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Abstract: The design and application of Soft Sensors (SSs) in the process industry is a growing
research field, which needs to mediate problems of model accuracy with data availability and
computational complexity. Black-box machine learning (ML) methods are often used as an efficient
tool to implement SSs. Many efforts are, however, required to properly select input variables, model
class, model order and the needed hyperparameters. The aim of this work was to investigate the
possibility to transfer the knowledge acquired in the design of a SS for a given process to a similar
one. This has been approached as a transfer learning problem from a source to a target domain.
The implementation of a transfer learning procedure allows to considerably reduce the computational
time dedicated to the SS design procedure, leaving out many of the required phases. Two transfer
learning methods have been proposed, evaluating their suitability to design SSs based on nonlinear
dynamical models. Recurrent neural structures have been used to implement the SSs. In detail,
recurrent neural networks and long short-term memory architectures have been compared in regard
to their transferability. An industrial case of study has been considered, to evaluate the performance
of the proposed procedures and the best compromise between SS performance and computational
effort in transferring the model. The problem of labeled data scarcity in the target domain has been
also discussed. The obtained results demonstrate the suitability of the proposed transfer learning
methods in the design of nonlinear dynamical models for industrial systems.

Keywords: soft sensors; dynamical models; system identification; sulfur recovery unit; RNN; LSTM;
transfer learning

1. Introduction

Soft Sensors (SSs) are mathematical models of industrial processes able to estimate
hard-to-measure variables (i.e., quality variables) by exploiting their dependence on easy-
to-measure variables (i.e., quantity variables) [1,2]. SSs are widely adopted in industrial
processes to improve process monitoring and control. Real-time quality variable esti-
mation is necessary when quality variables are measured with large delays or require
time-consuming laboratory analysis. In these cases, the design of an SS allows for increas-
ing the performance of feedback control strategies. SSs are widely diffused in process
industries, such as refineries [3], chemical plants [4], cement kilns [5], power plants [6],
pulp and paper mills [7], food processing [8], polymerization processes [9], or wastewater
treatment systems [10].

SS implementation often requires the use of black-box nonlinear dynamical identifi-
cation strategies, which uses data collected from the distributed control system [11] and
stored in the historical database. To achieve this aim, machine learning (ML) techniques
are mostly used, ranging from Support Vector Regression [12], Partial Least Square [13],
and classical multilayer perceptrons [1,14–17] to more recent deep architectures, such as deep
belief networks [9,18–20], long short-term memory networks (LSTMs) [21,22], and stacked
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autoencoders [23–26]. Bayesian approaches [27], Gaussian Processes Regression [28], Extreme
Learning Machines [29], and adaptive methods, [30–32] are also used.

Data-driven SS design can be summarized in the following steps, which are typical of
the system identification procedure [33]:

• data acquisition, selection, and pre-processing;
• model class selection;
• model order selection;
• model identification; and
• model validation.

The design phase involves a lot of open problems and time-consuming
tasks [34,35]. Among these we can mention: input-variable choice, model-class selec-
tion (e.g., linear/nonlinear, static/dynamic, time-variant/invariant), model-order design,
model-structure, and hyperparameters selection. Another relevant problem is known as
labeled data scarcity. In fact, conventional supervised learning algorithms, usually adopted
in SS design, require the use of labeled data. While quantity variables are sampled with a
fast rate, the corresponding quality variables are, in general, infrequently measured. This is-
sue can be addressed by using semi-supervised learning, which exploits unlabeled data in
an unsupervised training phase and labeled data in a supervised fine-tuning [19,36,37].

Since some industrial processes present a high nonlinearity and intrinsic dynamical
dependencies between input and output variables, feed-forward artificial neural networks
(ANNs) require the use of tapped delay lines (TDLs) for the I/O variables [1].

As an alternative, Recurrent Neural Networks (RNNs) can be used to catch temporal
dynamics behaviors. In such networks, connections between hidden units are included
between the previous and same level(s), making their output influenced by both the current
and previous time instants. RNNs can therefore extract the sequential information available
in the input data and can show better performance when modeling industrial processes.

To catch long-term dependencies among the variables, Long Short-Term Memory
(LSTM) networks have been introduced. They contain memory cells that can store informa-
tion for long periods of time during the training phase.

A common problem present in recurrent networks consists of a large number of
hyperparameters to be optimized. Hyperparameters directly control the behavior of the
training algorithm, and their correct setting strongly impacts the performance of the final
model. Different hyperparameter optimization searching strategies are proposed in the lit-
erature, such as grid search, genetic algorithms, Bayesian Optimization, or Tree-structured
Parzen estimators [38–40]. However, their optimization is an extremely computational and
time-consuming task.

The outcome of the SS design process is a model tailored for the specific dataset
adopted in the learning procedure, which should, therefore, cover all the working points of
the plant. In general, the obtained model is not scalable without an adaptation to other
processes. Developing SSs for a similar process requires, therefore, a new design procedure.

As an effort to reduce the computational time required to design an SS for similar
processes, model transferability plays a key role. Transfer learning (TL) focuses on stor-
ing the knowledge gained while learning a task from a source domain and utilizing it
for a different but related problem, defined as the target domain [41]. TL techniques
can be divided into three classes: inductive, transductive, and unsupervised transfer
learning [42,43]. In the inductive TL, labeled data in the target domain are required to
induce a predictive model (here named fT) to be used in the target domain. In the trans-
ductive TL methods, no labeled data in the target domain are available, while they are
available in the source domain. The unsupervised transfer learning focuses on solving
unsupervised learning tasks in both the source and the target domains, such as clustering
and dimensionality reduction. No labeled data are used. A scheme of the differences
among the TL methods is reported in Figure 1.

TL methods are widely diffused in applications, such as classification, image process-
ing, and natural language processing, as described in the next section. There actually exist
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few studies that investigate TL technique applications on industrial processes, both for SS
design [44] and fault detection and diagnosis [45,46].

In our work, we focus on inductive transfer learning for SS design, when a limited
number of labeled data is available in the target domain. Two different strategies are
proposed. The first strategy, called the fine-tuned transferred model (FTTM), consists of
performing only a fine-tuning of the network weights of the optimal model designed in
the source domain, with the dataset belonging to the target domain. The second strategy,
called the transferred hyperparameters model (THM), is based on adopting only the
optimal hyperparameters identified in the source domain to train the SS in the target
domain, starting from random initial weights. RNN- and LSTM-based SSs are considered
and compared in regard to transferability properties. The use of the proposed techniques
allows, at the same time, to reduce the time needed to design a SS for a similar process and
to cope with the problem of labeled data scarcity.

Figure 1. Basic flow of transfer learning. Source input (XS), source output (YS), target input (XT),
and target output (YT).

The transferability of SSs between two similar industrial processes is considered in our
work. A Sulfur Recovery Unit (SRU) from a refinery located in Sicily (Italy) is considered
as a case study. It is a highly nonlinear process with dynamic dependencies between
input/output variables [47]. It consists of different lines that work in parallel. RNN and
LSTM-based SSs have been designed for two lines of the process (i.e., SRU line 2 and SRU
line 4). The transferability of models designed for SRU line 4 (i.e., the source domain) to
SRU line 2 (i.e., the target domain) has been investigated.

The main contributions of this work are summarized as follows: (1) The TL method-
ologies are applied to SS design, which is a topic rarely considered in the TL research
field. (2) The transferability of nonlinear dynamical models is considered. This aspect
is relevant both in the field of SS design which, often, considers static models and in the
TL applications. (3) Two dynamical neural models (i.e., RNN and LSTM) are designed
and compared in regard to model accuracy and transferability. The trade-off between the
performance and computational time required to transfer the SS from the source to the
target domain is analyzed. (4) Two different TL approaches are presented and discussed.
Both the adopted techniques have the advantage of avoiding the time-expensive procedure
of hyperparameters selection for the target dataset. (5) A real-world industrial case study
is considered. (6) The presented framework is successfully applied in two different sce-
narios, to outline the advantages in presence of labeled data scarcity in the target domain.
To underline this aspect, analyses including datasets with similar size and datasets with a
reduced amount of data for the target domain are reported.

The remainder of this paper is organized as follows: In Section 2, the state of the art on
TL is reported; in Section 3, RNN and LSTM structures are explained in details, along with
the SS implementation; in Section 4, the proposed TL methods are introduced; in Section 5,
the case study is presented, and the numerical results of the TL procedures are reported
and discussed. Conclusions are finally drawn in Section 6.
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2. Related Works

Transfer learning is a relevant topic in the ML field, especially referring to deep
learning strategies. Most of the theoretical results and applications belong to the area of
classification, including fault detection applications. Only a few results are available in
regard to SSs and regression estimation. In this section, some related works are briefly
introduced. Examples of applications in different research areas, such as image classifi-
cation [48,49], text classification [50], and biometrics [51], can be found in the literature.
In Reference [52], a new multi-source deep transfer neural network algorithm, based on a
convolutional neural network (CNN) and a multi-source TL technique, is proposed and
evaluated on several classification benchmarks. A systematic analysis of computational
intelligence-based TL techniques is reported in Reference [53]. Methods based on neural
networks, Bayesian systems and fuzzy logic are described in the paper, along with applica-
tions in the field of language processing, computer vision, biology, finance, and business
management. A structured description of the application fields and methodologies related
to TL can be, also, found in Reference [41,42,53,54]. Some metrics suitable to evaluate the
distance between domains are reported in Reference [43]. Applications on the industrial
field, related to TL for process monitoring, are mostly dealing with fault detection tasks.
In Reference [55], an application to a gearbox fault dataset, based on CNNs, is presented.
In the paper, a CNN is trained on large datasets to learn hierarchical features from raw
data. Both the architecture and weights of the pre-trained CNN are then transferred to a
new task using a fine-tuning procedure. Different TL strategies have been compared to
analyze feature transferability from the different levels of the structure. In Reference [56],
a TL method for gas turbine fault diagnosis based on CNNs and support vector machines
is proposed. The scarcity of information related to faults has been solved by applying
a feature mapping method, reusing the internal layers of a CNN trained on the normal
dataset. Another interesting approach of TL applied to CNNs is reported in Reference [57].
The proposed method addresses a qualitative tool condition monitoring problem, using
computer vision, CNNs and TL approaches, to teach the machines the conformity of the
component-producing tool. In Reference [58], a fault diagnosis method based on variational
mode decomposition, multi-scale permutation entropy and feature-based TL is proposed.
The methodology was applied to the vibration signal of wind turbines. In Reference [59],
a linear discriminant analysis (LDA)–based on Deep transfer network is proposed for fault
classification of chemical processes as the Tennessee Eastman benchmark and real hydroc-
racking processes. A maximum mean discrepancy based loss function is used to extract
similar latent features and reduce the discrepancy of distributions between the source and
target data. Domain-Adversarial Neural Networks are introduced as a domain adaptive
TL technique in Reference [60], to implement transferable fault diagnosis. A fault diagno-
sis system is also developed in Reference [61] using an LSTM model, based on instance
TL, to reduce the differences in the probability distributions of the source and the target
domains. Other applications in the field of fault diagnosis are reported in Reference [62,63].
A few applications to SS design have been proposed in very recent works. In Reference
[64], a domain adaptation, soft sensing framework for multi-grade chemical processes is
discussed. A limited number of labeled samples is available for some operating grades.
An adversarial transfer learning SS is proposed to reduce the data distribution discrepancy
between different grades, therefore allowing for a supervised SS development. A similar
approach, based on extreme learning machine, has been proposed in Reference [65] to
develop an SS for a simulated continuous stirred tank reactor and an industrial polyethy-
lene process. In Reference [25], a data-driven model based on deep dynamic features
extracting and transferring methods are applied to build a virtual sensor for cement quality
prediction. A large unlabeled dataset is used to extract nonlinear dynamic features, along
with a limited labeled dataset. The features are then transferred to a regression model,
called the eXtreme Gradient Boosting, for output prediction. A model updating strategy
is also proposed to include online data samples. In Reference [66], an instance-based TL
method is combined with a boosting decision tree. The procedure is adopted to estimate
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wind power generations and uses correlated zones of the source domain to realize an
instance-based transfer learning.

3. Theory Fundamentals

In this section, a description of the RNN and LSTM architectures, used to identify
the data-driven nonlinear dynamical models, is reported. Moreover, the details on the
structures adopted in this work are provided.

3.1. Recurrent Neural Networks

RNNs [67] are widely used to capture the temporal dynamic behavior in time se-
quences [68]. RNNs can make use of past states and past information for the present
state estimation, making them suitable for sequences processing, such as natural language,
handwriting recognition, and speech recognition [69–71]. Such a property makes this type
of networks able to identify dynamical models of industrial processes.

The intrinsic dynamic structure of the RNN allows it to avoid the regressor selection
procedure needed when using static networks. It is also not necessary to feed past I/O
samples into the input layer. RNNs have the same structure of multilayers perceptrons,
with the difference that, in an RNN, neuron connections are included between the previous
levels and in the same level, as well. This forms a directed graph along a temporal sequence
since, at each instant, the nodes connected through a recurring connection receive inputs
both from the current and previous state, based on the dependencies created in the network.

The connections between the output of a layer and the input of the previous one
are performed by applying a real-valued time-delay between them. Such delays are
implemented with TDL blocks. Figure 2 shows an RNN with two hidden layers with
input delays TDLin, internal recurrent connections delays TDLint and output recurrent
connections delays TDLout.

Figure 2. Block scheme of an Recurrent Neural Network (RNN) with two hidden layers with delays
and recurrent connections.

Given a layer `, its output a`(t) is given by

a`(t) = f `(n`(t)), (1)
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where f ` is the activation function, particularly the hyperbolic tangent tanh in the hidden
layers (i.e., f 1, f 2) and the linear function in the output layer (i.e., f 3). The input signals
n`(t) are given by the following equations:

n1(t) = IW1,1[p(t); p(t− 1); ...p(t− TDLin)]

+LW1,1[a1(t− 1); ...a1(t− TDLint)]

+LW1,2[a2(t− 1); ...a2(t− TDLint)]

+LW1,3[a3(t− 1); ...a3(t− TDLout)] + b1;

(2)

n2(t) = LW2,1a1(t) + LW2,2[a2(t− 1); ...a2(t− TDLint)]

+LW2,3[a3(t− 1); ...a3(t− TDLint)] + b2;
(3)

n3(t) = LW2,2a2(t) + LW3,3[a3(t− 1); ...a3(t− TDLint)] + c. (4)

Matrix IW1,1 contains the weights of the inputs; LW1,1 is the internal feedback weight
matrix in layer 1; LW1,2 is the external feedback weight matrix in layer 2; LW1,3 is the
external feedback weight matrix in layer 3 (i.e., the output layer). LW2,1 is the layer
weight matrix between layer 2 and layer 1; LW1,2 is the internal feedback weight matrix
in layer 2. LW3,2 is the matrix of the weights of the output layer; LW3,3 is the matrix of
the internal feedback weight in the output layer. The vectors b1, b2, and c contain the
bias values for layers 1 and 2 and the output layer, respectively. In particular, the vector
[p(t); p(t− 1); ...p(t− TDLin)] is built from the input vector at time t and the consecutive
tapped input delays; the vectors [a`(t − 1); ...a`(t − TDLint)] are built from the layer `
output delayed in the value of TDLint (or TDLout) to itself.

The RNNs are here trained both with the Levenberg-Marquardt (LM) algorithm [72]
and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [73].

However, standard RNNs have difficulties in learning long-term dependencies, be-
cause they are easily affected by the vanishing or exploding gradient problem [74]. This is-
sue occurs when the gradient becomes vanishingly small, at the point of preventing the
weights from changing value, or vice-versa, when it increases exponentially, making the
derivatives diverge.

3.2. Long Short-Term Memory Network

LSTM networks have been introduced as a variant to standard RNNs to deal with
such issues [75]. Basic hidden units in RNNs are replaced with LSTM units, making the
network handle the vanishing and exploding gradient problem when learning long-term
dependencies [76]. LSTM units consist of memory cells and three nonlinear gates that
selectively retain current information that is relevant and forget past information that is not
relevant. This type of network is mostly used in language modeling, time series prediction,
speech recognition and video analysis [77–80]. An LSTM unit is shown in Figure 3.

Figure 3. Working diagram of a long short-term memory network (LSTM) unit, showing how the
gates forget, update, and output both cell and hidden states.
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Given a time instant t, the state of the unit consists of the hidden (or output) state
h(t), which contains the output for that time instant, and the cell state c(t), which contains
information learned from previous time instants. They are computed using h(t− 1) and
c(t − 1) from the previous time step. At each time step, c(t) is updated by adding or
removing information using gates. The blocks that form the LSTM unit and control the
next state are the following:

• Forget gate ( f ), that controls the level of cell state reset;
• Cell candidate (g), that adds information to cell state;
• Input gate (i), that controls the level of cell state update;
• Output gate (o), that controls the level of cell state added to the hidden state.

The following are the learnable parameters of an LSTM layer:

1. Input weights: Wi, W f , Wg, Wo;
2. Recurrent weights: Ri, R f , Rg, Ro;
3. Biases: bi, b f , bg, bo.

The states of the blocks of the LSTM unit at the time instant t can be written as:

f (t) = σg[W f X(t) + R f h(t− 1) + b f ];

g(t) = σc[WgX(t) + Rgh(t− 1) + bg]; (5)

i(t) = σg[WiX(t) + Rih(t− 1) + bi];

o(t) = σg[WoX(t) + Roh(t− 1) + bo];

where σg denotes the sigmoid function, and σc the hyperbolic tangent function tanh.
The cell state c(t) and the output state h(t) at each time instant are updated as:

c(t) = f (t)� c(t− 1) + i(t)� g(t); (6)

h(t) = o(t)� σc(c(t)),

where � denotes the Hadamard product, the pointwise multiplication operator for two
vectors.

Given the learning rate α > 0, the standard SGD algorithm updates the network
parameters θ (weights and biases) to minimize the loss function E(θ) by taking small steps
at each iteration k in the direction of the negative gradient of the loss as follows:

θk+1 = θk − α∇E(θk). (7)

SGDM adds momentum to reduce the possible oscillation along the path of steepest
descent towards the optimum.

θk+1 = θk − α∇E(θk) + γ(θk − θk−1). (8)

The term γ determines the contribution of the previous gradient step to the current
iteration. Even though Adam optimizer [81] is more computationally efficient, SGDM
showed better performances in our applications.

3.3. Model Description

In this section, some notations and technical details that will be used in the following
of the paper are reported.

Let us denote the model implemented by a generic network (i.e., RNN and LSTM)
y = f (w, h), where w is a vector containing all the network weights and biases, and h
contains all the model hyperparameters, thus describing the network structure. In the case
of RNN, the hyperparameters are detailed as follows:

1. Number of input delays;
2. Number of internal delays;
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3. Number of output delays;
4. Number of hidden layers;
5. Number of neurons for each hidden layer;

The LSTM model training involves the optimization of the following hyperparameters:

1. Number of hidden units in the LSTM layer;
2. Number of hidden neurons in the fully connected layer;
3. Dropout probability value.

The Dropout, a technique to prevent over-fitting in deep neural networks, has been
applied. It consists of randomly disconnecting some neurons by a certain percentage
during the training, by setting their outgoing edge to 0 at each epoch. This way, at each
update during the training phase, each neuron has a probability to be dropped out and
miss the training [82]. Among the available hyperparameters searching strategies, a grid
search approach was preferred in both the RNN and LSTM cases.

Model performances were evaluated through CC, MAE, and RMSE between the actual
output and the predicted output over test data as follows:

CC =
cov(Y, Ŷ)

σYσŶ
, (9)

MAE =
∑N

i=1|yi − ŷi|
N

, (10)

RMSE =

√
∑N

i=1(yi − ŷi)2

N
, (11)

where cov(·) is the covariance, σ the standard deviation, N is the number of samples, yi and
ŷi are the actual and the predicted output samples, and Y and Ŷ are the corresponding
vectors. To select the optimal SS and to compare the different methodologies here reported,
the CC is considered.

The experiments were performed on a laptop with an Intel i5 @2.4GHz CPU and 8 GB
RAM. The software environment is Mathworks MATLAB 2020a on Windows 10 Pro 64-bit.

4. Methodology

In this section, the proposed TL methods are described. The methods are applied
in the hypothesis that a limited number of labeled data is available in the target domain.
Therefore, they can be classified as inductive TL methods. Two different strategies are
proposed. The FTTM consists of performing only a fine-tuning of the optimal SS structure
designed in the source domain, using the target domain dataset. The THM adopts only
the optimal hyperparameters identified for the source domain to train the SS for the
target domain.

4.1. Fine-Tuned Transferred Model

The FTTM for TL is a well-known procedure often adopted, particularly in deep neural
structures, for classification tasks. A typical example is the adaptation of complex CNN
classifiers to different tasks, reusing a feature extraction layer, pretrained on a different
domain, while adapting the final classification layer to the new domain [55]. Concerning
SS design, the objective is to transfer the information related to the dynamical equation
structure, which represents, in a black-box approach, the model of the considered system.
When a similar process needs to be identified, the TL procedure allows to leave out a
number of time-consuming phases. In particular, input-variable choice, model-class selec-
tion, model-order design, model-structure, and hyperparameters selection are transferred
from the source to the target domain. As stated in the previous section, this information is
contained in the vectors wS and hS, where the subscript S states for the source domain.
They have been obtained identifying the model in the source domain (i.e., xS, yS) with a
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complex optimization phase. In detail, both the expert knowledge, the correlation analysis
and a trial and error procedure have been used to select the model inputs. A grid search
has been applied to select the optimal hyperparameters on the basis of a statistical analysis
of the obtained performance.

In the FTTM approach, the weight matrix, previously trained for the source domain,
is, therefore, used as an initial state for the fine-tuning and only a very limited number
of training cycles is performed on the target domain dataset (i.e., xT , yT). The FTTM
procedure is briefly reported in Algorithm 1.

Algorithm 1: FTTM Algorithm.

Load fS(wS, hS);
Load xT , yT ;
Fine-tune fS(wS, hS) with xT , yT ;
Test fT(wT, hS)
Compute MAE, RMSE, CC;

4.2. Transferred Hyperparameters

This second procedure does not use the knowledge contained at the level of the
network weights. In fact, the network structure optimized to design the SS in the source
domain is trained with the dataset of the target domain, starting from random initial
weights. The only information transferred from the source domain is therefore contained
in the hyperparameter vector (i.e., hs) which contains information on the model order
and structure.

The THM requires full training of the network and, therefore, a greater computational
effort with respect to FTTM. In addition, it has to be noticed that, to avoid overfitting
phenomena, an adequate number of labeled training data in the target domain is required.
This aspect makes this procedure less useful in the case of labeled data scarcity. The THM
procedure is briefly reported in Algorithm 2.

Algorithm 2: THM Algorithm.

Load hs;
Load xT , yT ;
Inizialize fT(w, hS)
Train fS(w, hS) with xT , yT ;
Test fT(wT, hS)
Compute MAE, RMSE, CC;

5. Simulation Results

In this section, the proposed procedure is applied to an industrial case study. Both the
TL approaches (i.e., FTTM and THM) and the proposed neural approaches (i.e., RNN and
LSTM) are applied. The obtained performances are compared in regard to the prediction
accuracy and the computational complexity required to transfer the SS to a different process.

5.1. Case of Study: The Sulfur Recovery Unit

The considered process is an SRU desulfuring system of a refinery located in Sicily,
Italy, and detailed in Reference [47]. SRUs are employed in refineries to recover elemental
sulfur from gaseous hydrogen sulfide (H2S), usually contained in by-product gases de-
rived from refining crude oil and other industrial processes. This is done through a gas
desulfurizing process. The process is of fundamental importance, being H2S a dangerous
environmental pollutant. The SRU consists of four parallel sub-units, called sulfur lines,
as depicted in Figure 4.
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Figure 4. The industrial Sulfur Recovery Unit (SRU) taken into account contains four parallel
processing lines.

Each SRU line takes as inputs two kinds of acid gases: MEA gas rich in H2S, and SWS
(Sour Water Stripping) gas rich in H2S and ammonia (NH3). They are burnt in reactors in
two separate chambers along with a suitable airflow supply, to regulate the combustion.
The final gas stream contains residuals of H2S and sulfur dioxide (SO2). In Figure 5,
a simplified working scheme of an SRU line is shown.

The sensors used to measure the concentrations of both H2S and SO2 in the tail gas
are often taken off for maintenance, making an SS needed to estimate their concentrations.

Figure 5. Simplified working scheme of an SRU line.

The input and output variables used in the models are listed in Table 1.

Table 1. Input and output variables adopted in the SRU line models.

Variable Description

x1 gas flow in the MEA chamber
x2 air flow in the MEA chamber
x3 secondary final air flow
x4 total gas flow in the SWS chamber
x5 total air flow in the SWS chamber
y1 H2S concentration (output 1)
y2 SO2 concentration (output 2)

The available datasets consist of 14,401 samples from SRU line 2 and 10,081 samples
from SRU line 4. Samples were collected with a sampling period of one minute. Outliers
were manually removed by interpolation and the datasets were normalized with z-score
normalization. The first 80% of the data are used for training and validation, and the
remaining 20% for the test phase. SRU line 4 is considered as the source domain, whereas
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SRU line 2 represents the target domain. To simulate the scenario of labeled data scarcity,
only 20% of the target domain training data was used. Figure 6 describes the simulations
reported in the following to validate and compare the TL-approaches’ behavior.

Figure 6. Transfer learning (TL) strategies applied to the SRU lines.

5.2. Design of the Optimal SSs

The first SS in the source domain is based on RNN. Hyperparameter optimization
is performed through a grid search. For each combination, five models are considered to
apply a statistical analysis. The final evaluation is performed on the test dataset. TDLs are
designed containing up to five time steps, with 125 possible delays combinations. RNN
structures, with a maximum of three hidden layers, are considered, adopting the same
number of neurons for each layer, in the range [2–5]. For sake of comparison, an SS has
also been designed from scratch for the target domain, using the same ranges for the
hyperparameters.

For each SS, the searching strategy required about 100 h of computational time.
The training for the SS design has been performed with the BFGS algorithm. Figure 7
shows the statistical distribution of the CC of the output 2 of SRU line 2, between the
predicted output and the measured one, sf function of the number of layers, and neurons in
the network topology. The final RNN model hyperparameters for the optimized SS in the
source and target domains are reported in Table 2. The final model for the source domain
(i.e., SRU line 4) has been trained in 18 min and required 300 training epochs. The final
model for target domain (i.e., SRU line 2) was trained in about 29 min, with the same
number of epochs.

Figure 7. Statistical distribution of the CC on test data for different RNN network architectures.
The output 2 for SRU line 2 is considered. The circles indicate the mean value, whereas the bars
represent the standard deviation. The final selected structure is highlighted.
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Table 2. Optimal RNN models hyperparameters for the source and target domain Soft Sensors (SSs).

Delays Hidden Layers

Line 2
Input: 1

Internal: 2
Output: 2

[4,4]

Line 4
Input: 4

Internal: 5
Output: 1

[3,3]

The second set of SSs, based on the LSTM approach, has been designed by using a grid
search in the following hyperparameters ranges: the number of hidden units of the LSTM
layer is varied between 100 and 200, with a step size of 25; the number of hidden neurons in
the fully connected layer between 20 and 100, with a step size of 20; the dropout probability
between 0.5 and 0.8, with a step size of 0.1. For each of the 100 possible combinations,
five networks have been generated and trained for 150 epochs with the SGDM algorithm.
The simulations took about 90 h for each SS. Figure 8 shows the statistical distribution of
the CC for output 2 of the SRU line 2. The final selected optimal structures are reported in
Table 3.

Figure 8. Statistical distribution of the CC on test data for different LSTM network architectures
for the design of the SS modeling the output 2 of SRU line 2. The circles indicate the mean value,
whereas the bars represent the standard deviation. Hyperparameter values are reported in the three
colored bars below, and the chosen combination is highlighted.

Table 3. Optimal LSTM models hyperparameters.

# LSTM Units # FCL Units Dropout Prob.

Line 2 200 80 0.7
Line 4 175 100 0.5

The final models took 150 training epochs for SRU line 2, executed in 18 min, and 200
epochs for SRU line 4, in 16 min.

The performance for both RNN and LSTM-based SSs are reported in Table 4 (SRU
line 2) and Table 5 (SRU line 4). Figure 9 shows the network outputs and the measured
one for output 1 of the SRU line 2 and output 2 of the SRU line 4 for both the RNN and the
LSTM models.
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Table 4. Optimal RNN and LSTM models for the SRU line 2 performance on the test dataset.

Line 2 RNN LSTM
Output 1 Output 2 Output 1 Output 2

CC 0.84 0.84 0.72 0.72
MAE 0.13 0.027 0.12 0.16

RMSE 0.62 0.67 0.77 0.89

Table 5. Optimal RNN and LSTM models for the SRU line 4 performance on the test dataset.

Line 4 RNN LSTM
Output 1 Output 2 Output 1 Output 2

CC 0.90 0.91 0.77 0.85
MAE 0.02 0.03 0.1 0 0.01

RMSE 0.56 0.44 0.70 0.53

Figure 9. Network outputs and measured ones comparison for: the SRU line 2 output 1 with the
RNN (a) and the LSTM model (b); the SRU line 4 output 2 with the RNN (c) and LSTM model (d).

5.3. Transferred Models

To evaluate the performance of the proposed TL methods, the SS optimized for the
SRU line 4, called in the following SSL4, has been transferred to the SRU line 2. As a
first step, simulations have been performed by evaluating the SSL4 on the target dataset
without any modification. The results of these simulations are reported in Table 6 (CC) and
in Table 7 (MAE and RMSE). It is evident that, for the SSs designed with both RNN and
LSTM, there is a relevant degradation of the performance when transferring the model
without modifications.
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Table 6. Performances obtained on test data for the SRU line 4 (SSL4) applied to the SRU line 2
dataset. Percentage degradation with respect to the optimal SS for SRU line 2 is reported.

Line 2 RNN LSTM
Output 1 Output 2 Output 1 Output 2

CC 0.65 (−22.62%) 0.70 (−16.6%) 0.45 (−37.50%) 0.64 (−11.11%)

Table 7. Errors obtained on test data for the SS optimized for the SRU line 4 and applied to the SRU
line 2 dataset.

Line 2 RNN LSTM
Output 1 Output 2 Output 1 Output 2

MAE 1.11 0.63 1.36 0.62
RMSE 1.50 1.17 1.81 1.17

5.3.1. Fine-Tuned Transferred Models

In this section, the results of the FFTM are reported. As described in Algorithm 1,
the SSL4 is fine-tuned on the target domain. In the case of RNN model, the fine-tuning
was performed with the LM algorithm and requested 6 epochs (45 s) before incurring into
overfitting. Although the requested epochs are very few, the improvement obtained, as re-
ported in Table 8, is significant. In fact, the previously computed performance degradation,
with respect to the optimized SS for SRU line 2, is halved in the case of the RNN model
(from −22.62% to −10.71% for output 1, and from −16.6% to −7.14% for output 2).

Table 8. Model transferred through fine-tuned transferred model (FTTM), performance on test
dataset. Degradation in percentage with respect of the optimized models is reported.

Line 2 RNN LSTM
Output 1 Output 2 Output 1 Output 2

CC 0.75 (−10.71%) 0.78 (−7.14%) 0.72 (0%) 0.72 (0%)

In the case of the LSTM model, the FTTM requested 75 epochs (7 min).The perfor-
mances after the TL are listed in Table 8, along with the percentage degradation with
respect to the optimized models. Errors are reported in Table 9. In this case, the number
of requested epochs is larger than the RNN solution. The improvement obtained, as re-
ported in Table 8 is from −37.5% to 0% for output 1, and from −11.11% to 0% for output 2.
The LSTM structure was, therefore, able to reach, after the FTTM transferring, the same
CC of the optimized SS. It can be noticed that the TL procedure required about 7 min,
while the complete optimization phase for the corresponding SS required more than 100 h.
The obtained results demonstrate that the FTTM procedure is largely effective for both
architectures. In particular, for the LSTM model, we closed the gap between the optimized
model performance and the transferred solution. The best prediction performance was,
however, obtained with the RNN structure, as previously reported in Table 4.

Table 9. Model transferred through FTTM, errors on test dataset.

Line 2 RNN LSTM
Output 1 Output 2 Output 1 Output 2

MAE 0.36 0.07 0.23 0.36
RMSE 0.81 0.76 0.78 0.92

Figure 10 shows the estimation of output 2 from the SRU line 2 obtained with the
RNN model before (a) and after (b) the TL. The same comparison is reported for the LSTM
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model in Figure 10c,d. The results demonstrate that, even without fine-tuning, the SSL4
is able to catch the system dynamics also for the SRU line 2. However, a relevant error is
present, which is largely reduced through the FTTM procedure.

Figure 10. Comparison between the transferred RNN models on the SRU line 2 before (a) and after
(b) the re-tuning. The same comparison is shown for the LSTM model (c,d).

As stated in the introduction, a key aspect of the TL is the possibility to handle labeled
data scarcity. To investigate the transferability in such case, we considered a reduced
version of the SRU line 2 dataset with only 2304 samples extracted from the original
11,520 training samples. Following the FTTM procedure, also in this case, the LSTM-based
SS obtained better performance as shown in Table 10. A small degradation of the CC,
compared with the optimized model trained with the entire dataset, is obtained. Errors are
reported in Table 11.

Table 10. Performance on test data obtained after the FTTM procedure using the SRU line 2 reduced
training dataset. Percentage degradation with respect of the optimized models is reported.

Line 2 RNN LSTM
Output 1 Output 2 Output 1 Output 2

CC 0.63 (−25%) 0.71 (−15.48%) 0.67 (−6.94%) 0.70 (−4.16%)
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Table 11. Errors on test data obtained after the FTTM procedure using the SRU line 2 reduced
training dataset.

Line 2 RNN LSTM
Output 1 Output 2 Output 1 Output 2

MAE 0.40 0.61 0.18 0.17
RMSE 0.98 1.07 0.85 0.90

5.3.2. Transferred Hyperparameters Models

As reported in Algorithm 2, the THM consists of maintaining only the optimal hyper-
parameters from the source model, performing a complete learning phase with the target
dataset. The RNN model required 200 training epochs (16 min), using the BFGS algorithm.
The LSTM model required 150 training epochs (16 min).The obtained performances are
reported in Table 12 in term of CC, including the percentage degradation with respect
to the optimized model performance. The corresponding errors are reported in Table 13.
Figure 11 shows the network output 1 for the transferred SS. In addition, in this case,
the reduced-size dataset has been used to apply the THM procedure, both with RNN and
LSTM models. The results obtained are not satisfactory, confirming that the FTTM is more
suitable to realize model transferring.

Table 12. Transferred models for the SRU line 2, using the transferred hyperparameters model
(THM) procedure. CC on test data and percentage degradation with respect to the optimized model
performance are reported.

Line 2 RNN LSTM
Output 1 Output 2 Output 1 Output 2

CC 0.74 (−11.90%) 0.73 (−13.09%) 0.71 (−1.39%) 0.64 (−11.11%)

Table 13. Transferred models for the SRU line 2, using the THM procedure. Estimation errors on the
test dataset are reported.

Line 2 RNN LSTM
Output 1 Output 2 Output 1 Output 2

MAE 0.09 0.50 0.03 0.78
RMSE 0.76 0.96 0.77 1.21

Figure 11. Comparison between the transferred models on the SRU line 2 through the THM technique:
(a) RNN and (b) LSTM models.
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6. Conclusions

The proposed work investigates the problem of dynamical model transferability in
developing SSs for industrial applications. Two different model transferability solutions
were investigated. The first strategy (i.e., the fine-tuned transferred model) consisted in
adopting the SS designed for the source domain, after a fine-tuning of the network weights
on the target domain. The second strategy (i.e., the transferred hyperparameters model)
is based on adopting the optimal hyperparameters identified for the source dataset to
train a new SS on the target dataset. Both techniques have been implemented by using,
as SS structures, two dynamical neural networks: an RNN and an LSTM. The RNN-
based SS showed better performance than the LSTM network in developing the optimal
model, with a comparable computational effort. The obtained results showed that the
FTTM reached the best performance in terms of the correlation coefficient between the
estimated SS outputs and the measured ones. In regard to the comparison between the two
different ML approaches, the LSTM showed a greater capability of maintaining, after the
transfer process, similar performance, when compared with the full optimization procedure.
Another relevant achievement of the proposed procedures is the possibility to cope with the
problem of labeled data scarcity. In the case of a limited labeled dataset, the LSTM showed
the best transferring capabilities, with respect to the RNN-based model with the FTTM.
The results obtained with the hyperparameter transferring are instead not satisfactory,
confirming that the FTTM is more suitable as a TL procedure. The proposed application
has shown the suitability of TL procedures in the field of SS for industrial processes, where
dynamical nonlinear models are of interest. This is a relevant achievement in the SS
research field, allowing to greatly reduce the computational complexity of the SS design.
In detail, the use of TL allowed to leave out the time-consuming phases of model-class
and order selection and hyperparameters optimization. Another relevant aspect of the
proposed procedures, with respect to those reported in the literature, is their simplicity.
The FTTM and the HTM algorithms can, in fact, be implemented directly from the industrial
technicians, without the help of a system identification or ML expert. A set of labeled
data in the target domain is, however, required. The proposed TL procedures have the
characteristic to preserve the knowledge on the structure of the model dynamics from the
source process to the target one. If the sensors available on the target process are different
from those installed in the source one, this characteristic should still guarantee good
performance, if the measured quantity variables are strictly related in the two domains.
In the proposed application, the suitability of using a TL approach was assured by using
the knowledge of the experts, who assessed the similarity between the two considered
processes. In more general cases, this is not always easy to understand. A limitation of
the proposed approaches consists, therefore, in the lack of a procedure able to assess the
possibility of successfully applying TL to a given process, by looking only at the available
datasets. Further research will be devoted to the introduction of proper metrics able to
quantify the distribution distance between the source and target domains. This preliminary
analysis should be able to guarantee the possibility of applying TL and, eventually, estimate
the expected performance.
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28. Grbić, R.; Slišković, D.; Kadlec, P. Adaptive soft sensor for online prediction and process monitoring based on a mixture of
Gaussian process models. Comput. Chem. Eng. 2013, 58, 84–97. [CrossRef]

http://doi.org/10.1007/978-1-84628-480-9
http://dx.doi.org/10.1016/j.compchemeng.2008.12.012
http://dx.doi.org/10.1016/j.aej.2016.02.016
http://dx.doi.org/10.1109/INDIN.2018.8471942
http://dx.doi.org/10.1016/j.isatra.2014.09.019
http://www.ncbi.nlm.nih.gov/pubmed/25451819
http://dx.doi.org/10.1016/j.matpr.2017.12.359
http://dx.doi.org/10.1016/j.jprocont.2011.02.001
http://dx.doi.org/10.3390/s20061771
http://dx.doi.org/10.1007/s11633-019-1203-x
http://dx.doi.org/10.3390/s19061280
http://dx.doi.org/10.1109/TAC.2003.816954
http://dx.doi.org/10.1109/MED.2010.5547730
http://dx.doi.org/10.3390/s20133804
http://dx.doi.org/10.3390/s19235255
http://www.ncbi.nlm.nih.gov/pubmed/31795370
http://dx.doi.org/10.3390/s20061801
http://www.ncbi.nlm.nih.gov/pubmed/32214039
http://dx.doi.org/10.3390/s20175000
http://www.ncbi.nlm.nih.gov/pubmed/32899330
http://dx.doi.org/10.1016/j.jprocont.2014.01.012
http://dx.doi.org/10.1007/978-3-030-31764-5_2
http://dx.doi.org/10.1109/TIM.2018.2884450
http://dx.doi.org/10.1109/TIE.2020.2984443
http://dx.doi.org/10.1109/TIM.2020.2985614
http://dx.doi.org/10.1109/TIM.2020.2984465
http://dx.doi.org/10.1109/TIM.2020.3011251
http://dx.doi.org/10.1016/j.ins.2020.03.018
http://dx.doi.org/10.1002/aic.12422
http://dx.doi.org/10.1016/j.compchemeng.2013.06.014


Sensors 2021, 21, 823 19 of 20

29. Shao, W.; Ge, Z.; Song, Z.; Wang, K. Nonlinear industrial soft sensor development based on semi-supervised probabilistic mixture
of extreme learning machines. Control Eng. Pract. 2019, 91, 104098. [CrossRef]

30. Xie, L.; Zeng, J.; Gao, C. Novel Just-In-Time Learning-Based Soft Sensor Utilizing Non-Gaussian Information. IEEE Trans. Control
Syst. Technol. 2014, 22, 360–368. [CrossRef]

31. Zhang, W.; Li, Y.; Xiong, W.; Xu, B. Adaptive soft sensor for online prediction based on enhanced moving window GPR.
In Proceedings of the 2015 International Conference on Control, Automation and Information Sciences (ICCAIS), Changshu,
China, 29–31 October 2015; pp. 291–296.

32. Parvizi Moghadam, R.; Shahraki, F.; Sadeghi, J. Online Monitoring for Industrial Processes Quality Control Using Time Varying
Parameter Model. Int. J. Eng. 2018, 31, 524–532.

33. Ljung, L. System Identification: Theory for the User; Pearson: London, UK, 1997.
34. Curreri, F.; Graziani, S.; Xibilia, M.G. Input selection methods for data-driven Soft sensors design: Application to an industrial

process. Inf. Sci. 2020, 537, 1–17. [CrossRef]
35. Souza, F.A.; Araújo, R.; Mendes, J. Review of soft sensor methods for regression applications. Chemom. Intell. Lab. Syst. 2016,

152, 69–79. [CrossRef]
36. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http:

//www.deeplearningbook.org (accessed on 25 January 2021).
37. Sun, Q.; Ge, Z. Deep Learning for Industrial KPI Prediction: When Ensemble Learning Meets Semi-Supervised Data. IEEE Trans.

Ind. Inform. 2020, 17, 260–269. [CrossRef]
38. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization; Curran Associates, Inc.: Kottayam,

India, 2011; Volume 24, pp. 2546–2554.
39. Falkner, S.; Klein, A.; Hutter, F. BOHB: Robust and Efficient Hyperparameter Optimization at Scale. arXiv 2018, arXiv:1807.01774.
40. Franceschi, L.; Donini, M.; Frasconi, P.; Pontil, M. Forward and Reverse Gradient-Based Hyperparameter Optimization. arXiv

2017, arXiv:1703.01785.
41. Weiss, K.; Khoshgoftaar, T.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3. [CrossRef]
42. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
43. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE

2021, 109, 43–76. [CrossRef]
44. Farahani, H.S.; Fatehi, A.; Nadali, A.; Shoorehdeli, M.A. A Novel Method For Designing Transferable Soft Sensors And Its

Application. arXiv 2020, arXiv:2008.02186.
45. Shao, S.; McAleer, S.; Yan, R.; Baldi, P. Highly-Accurate Machine Fault Diagnosis Using Deep Transfer Learning. IEEE Trans. Ind.

Inform. 2019, 15, 2446–2455. [CrossRef]
46. Han, T.; Liu, C.; Yang, W.; Jiang, D. Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis

framework for industry application. ISA Trans. 2019. [CrossRef] [PubMed]
47. Fortuna, L.; Rizzo, A.; Sinatra, M.; Xibilia, M. Soft analyzers for a sulfur recovery unit. Award winning applications-2002 IFAC

World Congress. Control Eng. Pract. 2003, 11, 1491–1500. [CrossRef]
48. Khatami, A.; Babaie, M.; Tizhoosh, H.; Khosravi, A.; Nguyen, T.; Nahavandi, S. A sequential search-space shrinking using CNN

transfer learning and a Radon projection pool for medical image retrieval. Expert Syst. Appl. 2018, 100, 224–233. [CrossRef]
49. Zhao, B.; Huang, B.; Zhong, Y. Transfer Learning With Fully Pretrained Deep Convolution Networks for Land-Use Classification.

IEEE Geosci. Remote Sens. Lett. 2017, 14, 1436–1440. [CrossRef]
50. Lu, Z.; Zhu, Y.; Pan, S.; Xiang, E.; Wang, Y.; Yang, Q. Source Free Transfer Learning for Text Classification. In Proceedings of the

AAAI Conference on Artificial Intelligence, Quebec City, QC, Canada, 27–31 July 2014; Volume 28.
51. Kandaswamy, C.; Monteiro, J.; Silva, L.; Cardoso, J.S. Multi-source deep transfer learning for cross-sensor biometrics. Neural

Comput. Appl. 2017, 28, 2461–2475. [CrossRef]
52. Li, J.; Wu, W.; Xue, D.; Gao, P. Multi-Source Deep Transfer Neural Network Algorithms. Sensors 2019, 19, 3992. [CrossRef]

[PubMed]
53. Lu, J.; Behbood, V.; Hao, P.; Zuo, H.; Xue, S.; Zhang, G. Transfer learning using computational intelligence: A survey. Knowl.

Based Syst. 2015, 80, 14–23. [CrossRef]
54. Liang, H.; Fu, W.; Yi, F. A Survey of Recent Advances in Transfer Learning. In Proceedings of the 2019 IEEE 19th International

Conference on Communication Technology (ICCT), Xi’an, China, 16–19 October 2019; pp. 1516–1523. [CrossRef]
55. Han, T.; Liu, C.; Yang, W.; Jiang, D. Learning transferable features in deep convolutional neural networks for diagnosing unseen

machine conditions. ISA Trans. 2019, 93, 341–353. [CrossRef] [PubMed]
56. Shi-sheng, Z.; Song, F.; lin, L. A novel gas turbine fault diagnosis method based on transfer learning with CNN. Measurement

2019, 137. [CrossRef]
57. Mamledesai, H.; Soriano, M.A.; Ahmad, R. A Qualitative Tool Condition Monitoring Framework Using Convolution Neural

Network and Transfer Learning. Appl. Sci. 2020, 10, 7298. [CrossRef]
58. Ren, H.; Liu, W.; Shan, M.; Wang, X. A new wind turbine health condition monitoring method based on VMD-MPE and

feature-based transfer learning. Measurement 2019, 148, 106906. [CrossRef]
59. Wang, Y.; Wu, D.; Yuan, X. LDA-based deep transfer learning for fault diagnosis in industrial chemical processes. Comput. Chem.

Eng. 2020, 140, 106964. [CrossRef]

http://dx.doi.org/10.1016/j.conengprac.2019.07.016
http://dx.doi.org/10.1109/TCST.2013.2248155
http://dx.doi.org/10.1016/j.ins.2020.05.028
http://dx.doi.org/10.1016/j.chemolab.2015.12.011
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1109/TII.2020.2969709
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/JPROC.2020.3004555
http://dx.doi.org/10.1109/TII.2018.2864759
http://dx.doi.org/10.1016/j.isatra.2019.08.012
http://www.ncbi.nlm.nih.gov/pubmed/31420125
http://dx.doi.org/10.1016/S0967-0661(03)00079-0
http://dx.doi.org/10.1016/j.eswa.2018.01.056
http://dx.doi.org/10.1109/LGRS.2017.2691013
http://dx.doi.org/10.1007/s00521-016-2325-5
http://dx.doi.org/10.3390/s19183992
http://www.ncbi.nlm.nih.gov/pubmed/31527437
http://dx.doi.org/10.1016/j.knosys.2015.01.010
http://dx.doi.org/10.1109/ICCT46805.2019.8947072
http://dx.doi.org/10.1016/j.isatra.2019.03.017
http://www.ncbi.nlm.nih.gov/pubmed/30935654
http://dx.doi.org/10.1016/j.measurement.2019.01.022
http://dx.doi.org/10.3390/app10207298
http://dx.doi.org/10.1016/j.measurement.2019.106906
http://dx.doi.org/10.1016/j.compchemeng.2020.106964


Sensors 2021, 21, 823 20 of 20

60. Wang, Q.; Michau, G.; Fink, O. Domain Adaptive Transfer Learning for Fault Diagnosis. arXiv 2019, arXiv:1905.06004.
61. Wu, Z.; Jiang, H.; Zhao, K.; Xingqiu, L. An adaptive deep transfer learning method for bearing fault diagnosis. Measurement 2019,

151, 107227. [CrossRef]
62. Yang, B.; Lei, Y.; Jia, F.; Xing, S. An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to

locomotive bearings. Mech. Syst. Signal Process. 2019, 122, 692–706. [CrossRef]
63. Tang, S.; Tang, H.; Chen, M. Transfer-learning based gas path analysis method for gas turbines. Appl. Therm. Eng. 2019, 155, 1–13.

[CrossRef]
64. Liu, Y.; Yang, C.; Zhang, M.; Dai, Y.; Yao, Y. Development of Adversarial Transfer Learning Soft Sensor for Multigrade Processes.

Ind. Eng. Chem. Res. 2020, 59, 16330–16345. [CrossRef]
65. Liu, Y.; Yang, C.; Liu, K.; Chen, B.; Yao, Y. Domain adaptation transfer learning soft sensor for product quality prediction. Chemom.

Intell. Lab. Syst. 2019, 192, 103813. [CrossRef]
66. Cai, L.; Gu, J.; Ma, J.; Jin, Z. Probabilistic Wind Power Forecasting Approach via Instance-Based Transfer Learning Embedded

Gradient Boosting Decision Trees. Energies 2019, 12, 159. [CrossRef]
67. Rumelhart, D.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
68. Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks; Springer: New York, NY, USA, 2012; Volume 385.

[CrossRef]
69. Tarwani, K.M.; Edem, S. Survey on Recurrent Neural Network in Natural Language Processing. Int. J. Eng. Trends Technol. 2017,

48, 301–304. [CrossRef]
70. Amberkar, A.; Awasarmol, P.; Deshmukh, G.; Dave, P. Speech Recognition using Recurrent Neural Networks. In Proceedings of

the 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), Coimbatore, India, 1–3 March
2018; pp. 1–4. [CrossRef]

71. Graves, A.; Schmidhuber, J. Offline Arabic Handwriting Recognition with Multidimensional Recurrent Neural Networks.
In Proceedings of the Advances in Neural Information Processing Systems 21—Proceedings of the 2008 Conference, Vancouver,
BC, Canada, 8–11 December 2008; pp. 545–552. [CrossRef]

72. Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441.
[CrossRef]

73. Werbos, P.J. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550–1560. [CrossRef]
74. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training Recurrent Neural Networks. arXiv 2013, arXiv:1211.5063.
75. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
76. Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural

Netw. Learn. Syst. 2017, 28, 2222–2232. [CrossRef] [PubMed]
77. Kurata, G.; Ramabhadran, B.; Saon, G.; Sethy, A. Language Modeling with Highway LSTM. arXiv 2017, arXiv:1709.06436.
78. Gers, F.; Eck, D.; Schmidhuber, J. Applying LSTM to Time Series Predictable through Time-Window Approaches. In Artificial

Neural Networks—ICANN 2001; Springer: London, UK, 2001; pp. 669–676. [CrossRef]
79. Graves, A.; Jaitly, N.; Mohamed, A. Hybrid speech recognition with Deep Bidirectional LSTM. In Proceedings of the 2013 IEEE

Workshop on Automatic Speech Recognition and Understanding, Olomouc, Czech Republic, 8–12 December 2013; pp. 273–278.
[CrossRef]

80. Ullah, A.; Ahmad, J.; Muhammad, K.; Sajjad, M.; Baik, S. Action Recognition in Video Sequences using Deep Bi-directional LSTM
with CNN Features. IEEE Access 2017, 6, 1155–1166. [CrossRef]

81. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
82. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

http://dx.doi.org/10.1016/j.measurement.2019.107227
http://dx.doi.org/10.1016/j.ymssp.2018.12.051
http://dx.doi.org/10.1016/j.applthermaleng.2019.03.156
http://dx.doi.org/10.1021/acs.iecr.0c02398
http://dx.doi.org/10.1016/j.chemolab.2019.103813
http://dx.doi.org/10.3390/en12010159
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1007/978-3-642-24797-2
http://dx.doi.org/10.14445/22315381/IJETT-V48P253
http://dx.doi.org/10.1109/ICCTCT.2018.8551185
http://dx.doi.org/10.1007/978-1-4471-4072-6_12
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1109/5.58337
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://www.ncbi.nlm.nih.gov/pubmed/27411231
http://dx.doi.org/10.1007/3-540-44668-0_93
http://dx.doi.org/10.1109/ASRU.2013.6707742
http://dx.doi.org/10.1109/ACCESS.2017.2778011

	Introduction
	Related Works
	Theory Fundamentals
	Recurrent Neural Networks
	Long Short-Term Memory Network
	Model Description

	Methodology
	Fine-Tuned Transferred Model
	Transferred Hyperparameters

	Simulation Results
	Case of Study: The Sulfur Recovery Unit
	Design of the Optimal SSs
	Transferred Models
	Fine-Tuned Transferred Models
	Transferred Hyperparameters Models


	Conclusions
	References

