberg [48]. Differences in protein abundance

between samples were presented as log2-fold changes (log2FC). Proteins were defined as differ-

entially expressed, if |log2FC| were� 0.5 or the adjusted p values were� 0.05. Proteins were

defined as significantly differential for |log2FC|� 0.5 and a simultaneous adjusted p
value� 0.05. All differential proteins that met one or both criteria were graphically displayed

in an area-proportional Venn diagram using the BioVenn application [49] and were subjected

to STRING (search tool for the retrieval of interacting genes/proteins) analysis for the visuali-

zation of protein networks [50]. Protein clusters were identified for biological processes and

molecular functions based on the gene ontology (GO) database [51, 52]. The database for

annotation, visualization, and integrated discovery (DAVID) [53–55] was used for a more tar-

geted pathway analysis (GO and Kyoto encyclopedia of genes and genomes (KEGG) pathway

database [56]) that distinguished between proteins regulated by either metformin or insulin

treatment. Pathways with protein counts� 10% of the total number of analyzed proteins that

simultaneously displayed p values� 0.001 (from DAVID analysis) were presented.

3. Results

Hierarchical clustering of the samples was performed with the differential data set and a sepa-

ration between the groups was observed except for one control sample (Control_3), which

clustered with the insulin group (Fig 1D). Furthermore, one metformin sample (Metformin_3)

was identified as an outlier and removed from the proteomic analysis.

Compared to untreated control cells, metformin-treated cells differentially expressed 47

proteins (with |log2FC|� 0.5 and/or adjusted p value� 0.05), of which 15 proteins were exclu-

sively changed by the biguanide drug and not during hyperinsulinemia (Fig 1E and Table 1).
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A total of 15 out of 47 proteins met both of the above-mentioned criteria (log2FC|� 0.5 and

adjusted p value� 0.05) and thus were significantly differential expressed in comparison to

untreated control samples (Fig 1A, Table 1 and S1 Table). Additionally, differential changes in

the expression of 12 out of 47 proteins overlapped with insulin-induced changes compared to

control samples (Table 2) and 17 proteins were differentially expressed after metformin

administration when compared to an hyperinsulinemic environment (CCND2, CD2, CD63,

CD81, CDCP1, CTGF, F3, FGF2, GFAP, GUSB, HAVCR1, IRF4, PI3, PLAUR, PPIA, UBE2T,

VTCN1). A total of 3 proteins were differentially expressed in all 3 considered groups (HGF,

IL5, TFRC) (Fig 1E).

Compared to untreated control cells, insulin-treated cells differentially expressed 40 pro-

teins (with |log2FC|� 0.5 and/or adjusted p value� 0.05), of which 9 proteins were exclusively

changed by the pancreatic hormone and not metformin (Fig 1E and Table 1). A total of 11 out

of 40 proteins met both of the above-mentioned criteria (log2FC|� 0.5 and adjusted p
value� 0.05) in the insulin resistance model and thus were significantly differential expressed

in comparison to untreated control samples (Fig 1B, Table 1 and S1 Table). Additionally, 16

out of 40 proteins were differentially expressed due to insulin supplementation when com-

pared to metformin-treated HEC-1A cells (ACVRL1, AMFR, CDH5, CEACAM8, CTGF,

Fig 1. Proteomic analysis of endometrial cancer cells after treatment with metformin or insulin. Protein lysates of

HEC-1A cells were collected 7 days after repeated administration of 0.5 mmol/L metformin or 100 ng/mL insulin and

subjected to scioDiscover antibody microarrays targeting 1,300 different proteins. Untreated cells served as the

reference control sample. Proteins were defined as significantly differential for |log2FC|� 0.5 and an adjusted p
value� 0.05; n = 3. (A–C) Volcano plots for each treatment group display the distribution of proteins that were

differently expressed after metformin (A) or insulin (B) administration compared to control samples or between

metformin and insulin treatments (C). (D) Hierarchical clustering of samples based on differential protein data. One

sample (Metformin_3) was identified as an outlier and removed from proteomic analysis. (E) Venn diagram of

differentially expressed proteins after treatment with metformin or insulin (metformin/insulin vs. control) or between

both treatment groups (metformin vs. insulin).

https://doi.org/10.1371/journal.pone.0248103.g001

PLOS ONE Changes in protein expression due to metformin treatment and hyperinsulinemia

PLOS ONE | https://doi.org/10.1371/journal.pone.0248103 March 9, 2021 5 / 22

https://doi.org/10.1371/journal.pone.0248103.g001
https://doi.org/10.1371/journal.pone.0248103


EGF, EZR, IL4, MPP3, PLCG2, SELE, SIGLEC5, SORL1, TM9SF2, VEGFA, WNT2B) (Fig

1E).

Furthermore, 44 proteins were differentially expressed between the metformin- and insu-

lin-treated groups (with |log2FC|� 0.5 and/or adjusted p value� 0.05), of which only 12 pro-

teins were regulated by metformin and insulin in the same way (Fig 1E and Table 2). A total of

32 out of 44 proteins met both of the criteria (|log2FC|� 0.5 and adjusted p value� 0.05), of

which 8 proteins were significantly higher expressed after metformin treatment, whereas 24

proteins were significantly more prominent in insulin-treated cells (Fig 1C, Table 2 and S1

Table 1. Changes in protein expression after metformin treatment and insulin supplementation.

proteins (15) affected by metformin treatment (|log2FC|� 0.5), but not hyperinsulinemia (|log2FC| < 0.5)

upregulated: AKT3, BDNF, CCL8, CCL28, CXCL12, ITGA2B, MIF

downregulated: ARVCF, CD3E, CD9, CD22, IL17A, KLK3, MKI67, RAD51C

proteins (15) with significantly differential expression due to metformin treatment (|log2FC|� 0.5 and

p � 0.05)

upregulated: AKT3, CTSL, GFAP, GUSB, IL5, PI3, TFRC

downregulated: CCND2, CD63, CD81, IL1B, IL2, IL17A, IRF4, VTCN1

proteins (9) affected by hyperinsulinemia (|log2FC|� 0.5), but not metformin treatment (|log2FC| < 0.5)

upregulated: CTSD, PRSS3, SPP1

downregulated: CDH2, DKK3, FAF1, HBEGF, IGLC1, PGC

proteins (11) with significantly differential expression due to hyperinsulinemia (|log2FC|� 0.5 and p � 0.05)

upregulated: AMFR, CEACAM8, MPP3, PLCG2, SORL1, SPP1, VEGFA, WNT2B

downregulated: COL1A1, FAF1, IRS2

Compared to untreated control cells, metformin-treated cells differentially expressed 47 proteins, of which 15 were

exclusively changed by the biguanide drug (and not hyperinsulinemia). Insulin-treated cells differentially expressed

40 proteins, of which 9 were exclusively changed by the pancreatic hormone (and not metformin).

https://doi.org/10.1371/journal.pone.0248103.t001

Table 2. Changes in protein expression between metformin- and insulin-treated cells.

proteins (12) with differential expression compared to untreated controls (|log2FC|� 0.5) that were regulated

by metformin and hyperinsulinemia in the same way

upregulated: CD69, FCER2

downregulated: COL1A1, EGFR, FLOT1, IL1B, IL2, IL15, IRS2, KDR, RP9, S100B

proteins (8) with significantly differential expression compared to untreated controls (|log2FC|� 0.5 and

p � 0.05) that were significantly higher expressed after metformin treatment compared to hyperinsulinemia

CTSL, F3, GUSB, LGALS1, LGMN, NT5E, PI3, PLAUR

proteins (24) with significantly differential expression compared to untreated controls (|log2FC|� 0.5 and

p � 0.05) that were significantly higher expressed during hyperinsulinemia compared to metformin treatment

AMFR, CCND2, CD63, CDCP1, CDH5, CEACAM8, EGF, ERBB3, ETS2, EZR, GDF15, GPX4, IRF4, MPP3,

PLCG2, SELE, SIGLEC5, SORL1, SPP1, THBS1, TM9SF2, VEGFA, VTCN1, WNT2B

proteins (8) without differential expression compared to untreated controls (|log2FC| < 0.5), but with

significantly differential expression between metformin treatment and hyperinsulinemia

ERBB3, ETS2, GDF15, GPX4, LGALS1, LGMN, NT5E, THBS1

A total of 44 proteins were differentially expressed between metformin and insulin-treated groups, of which only 12

proteins were regulated in the same way. The remaining 32 proteins were regulated in different ways by metformin

and insulin, of which 8 proteins were significantly higher expressed after metformin administration, whereas 24

proteins were significantly more prominent during hyperinsulinemia. A total of 8 proteins were differentially

expressed between both treatments groups without notable changes compared to the respective untreated control

samples.

https://doi.org/10.1371/journal.pone.0248103.t002
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Table). A total of 8 out of 44 proteins were differentially expressed between both treatments

groups without notable changes compared to the respective untreated control samples (Fig 1E

and Table 2).

A total of 80 proteins were differentially expressed (|log2FC|� 0.5 and/or an adjusted p
value� 0.05) under one of the tested conditions (Fig 1E) and were plotted and further ana-

lyzed (Fig 2). A total of 17 proteins were significantly different from the control sample after

metformin treatment (F3, PLAUR: |log2FC|< 0.5), whereas insulin significantly changed the

expression of 15 proteins (EGF, EZR, TM9SF2: |log2FC|< 0.5). Of the 80 selected proteins, 34

proteins displayed a significantly different expression between both treatment groups (GFAP,

TFRC: |log2FC|< 0.5). The results of the antibody microarray analysis have been confirmed

for selected proteins, namely IL2 (ELISA) and COL1A1 (western blot analysis) (S1 Fig).

The 80 selected proteins were subjected to STRING analysis and protein networks were

generated. Characteristic biological processes and molecular functions that were affected by

the treatments were identified and proteins were assigned to clusters (Fig 3 and S1 Table). A

total of 53 proteins were allocated to four different clusters of biological processes, of which 12

proteins were summarized in a subset related to cell population proliferation (e.g. CD81,

MKI67, FGF2) (Fig 3A). Another two clusters contained 20 (e.g. CD63, CDH5, CEACAM8)

and 23 proteins (e.g. CDH2, COL1A1, VEGFA) that were associated with cell adhesion and

cell migration, respectively. A total of 29 proteins were related to immune response (e.g.

CD3E, IL2, IL4). The remaining 27 proteins are not directly related to any of the above-men-

tioned biological processes.

Additionally, 31 proteins were assigned to four different clusters related to molecular func-

tions, of which 12 proteins were summarized in a subset characterized by growth factor activity

Fig 2. Expression of selected proteins in endometrial cancer cells after treatment with metformin or insulin.

Differences in protein abundance between sample groups are presented as log2-fold changes (log2FC). Proteins were

selected based on the following criteria: |log2FC|� 0.5 and/or adjusted p value� 0.05. Proteins were defined as

significantly differential for |log2FC|> 0.5 and adjusted p values< 0.05; �p� 0.05, ��p� 0.01, ���p� 0.001,
����p� 0.0001 (metformin/insulin vs. control); #p� 0.05, ##p� 0.01, ###p� 0.001, ####p� 0.0001 (metformin vs.

insulin).

https://doi.org/10.1371/journal.pone.0248103.g002
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(e.g. CTGF, EGF, HGF) (Fig 3B). Another two clusters contained 14 (e.g. IL1B, IL2, IL17A)

and 3 proteins (CCL8, CCL28, CXCL12) that were associated with cytokine and chemokine

activity, respectively. A total of 13 proteins showed signal receptor activity (e.g. EGFR, ERBB3,

KDR). The remaining 50 proteins could not be assigned to any of the above-mentioned molec-

ular functions.

A more detailed pathway analysis of differentially expressed proteins distinguished between

effects caused by either metformin or insulin compared to untreated HEC-1A control cells

(metformin vs. control: 47 proteins; insulin vs. control: 40 proteins) and was carried out with

the DAVID database (Tables 3 and 4). GO and KEGG annotations were considered relevant, if

the following criteria were met: protein counts� 10% (metformin vs. control:� 5 counts;

insulin vs. control:� 4 counts) and p values� 0.001 (from DAVID analysis).

Analysis of cellular components after metformin treatment revealed that most regulated

proteins belonged to extracellular space/regions (19–22) and were mainly constituents of the

plasma membrane (8–12), of which some were related to focal adhesion (7) (Table 3). Molecu-

lar functions of the affected proteins included protein binding (37), growth-related functions

(6–7), and adhesion (5). The biological processes of the regulated proteins were related to cell

proliferation (10), particularly of B and T cells (5–6), and with involvement of the MAPK cas-

cade (6), cell adhesion, migration as well as angiogenesis (5–8), and immune (9) or inflamma-

tory (7) responses. Furthermore, KEGG pathway analysis revealed a link to PI3K/AKT

signaling (9), a pathway involved in quiescence, proliferation, and cancer. Cytokine-cytokine

receptor interactions (9), focal adhesion (7), cancer-related components of the extracellular

matrix, so called proteoglycans (8), and a link to hematopoiesis (9) were also identified as path-

ways that were targeted by metformin administration.

Likewise, analysis of cellular components after insulin treatment revealed that most regu-

lated proteins belonged to extracellular space/regions (16–25) and were mainly constituents of

the plasma membrane (5–11) or endosomes (8) (Table 4). Molecular functions of the affected

Fig 3. Network of proteins affected by metformin and insulin supplementation. Proteins that displayed a |log2FC|� 0.5 and/or

an adjusted p value� 0.05 (total number: 80) were subjected to STRING analysis and protein clusters for biological processes (A, 53

proteins) or molecular functions (B, 31 proteins) were identified with the GO database. (A) Biological processes were divided into

subsets related to cell population proliferation (red, 12 proteins), cell adhesion (blue, 20 proteins), cell migration (green, 23

proteins), and immune response (yellow, 29 proteins). A total of 27 proteins could not be assigned to any of the four biological

processes (not shown). (B) Identified molecular functions included growth factor (red, 12 proteins), cytokine (blue, 14 proteins),

chemokine (green, 3 proteins), and signal receptor activity (yellow, 13 proteins). A total of 50 proteins could not be assigned to any

of the four molecular functions (not shown).

https://doi.org/10.1371/journal.pone.0248103.g003
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proteins included protein binding (30), growth-related functions (7–8), and adhesion (5). The

biological processes of the regulated proteins were related to cell proliferation (11), particularly

of B cells (5), and with involvement of the MAPK cascade (7) and phosphatidylinositol (PI)

signaling (5), cell adhesion, migration as well as angiogenesis (5–7), signal transduction (11),

and immune responses (7). Furthermore, KEGG pathway analysis revealed a link to PI3K/

AKT signaling (9), proteoglycans (8), focal adhesion (7), hematopoiesis (5), and hypoxia-

inducible factor 1 (HIF1) signaling in a hyperinsulinemic environment.

Table 3. Pathway analysis for differentially expressed proteins that were affected by metformin compared to untreated HEC-1A control cells.

Identifier Description Counts p value

Cellular Component

GO:0005615 extracellular space 22 1.74×10−12

GO:0005576 extracellular region 20 3.47×10−9

GO:0070062 extracellular exosome 19 8.36×10−5

GO:0005887 integral component of plasma membrane 12 6.27×10−4

GO:0009897 external side of plasma membrane 10 2.60×10−9

GO:0009986 cell surface 8 3.87×10−4

GO:0005925 focal adhesion 7 4.26×10−4

Molecular Function

GO:0005515 protein binding 37 2.20×10−4

GO:0005125 cytokine activity 7 7.82×10−6

GO:0008083 growth factor activity 6 7.63×10−5

GO:0005178 integrin binding 5 1.89×10−4

GO:0005088 Ras guanyl-nucleotide exchange factor activity 5 2.67×10−4

Biological Process

GO:0008284 positive regulation of cell proliferation 10 3.29×10−6

GO:0006955 immune response 9 1.40×10−5

GO:0007155 cell adhesion 8 2.01×10−4

GO:0007166 cell surface receptor signaling pathway 7 8.53×10−5

GO:0006954 inflammatory response 7 4.92×10−4

GO:0030890 positive regulation of B cell proliferation 6 5.91×10−8

GO:0001934 positive regulation of protein phosphorylation 6 2.19×10−5

GO:0030335 positive regulation of cell migration 6 1.28×10−4

GO:0007267 cell-cell signaling 6 5.68×10−4

GO:0000165 MAPK cascade 6 6.53×10−4

GO:0042102 positive regulation of T cell proliferation 5 1.97×10−5

GO:0050731 positive regulation of peptidyl-tyrosine phosphorylation 5 6.76×10−5

GO:0045766 positive regulation of angiogenesis 5 2.50×10−4

GO:0006935 Chemotaxis 5 3.14×10−4

KEGG Pathway

hsa04640 hematopoietic cell lineage 9 6.42×10−9

hsa04060 cytokine-cytokine receptor interaction 9 5.10×10−6

hsa04151 PI3K/AKT signaling pathway 9 1.45×10−4

hsa05205 proteoglycans in cancer 8 3.25×10−5

hsa04510 focal adhesion 7 3.38×10−4

hsa04672 intestinal immune network for IgA production 5 1.12×10−4

hsa05323 rheumatoid arthritis 5 9.14×10−4

The DAVID database was used for pathway analysis and GO and KEGG pathway identifiers are shown for protein counts� 10% (metformin vs. control: � 5 counts) of

the total number of 47 analyzed proteins with p values� 0.001 (from DAVID analysis).

https://doi.org/10.1371/journal.pone.0248103.t003
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4. Discussion

Besides its effects on glucose metabolism, the insulin-sensitizing drug metformin displayed

anti-cancer effects in various cancer types [16–18], including EC [19–21]. Metabolic diseases

like type II diabetes mellitus and obesity, together with increased unopposed estrogen levels, as

seen in anovulatory women with PCOS as well as in women with prolonged reproductive

phases including early menarche and late menopause, are known risk factors for EC develop-

ment [9–11]. Metformin sensitizes the body to insulin effects and decreases hepatic gluconeo-

genesis in vivo, consequently leading to a reduction and thus to a normalization of blood

Table 4. Pathway analysis for differentially expressed proteins that were affected by hyperinsulinemia compared to untreated HEC-1A control cells.

Identifier Description Counts p value

Cellular Component

GO:0005615 extracellular space 25 1.96×10−18

GO:0005576 extracellular region 20 5.88×10−11

GO:0070062 extracellular exosome 16 2.88×10−4

GO:0005887 integral component of plasma membrane 11 4.86×10−4

GO:0048471 perinuclear region of cytoplasm 9 3.44×10−5

GO:0005768 Endosome 8 3.63×10−7

GO:0009986 cell surface 7 8.27×10−4

GO:0009897 external side of plasma membrane 6 7.63×10−5

GO:0016323 basolateral plasma membrane 5 5.23×10−4

GO:0045121 membrane raft 5 8.66×10−4

Molecular Function

GO:0005515 protein binding 30 3.77×10−4

GO:0008083 growth factor activity 8 4.35×10−8

GO:0005125 cytokine activity 7 1.77×10−6

GO:0005088 Ras guanyl-nucleotide exchange factor activity 6 4.28×10−6

GO:0005178 protein tyrosine kinase activity 5 1.78×10−4

Biological Process

GO:0008284 positive regulation of cell proliferation 11 5.79×10−8

GO:0007165 signal transduction 11 1.90×10−4

GO:0030335 positive regulation of cell migration 7 3.29×10−6

GO:0000165 MAPK cascade 7 2.47×10−5

GO:0006955 immune response 7 3.35×10−4

GO:0007155 cell adhesion 7 5.30×10−4

GO:0030890 positive regulation of B cell proliferation 5 1.73×10−6

GO:0048015 phosphatidylinositol (PI)-mediated signaling 5 9.39×10−5

GO:0045766 positive regulation of angiogenesis 5 1.29×10−4

GO:0001934 positive regulation of protein phosphorylation 5 1.89×10−4

GO:0018108 peptidyl-tyrosine phosphorylation 5 3.84×10−4

KEGG Pathway

hsa04151 PI3K/AKT signaling pathway 9 2.60×10−5

hsa05205 proteoglycans in cancer 8 6.50×10−6

hsa04510 focal adhesion 7 9.35×10−5

hsa04640 hematopoietic cell lineage 5 2.89×10−4

hsa04066 HIF1 signaling 5 4.21×10−4

The DAVID database was used for pathway analysis and GO and KEGG pathway identifiers are shown for protein counts� 10% (insulin vs. control:� 4 counts) of the

total number of 40 analyzed proteins with p values� 0.001 (from DAVID analysis).

https://doi.org/10.1371/journal.pone.0248103.t004
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glucose levels [57, 58]. In the present study, the direct effects of metformin on protein expres-

sion in the human EC cell line HEC-1A were investigated using an affinity proteomic

approach. Insulin treatment was incorporated into the study in order to implement a model

for insulin resistance, defined as normoglycemia reached by hyperinsulinemia, a condition

often observed in obese and prediabetic patients [43]. Additionally, cells were treated in the

presence of E2 to mimic increased estrogen levels, a common risk factor for EC development.

Protein lysates of HEC-1A cells were collected 7 d after repeated administration of 0.5 mmol/L

metformin or 100 ng/mL insulin and subjected to the scioDiscover antibody microarray tar-

geting 1,300 different proteins. The aim of this study was to perform a proteomic screening

after metformin as well as insulin treatment and to identify changes in protein expression that

potentially contribute to the anti-cancer effects and the mechanism of action of the biguanide

drug in EC.

Protein expression was compared to untreated controls and between metformin treatment

and insulin supplementation (Fig 1). A total of 80 differentially expressed proteins were

selected for further analysis based on most prominent changes (Fig 2). These proteins were

subjected to STRING analysis for the generation of protein networks (Fig 3). Clusters of pro-

teins were detected and proteins were assigned to four different biological processes including

cell population proliferation, cell adhesion, cell migration and immune response (Fig 3A).

Metformin has been found to act on these pathways in several studies before [24, 59–61].

Molecular functions of the affected proteins included growth factor, cytokine, chemokine, and

signal receptor activities (Fig 3B).

A more detailed pathway analysis (GO and KEGG) of differentially expressed proteins dis-

criminated between the effects caused by either metformin or insulin. The generated data

from the DAVID database revealed that both metformin treatment and hyperinsulinemia tar-

geted similar pathways (Tables 3 and 4). However, the regulated proteins varied among the

treatment groups compared to untreated controls. Metformin and hyperinsulinemia changed

the expression of extracellular proteins (e.g. metformin: CTSL, EGFR, IL5, KLK3; insulin: IL4,

IL15, PGC, SORL1). Molecular functions of differentially regulated proteins were mainly

related to binding, growth factor and immune-related cytokine activities (e.g. metformin:

EGFR, IL1B, IL5, IL17A; insulin: EGFR, IL4, IL5, VEGFA). Affected biological processes

included proliferation, adhesion, migration, angiogenesis and immune responses (e.g. metfor-

min: CD3E, IL5, IL17A, TFRC; insulin: CEACAM8, CTGF, EGFR, IL4, IRS2). KEGG analysis

identified adhesion, hematopoiesis and cancer-related proteoglycans as affected pathways (e.g.

metformin: CD9, CTSL, IL5, HGF; insulin: EGF, EZR, PLCG2, TFRC). Furthermore, changes

of proteins involved in PI3K/AKT signaling were detected (e.g. metformin: AKT3, CCND2,

EGFR, FGF2; insulin: COL1A1, IL4, EGFR, VEGFA), a pathway that is a well-known target of

metformin [16, 25, 59, 62, 63] and insulin [64–66].

Some proteins were regulated by metformin in a favorable way regarding tumor suppres-

sion and growth inhibition compared to untreated EC cells (Table 5), while they were not

changed in regards to hyperinsulinemia. The following proteins were significantly downregu-

lated by metformin, while no significant changes were detected in a hyperinsulinemic environ-

ment compared to the control: cyclin D2 (CCND2), cluster of differentiation 63 (CD63),

Table 5. Favorable and unfavorable changes in the expression of significantly differential expressed proteins after

metformin treatment.

significantly differential expressed proteins after metformin administration

favorable regulation: AKT3, CCND2, CD63, CD81, GFAP, IL5, IL17A, IRF4, PI3, VTCN1 (IL1B, IL2)

unfavorable regulation: CTSL, GUSB, TFRC

https://doi.org/10.1371/journal.pone.0248103.t005

PLOS ONE Changes in protein expression due to metformin treatment and hyperinsulinemia

PLOS ONE | https://doi.org/10.1371/journal.pone.0248103 March 9, 2021 11 / 22

https://doi.org/10.1371/journal.pone.0248103.t005
https://doi.org/10.1371/journal.pone.0248103


CD81, interleukin-17A (IL17A), interferon regulatory factor 4 (IRF4), and V-set domain con-

taining T cell activation inhibitor 1 (VTCN1, B7-H4). Downregulation of CCND2, a protein

known to cause growth arrest in the G1 cell cycle phase, and CD81, a protein relevant for

membrane organization, protein trafficking, cellular fusion and cell-cell interactions, contrib-

utes to a decreased proliferation, tumor progression, migration, and invasion [67–70]. Down-

regulation of CD63, a tetraspanin involved in the regulation of membrane protein trafficking,

leukocyte recruitment and adhesion, was found to reduce apoptosis inhibition as well as cell

survival [71], and to suppress vascular endothelial growth factor (VEGF) signaling as well as

related angiogenesis [72]. In addition, metformin reduced the expression of several proteins

related to immune responses, including VTCN1, a B7 family member involved in immune

regulation, as well as IRF4, a regulator of lymphocyte growth and differentiation, leading to

decreased tumor cell proliferation and metastasis [73–75]. Furthermore, IL17A is involved in

immune responses and inflammation [76], but also promotes migration and invasion in can-

cer cells [77]. Therefore, a metformin-induced downregulation of the cytokine has the poten-

tial to inhibit migration and invasion. Ambiguous results were obtained after metformin-

induced downregulation of IL1B and IL2. IL1B not only activates antigen-presenting cells,

thereby initiating an adaptive anti-tumor response, but also promotes tumor growth, metasta-

sis as well as angiogenesis upon activation by tumor-infiltrating macrophages. Therefore,

downregulation of IL1B may decrease carcinogenesis and metastasis, but may also be able to

block adaptive anti-tumor responses. Hence, IL1B-blocking drugs such as anakinra and cana-

kinumab are currently investigated as cancer therapeutics [78, 79]. The cytokine IL2 is impor-

tant for growth of T cells and natural killer cells, despite its regulatory effect in cell cycle

progression and tumor cell growth [80]. On the one hand, downregulation of IL2 has been

associated with decreased proliferation and carcinogenesis. On the other hand, no survival

benefits were observed after administration of IL2 in metastatic renal cancer and melanoma,

although the cytokine had led to a regression of metastatic tumors [81]. Therefore, the conse-

quences of metformin treatment and hyperinsulinemia for the cellular fate are difficult to

assess for these two interleukins and need to be further investigated to allow for clear

conclusions.

A significant protein upregulation compared to the untreated control was induced by met-

formin, but not by hyperinsulinemia, for immune regulatory factors such as IL5 and peptidase

inhibitor 3 (PI3, elafin (ELAF)). IL5 is involved in the regulation and recruiting of eosinophils,

which are critical for the suppression of tumor metastasis [82, 83], while an upregulation of

PI3 counterbalances the mitogenic effects of the PI3 substrate elastase from activated neutro-

phils in the tumor microenvironment, thus reducing proliferation, tumorigenesis and migra-

tion [84, 85] as well as increasing apoptosis in tumor cells [86]. In addition, the overexpression

of glial fibrillary acidic protein (GFAP), a component of intermediate filaments and hence a

part of the cytoskeleton, is believed to decrease cell proliferation and tumor growth [87]. Simi-

larly, upregulation of AKT3, an isoform of AKT and a major mediator of the cell cycle-regulat-

ing PI3K/AKT/mTOR signaling pathway, may decrease the motility and migration potential

of cells [88, 89]. All the changes discussed above may be involved in a reduction of tumor pro-

gression and metastasis when metformin treatment is applied.

Unfavorable effects of metformin treatment may involve the upregulation of beta-glucuron-

idase (GUSB, BGLR), cathepsin L (CTSL, CATL1), and transferrin receptor 1 (TFRC, TFR1)

(Table 5). GUSB expression has been correlated with increased invasion of tumor cells [90,

91], however, it remains unclear, whether an increased expression of GUSB is directly involved

in tumor progression or is just upregulated during the process and rather serves as a marker

for invasiveness [90]. Upregulation of CTSL leads to an increased degradation of components

of the extracellular matrix (ECM), namely collagen and elastin, resulting in enhanced invasion
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and metastasis [92, 93]. TFRC is involved in the uptake of the iron-transporting glycoprotein

transferrin into cells and helps meet the high demands for iron in tumor cells [94]. Hyperinsu-

linemia, however, did not change GUSB, slightly decreased CTSL expression and increased

TFRC levels, all of these changes being significantly different from the metformin effects.

The following proteins were changed in a favorable way regarding tumor suppression and

inhibition of invasiveness particularly under the influence of insulin (Table 6) and to a lesser

extent by metformin in comparison to untreated control cells: collagen type I alpha 1 chain

(COL1A1), and insulin receptor substrate 2 (IRS2). COL1A1, the major component of colla-

gen type I, which, in turn, constitutes the main structural ECM protein, promotes cell migra-

tion and metastasis [95, 96]. Thus, downregulation of the ECM component, as found to be

induced by both insulin and metformin in the present study, is considered as a desired effect.

IRS2, a cytoplasmic adaptor protein, mediates the effects of insulin as well as IGF1 and there-

fore plays a role in growth-promoting IGF1 receptor (IGF1R) signaling. Overexpression is

associated with increased glucose metabolism and tumor invasion as well as decreased overall

survival and disease progression in patients [97, 98]. Therefore, the downregulation of IRS2 by

hyperinsulinemia lowered tumor invasion and metastasis in the present study, which has also

been proven in an obese and diabetic mouse model [99, 100]. Ambiguous results were

obtained for carcinoembryonic antigen-related cell adhesion molecule 8 (CEACAM8) that

was expressed in higher amounts after insulin supplementation. CEACAM8, a cell adhesion

molecule expressed on the surface of neutrophilic granulocytes, has been associated with poor

prognosis and decreased survival in patients [101, 102]. However, when bound to CEACAM6,

upregulation of the CEACAM6/8 complex has been related to inhibition of vascular invasion

and cell proliferation [103]. Little is known about the role of CEACAM8 in cancer [102], mak-

ing it hard to assess the consequences of an insulin-induced CEACAM8 upregulation.

Besides the above-mentioned helpful effects observed in a hyperinsulinemic environment,

elevated insulin levels also promoted a series of unfavorable changes (Table 6) in EC cell pro-

tein expression, including the upregulation of autocrine motility factor receptor (AMFR),

FAS-associated factor 1 (FAF1), membrane palmitoylated protein 3 (MPP3), enzyme 1-phos-

phatidylinositol-4,5-bisphosphate (PIP2) phosphodiesterase gamma-2 (PLCG2, phospholipase

Cγ2), sortilin-related receptor 1 (SORL1), secreted phosphoprotein 1 (SPP1, osteopontin

(OSTP)), VEGFA, and wingless-type MMTV integration site family member 2B (WNT2B).

AMFR, a cell surface receptor for AMF, is involved in many processes including cell motility,

and AMFR upregulation has been related to enhanced tumor invasion and migration [104,

105]. WNT2B is involved in different cellular processes, including tumorigenesis, and WNT2B

overexpression has been correlated with cancer progression and metastasis [106–108]. Like-

wise, upregulation of MPP3, a membrane protein involved in cytoskeleton organization and

regulation of cell proliferation, signal transduction, and intracellular tight junctions has been

associated with enhanced cell migration and invasion [109]. PLCG2 catalyzes the hydrolysis of

PIP2 to form diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3), being important 2nd

messenger molecules that activate protein kinase C (PKC). PKC, in turn, is involved in signal

transduction related to proliferation, differentiation, growth, and motility, among others [110,

111]. Downregulation of PLCG2 led to decreased cellular viability and proliferation in an in

Table 6. Favorable and unfavorable changes in the expression of significantly differential expressed proteins dur-

ing hyperinsulinemia.

significantly differential expressed proteins after insulin supplementation

favorable regulation: COL1A1, IRS2 (CEACAM8)

unfavorable regulation: AMFR, FAF1, MPP3, PLCG2, SORL1, SPP1, VEGFA, WNT2B

https://doi.org/10.1371/journal.pone.0248103.t006
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vitro model [112], and therefore it is likely that a hyperinsulinemia-mediated PLCG2 upregula-

tion promoted cell proliferation. Overexpression of SPP1, a protein involved in ECM adhesion

during wound healing, is also associated with cancer progression, metastasis, and apoptosis

inhibition [113, 114], just like an upregulation of the transmembrane sorting protein SORL1

that promotes cell proliferation in cancer cells [115]. VEGFA mediates angiogenesis and vas-

culogenesis by regulation of endothelial cells and acts as a pro-survival factor of endothelial

cells during tumor angiogenesis [116]. VEGFA overexpression, as seen after insulin supple-

mentation in the present study, increased angiogenesis [116], while downregulation of

VEGFA was not only found to inhibit cell proliferation, migration as well as invasion, but also

to promote apoptosis [117]. Another unfavorable effect of hyperinsulinemia was identified by

a downregulation of FAF1 in the present study, which was found to increase tumorigenesis

[118], as FAF1 plays a role in various biological processes including apoptosis [119]. As met-

formin reduces peripheral hyperinsulinemia in vivo, the drug might be able to counteract the

observed negative insulin effects when administered to patients with high levels of the pancre-

atic hormone. In addition, metformin acted on the expression of the discussed proteins in the

opposite, more favorable way in the present study.

Several proteins have been expressed significantly different during metformin treatment

and hyperinsulinemia, of which AMFR, CCND2, CD63, CEACAM8, CTSL, GFAP, GUSB,

IRF4, PI3, PLCG2, SORL1, TFRC, VEGFA, VTCN1, and WNT2B have already been discussed

above. Further proteins, that did not show high changes compared to untreated control sam-

ples (|log2FC|< 0.5), but displayed highly significant differences (p� 0.001) among both treat-

ments will now be discussed in more detail (Table 7). Changes in protein expression by

metformin treatment displayed advantages over a hyperinsulinemic environment for the fol-

lowing proteins: erythroblastic oncogene B2 receptor tyrosine kinase 3 (ERBB3, human epi-

dermal growth factor receptor 3 (HER3)), ezrin (EZR), and transmembrane 9 superfamily

member 2 (TM9SF2). ERBB3 is a member of the epidermal growth factor receptor (EGFR)

family and is directly involved in the pro-proliferative PI3K signaling pathway [120]. EZR is

responsible for the linkage of the plasma membrane to the actin cytoskeleton and plays a key

role in adhesion and migration [121, 122]. Little is known about the functions of TM9SF2 to

date, but it is proposed to act as a channel or transporter [123]. Overexpression of ERBB3,

EZR, and TM9SF2 has been associated with cancer progression, increased proliferation and

metastasis or poor survival [120–122, 124, 125]. All three proteins were slightly downregulated

after metformin administration, but upregulated in a hyperinsulinemic environment, with sig-

nificant changes between both treatments. Therefore, metformin treatment is likely to pro-

mote anti-proliferative effects by the regulation of these proteins.

In contrast, the following proteins were regulated in a more favorable way during hyperin-

sulinemia compared to a treatment with metformin: coagulation factor III (F3, tissue factor

(TF)), galectin-1 (LGALS1, LEG1), 5’-nucleotidase ecto (NT5E, 5NTD), and plasminogen acti-

vator urokinase receptor (PLAUR, UPAR). Overexpression of F3, a protein that initiates

thrombin formation during hemostasis, effectively enhances angiogenesis as well as coagula-

tion-associated metastasis [126]. LGALS1 covers various biological functions depending on its

Table 7. Favorable changes in the expression of significantly differential expressed proteins between metformin

treatment and hyperinsulinemia.

significantly differential expressed proteins between metformin- and insulin-treated groups

favorable metformin

effects:

AMFR, CCND2, CD63, ERBB3, EZR, GFAP, IRF4, PI3, PLCG2, SORL1, VEGFA,

VTCN1, SPP1, TM9SF2

favorable insulin effects: CEACAM8, CTSL, F3, GUSB, LGALS1, NT5E, PLAUR, TFRC

https://doi.org/10.1371/journal.pone.0248103.t007
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cellular location, e.g. when expressed intracellularly, LGALS1 contributes to tumor progres-

sion via immune suppression, angiogenesis and metastasis [127, 128]. NT5E is involved in cel-

lular interaction with ECM proteins such as laminin and fibronectin and NT5E

overexpression is known to support tumor proliferation, migration, angiogenesis, and

immune escape [129]. The membrane-bound receptor PLAUR activates a cascade of extracel-

lular proteinases with functions in tissue remodeling upon binding of its ligand, urokinase-

type plasminogen activator (UPA), and upregulation of PLAUR promotes survival, migration

and metastasis of tumor cells in vitro [130]. In the present study, the expression of all four dis-

cussed proteins was increased after metformin administration and decreased during hyperin-

sulinemia compared to untreated controls, with significant changes between both treatments.

In these cases, metformin treatment is likely to suppress anti-proliferative effects and to favor

tumor progression by the regulation of these proteins.

5. Conclusion

The proteomic analysis of changes in the expression of 1,300 different proteins in the human

EC cell line HEC-1A revealed that both metformin treatment and insulin supplementation led

to anti-tumor as well as some tumor-promoting effects. A set of 80 proteins were selected for a

more detailed analysis based on most prominent changes. Metformin and insulin targeted

similar pathways and mostly acted on proteins related to proliferation, migration, and changes

in the tumor microenvironment, especially cellular immune response. The presented data

helps identify proteins affected by metformin treatment as well as insulin supplementation in

EC and allows for a better understanding of the mechanism of action of the anti-cancer prop-

erties of the biguanide drug, that are still not fully understood. However, further investigations

are necessary for selected proteins to confirm the observations and conclusions drawn from

the presented data after metformin administration, especially for proteins that were regulated

in a favorable way, i.e. AKT3, CCND2, CD63, CD81, GFAP, IL5, IL17A, IRF4, PI3, and

VTCN1. In the context of a hyperinsulinemic environment, as seen in obese women or PCOS

patients, further proteins might be of interest, i.e. AMFR, CCND2, CD63, ERBB3, EZR,

GFAP, IRF4, PI3, PLCG2, SORL1, VEGFA, VTCN1, SPP1, and TM9SF2, because sensitization

to insulin due to metformin administration might be able to counteract unfavorable effects on

their expression profile that have been induced by hyperinsulinemia.
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(log2FC).

(TIF)

S1 Raw images.

(PDF)
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