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Abstract
Physiologically-based pharmacokinetic (PBPK) modeling is being increasingly 
used in drug development to avoid unnecessary clinical drug–drug interaction 
(DDI) studies and inform drug labels. Thus, regulatory agencies are recom-
mending, or indeed requesting, more rigorous demonstration of the prediction 
accuracy of PBPK platforms in the area of their intended use. We describe a 
framework for qualification of the Simcyp Simulator with respect to competitive 
and mechanism-based inhibition (MBI) of CYP1A2, CYP2D6, CYP2C8, CYP2C9, 
CYP2C19, and CYP3A4/5. Initially, a DDI matrix, consisting of a range of weak, 
moderate, and strong inhibitors and substrates with varying fraction metabolized 
by specific CYP enzymes that were susceptible to different degrees of inhibition, 
were identified. Simulations were run with 123 clinical DDI studies involving 
competitive inhibition and 78 clinical DDI studies involving MBI. For competi-
tive inhibition, the overall prediction accuracy was good with an average fold 
error (AFE) of 0.91 and 0.92 for changes in the maximum plasma concentration 
(Cmax) and area under the plasma concentration (AUC) time profile, respectively, 
as a consequence of the DDI. For MBI, an AFE of 1.03 was determined for both 
Cmax and AUC. The prediction accuracy was generally comparable across all CYP 
enzymes, irrespective of the isozyme and mechanism of inhibition. These findings 
provide confidence in application of the Simcyp Simulator (V19 R1) for assess-
ment of the DDI potential of drugs in development either as inhibitors or vic-
tim drugs of CYP-mediated interactions. The approach described herein and the 
identified DDI matrix can be used to qualify subsequent versions of the platform.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Regulatory agencies are recommending, or indeed requesting, more rigorous dem-
onstration of the prediction accuracy of physiologically-based pharmacokinetic 
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INTRODUCTION

Physiologically-based pharmacokinetic (PBPK) models 
help to make optimal use of available data by combining 
the complex interplay of physiological parameters with 
characteristics relating to the absorption, distribution, 
metabolism, and excretion of a specific drug, thus rep-
resenting a mechanistic approach to predict the phar-
macokinetics (PKs) of the drug. PBPK modeling has 
been increasingly used for various applications to guide 
decision making in drug development on assessment of 
drug–drug interaction (DDI) liability, to design clini-
cal studies, dose extrapolation in special populations 
including pediatrics, and investigation of formulation 
and food effects.1 PBPK models that have demonstrated 
a good predictive performance, particularly in support 
of quantitative prediction of DDIs, are often submitted 
to regulatory agencies.2-4 Once reviewed and accepted 
by health authorities, they have been used to inform 
the prescription drug label for untested clinical sce-
narios. Indeed, global regulators endorse the use of 
this approach for assessment of the potential DDI risk 
of investigational new drugs as both victim and per-
petrator drugs; over the past 5 to 10 years, they have 
issued guidance documents or published best practice 
approaches for the application of PBPK in regulatory 
submissions.5-8

The US Food and Drug Administration (FDA) has 
stated in its current PBPK guidance document that it 
should be demonstrated that “the PBPK model is ap-
propriate for the intended uses.”9 Recent European 
Medicines Agency (EMA) guidelines have taken this one 

step further by presenting a framework linking the re-
quired level of qualification to the intended use of PBPK 
models based on low, medium and high impact on reg-
ulatory applications.10 More recently, the FDA reported 
that there is no consensus on how to establish and assess 
model credibility, and proposed a “risk-informed cred-
ibility assessment framework” for PBPK modeling and 
simulation, which includes the terms verification (of the 
code and calculations) and validation (of the model).7 In 
any case, irrespective of the terminology used, if a PBPK 
model is being used to waive a clinical DDI study involv-
ing CYP3A4/5, as an example, considered to be high im-
pact or high risk, the platform is expected to be qualified 
for prediction of CYP3A4/5-mediated DDIs. For this pur-
pose, a prespecified qualification dataset using reference 
CYP3A4/5 sensitive substrates and a range of inhibitors 
is needed to evaluate the performance of the PBPK plat-
form prior to DDI prediction for the new compound. 
Substrate and inhibitor PBPK models that have been ver-
ified for their intended purpose should form part of this 
comprehensive DDI matrix that can be applied to qualify 
an existing software platform and requalify subsequent 
versions.

The aim of this study was to identify a DDI matrix 
for CYP1A2, CYP2D6, CYP2C8, CYP2C9, CYP2C19, and 
CYP3A4/5 interactions and utilize existing verified com-
pound library files within the Simcyp Simulator to qualify 
the software platform for CYP-mediated competitive in-
hibition and mechanism-based inhibition (MBI). A sec-
ondary aim, was to provide guidance on key elements that 
form part of the qualification strategy, such as appropriate 
verification for each of the compound files.

(PBPK) platforms in the area of their intended use to support regulatory 
submissions.
WHAT QUESTION DID THIS STUDY ADDRESS?
This work describes a framework for the qualification of the Simcyp Simulator 
with respect to competitive and mechanism-based inhibition of CYP1A2, 
CYP2D6, CYP2C8, CYP2C9, CYP2C19, and CYP3A4/5.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
These findings provide confidence in application of the Simcyp Simulator (V19 
R1) for assessment of the drug–drug interaction (DDI) potential of prospective 
new drugs in development either as inhibitors or victim drugs of CYP-mediated 
interactions.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The qualification of DDIs for multiple CYP enzymes in this work supports the use 
of PBPK modeling, using the Simcyp Simulator, for prospective DDI assessments 
of new drugs which can be included in regulatory submissions.
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METHODS

Data sources and software

The University of Washington Drug Interaction Database 
was used to identify controlled clinical DDI studies involv-
ing CYP1A2, CYP2D6, CYP2C8, CYP2C9, CYP2C19, and 
CYP3A4/5 where observed increases in plasma exposure 
of substrates >20% (as a consequence of the DDI) were 
reported.

DDI studies were then selected to form part of the DDI 
qualification matrix if compound files for both substrate 
and inhibitor were available as compound files within the 
Simcyp Simulator. It should be noted that the substrates 
and inhibitors included as compound files within the 
Simcyp Simulator had previously been selected for devel-
opment based on the FDA recommendations for reference 
index substrates and inhibitors.11 Where possible, another 
criterion for selection of DDI studies was to ensure the 
inclusion of a range of weak, moderate, and strong in-
hibitors and substrates that were susceptible to differing 
degrees of inhibition (Table S1). A summary of the DDI 
qualification matrix for CYP3A4/5 is shown in Figure  1 
as an example.

Development and verification of 
compound files

Although describing the development and verification of 
each of the files is beyond the scope of the current pub-
lication, it is important to indicate the robustness of the 
process (i.e., application of a best-practice approach which 
is described in a number of publications).8,12 Prior to inte-
gration within the platform, a rigorous feasibility assess-
ment was conducted for each compound to ensure that 
there were sufficient in vitro and clinical data available 
to develop and verify the files for their intended use (i.e., 
quantitative prediction of CYP-mediated DDIs either as a 
victim and/or perpetrator).

Typically, development of an in vitro–in vivo ex-
trapolation linked PBPK model aims to describe 
concentration-time profiles from clinical datasets 
based on in vitro data alone. Model development was 
performed initially using intravenous data (if avail-
able) with a focus on the distribution and elimination 
parameters. Thereafter, absorption-related parameters 
were introduced into the PBPK models for each com-
pound to predict plasma concentration–time profiles 
following oral administration. A first-order absorption 

F I G U R E  1   Drug–drug interaction matrix for CYP3A4, including available substrate and inhibitor pairings to evaluate competitive 
(a) and mechanism based (b) inhibition within the Simcyp simulator (V19R1). Colors indicate the clinical sensitive substrates (purple), 
moderate sensitive substrates (green), subStrates of 3A4 (blue), strong inhibitors (red), moderate inhibitors (orange), and weak inhibitors 
(yellow)
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model was applied for 32 of the 34 substrates and for 
20 of the 24 inhibitors. The more complex Advanced 
Dissolution, Absorption, and Metabolism model was 
used to describe the absorption of ibrutinib, flur-
biprofen, ciprofloxacin, gemfibrozil, ritonavir, and 
verapamil.

At each stage, optimization of relevant parameters 
was performed using clinical data, if necessary, to ensure 
accurate recovery of observed data. For a victim drug 
(substrate), it was important to characterize the clear-
ance routes and demonstrate that when inhibited, the 
observed increase in exposures was accurately captured. 
For a perpetrator (inhibitor), it was necessary to ensure 
that after integration of the inhibitory parameters into the 
PBPK model, they led to accurate prediction of clinical 
DDIs. This process and the input data are captured in a 
compound file summary, which is version specific. In ad-
dition, the source of the input data and the clinical DDI 
studies, as well as the level of verification that has been 
performed are included. An example of such a document 
can be found in Figure S1.

Simulations

For the current analysis, all simulations were performed 
using the Simcyp Simulator (version 19, release 1). The 
program allows simple extrapolation of in vitro enzyme 
kinetic data in multiple organs, including the liver and 
intestines, to predict PK changes in vivo in virtual popu-
lations.13,14 Genetic, physiological, and demographic vari-
ables relevant to the prediction of DDIs are generated for 
each individual using correlated Monte-Carlo methods 
and equations derived from population databases ob-
tained from literature sources. To ensure that the char-
acteristics of the virtual subjects were matched closely to 
those of the subjects studied in vivo, numbers, age range, 
ethnicity, and sex ratios were replicated in 10 simulated 
trials and for the number of subjects in each clinical trial. 
Qualification of the DDI matrix was performed based on 
prediction of the observed clinical interactions for the re-
spective drug pairings (Table S1).

Data analysis

The ratio of the area under the curve (AUC) in the ab-
sence and presence of inhibitor (AUCi/AUC, where 
AUCi and AUC are the AUC[0–­∞] values of the substrate 
in the presence and absence of inhibitor, respectively) 
is commonly used as a basis for prediction of metabolic 
DDIs. In addition, the ratio of the maximum plasma 
concentration (Cmax) in the presence and absence 

of inhibitor can also be used. Accordingly, the mean 
Cmax and AUC ratios from the 10 simulated trials were 
compared against the mean ratios from each clinical 
study. Equations  1 and 2 were used to calculate the 
average fold error (AFE) and absolute average fold 
error (AAFE) as described by Shimizu,15 which were 
used to assess the bias and precision of the predictions, 
respectively.

Predictions were assessed as to whether they fell within 1.5-
fold of observed data, in addition, as some of the clinical 
DDIs resulted in weak to moderate inhibitors, the valida-
tion criteria were calculated using the method proposed by 
Guest et al.16 to avoid a misleading judgment using the more 
relaxed two-fold criteria for a successful prediction. The data 
were analyzed according to type of inhibition (competitive 
vs. MBI) and also according to CYP enzyme.

RESULTS

Substrates and inhibitors

In total, 34 substrates were identified for inclusion in 
the DDI matrix for qualification of CYP-mediated inhi-
bition using the Simcyp Simulator (V19R1; Table 1). For 
CYP1A2, caffeine, theophylline, and tizanidine were 
available with fraction metabolized (fm) by CYP1A2 
ranging from 75.4% to 97.9%. Three substrates were in-
cluded to evaluate CYP2C19 with fmCYP2C19 ranging from 
37.7% to 88.5% for imipramine and S-mephenytoin, 
respectively. Repaglinide (64.4%) and rosiglitazone 
(53.8%) were included as substrates of CYP2C8. Four 
CYP2C9 substrates were included, with fmCYP2C9 rang-
ing from 73.1% to 98.3% for phenytoin and S-warfarin, 
respectively. Six substrates were evaluated for CYP2D6-
mediated DDIs with fmCYP2D6 ranging from 74.3% to 
86.9%. The largest range of fm values was observed for 
the substrates that were used to evaluate CYP3A4/ 
5-mediated DDIs with fmCYP3A4 ranging from 35.4% for 
repaglinide up to 95.4% for nifedipine.

Across all substrates, the predicted bioavailability (F) 
ranged from 0.03 to 0.92 for simvastatin and rosiglitazone, 
respectively. Simvastatin had the lowest predicted fraction 
escaping first-pass metabolism in the gut (Fg) at 0.03 and 
this increased up to a maximum value of one for a number 
of substrates, including caffeine, theophylline, tizanidine, 
rosiglitazone, and phenytoin.

(1)
AFE = 10

1
n

∑�
log Predicted DDI

Observed DDI

�

(2)AAFE = 10
1
n

∑�
��
log Predicted DDI

Observed DDI
�
��
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Across all CYP enzymes, there were 24 inhibitors avail-
able for qualification of the platform (Table  S2). Some 
inhibitors included inhibition values for multiple CYP 
enzymes. Out of the inhibitors and metabolites included 
in the analysis, 63% had interaction parameters based on 
in vitro data and the remainder were optimized based 

on clinical data. The full spectrum of strong, moderate, 
and weak inhibitors was only available for CYP2D6 and 
CYP3A4.

Competitive versus mechanism-
based inhibition

The prediction accuracy of DDIs across all of the CYP en-
zymes investigated is indicated in Figure 2 and Table 2 for 
23 competitive and 18 mechanism-based inhibitors.

Clinical DDIs using competitive inhibitors were in-
vestigated for a total of 123 studies for CYP1A2 (20 stud-
ies), CYP2C8 (4 studies), CYP2C9 (16 studies), CYP2C19  
(4 studies), CYP2D6 (17 studies), and CYP3A4 (62 stud-
ies). The overall prediction accuracy was good with a bias 
of 0.91 and precision of 1.20 for the Cmax ratio and values 
of 0.92 and 1.19, respectively, for the AUC ratio. Across 
the 123 DDIs investigated with competitive inhibitors, 
10% fell outside the 1.5-fold of the observed Cmax ratio 
with only three of 125 falling outside two-fold from the 
observed Cmax ratio. Prediction of the AUC ratio was com-
parable with 8% falling outside 1.5-fold of the predicted 
AUC ratio and only one DDI investigated falling outside 
of two-fold of the observed AUC ratio.

Clinical DDIs involving MBI were investigated for 
CYP2C8 (8 studies), CYP2C9 (4 studies), CYP2C19 (5 
studies), CYP2D6 (9 studies), and CYP3A4/5 (52 stud-
ies). The prediction accuracy was good across all CYPs 
investigated with a bias of 1.03 for both Cmax and AUC 
ratios and a precision of 1.20 and 1.26 for Cmax and AUC 
ratios, respectively. For the Cmax ratio, 6% fell outside of 
1.5-fold of the observed Cmax from the clinical studies, 
with two out of the 62 studies falling outside of two-
fold for interactions using simvastatin as a substrate 
of CYP3A4/5. Prediction of AUC ratios had a slightly 
higher number of studies falling 1.5-fold outside of the 
observed AUC ratio with 23% of the DDIs investigated 
not meeting these criteria, however, only three predic-
tions fell outside two-fold of the observed AUC ratio for 
omeprazole (CYP2C19 substrate), quinidine, and sim-
vastatin (CYP3A4 substrates).

Individual enzymes by substrate

The DDI matrix for each enzyme was evaluated for the 
prediction accuracy against and the clinical data and this 
is shown in Figures 3, 4, and Table 1. The prediction ac-
curacy was generally comparable across all of the CYP 
enzymes studies in the qualification of the platform. For 
both CYP2C8 and CYP2C9, all of the predictions fell 
within 1.5-fold of the observed clinical values for both 

T A B L E  1   Mean fm, Fg, and F for each substrate according the 
enzyme of interest as calculated in a population 10 trials and 10 
individuals in Simcyp Simulator V19 (R1)

Enzyme Substrate fm % Fg F

CYP1A2 Caffeine 97.9 1.00 0.83

Theophylline 75.4 1.00 0.86

Tizanidine 96.5 1.00 0.18

CYP2C19 S-Mephenytoin 88.5 0.89 0.35

Omeprazole 80.5 0.96 0.49

Imipramine 37.7 0.99 0.38

CYP2C8 Repaglinide 64.4 0.91 0.75

Rosiglitazone 53.8 1.00 0.92

CYP2C9 Celecoxib 83.5 0.77 0.51

Flurbiprofen 74.5 0.96 0.90

Phenytoin 73.1 1.00 0.81

S-Warfarin 98.3 0.99 0.88

Tolbutamide 96.5 0.99 0.86

CYP2D6 Atomoxetine 76.7 0.92 0.64

Desipramine 80.6 0.96 0.49

Dextromethorphan 86.9 0.91 0.25

Metoprolol 74.3 0.97 0.47

Nebivolol 85.7 0.92 0.18

Tolterodine 81.9 0.99 0.34

CYP3A4/5 Alfentanil 91.8 0.51 0.32

Alprazolam 70.6 0.99 0.85

Aprepitant 86.0 0.60 0.48

Atazanavir 73.8 0.93 0.37

Clarithromycin 73.7 0.83 0.51

Dexamethasone 86.2 0.99 0.77

Ibrutinib 95.2 0.36 0.03

Midazolam 85.9 0.56 0.28

Nifedipine 95.4 0.64 0.40

Quinidine 71.8 0.94 0.68

Rifabutin 64.9 0.16 0.13

Repaglinide 33.6 0.92 0.76

Sildenafil 85.9 0.64 0.36

Simvastatin 88.9 0.11 0.03

Triazolam 88.4 0.72 0.50

Zolpidem 47.8 0.94 0.78

Abbreviations: F, bioavailability; Fg, fraction escaping gut metabolism;  
fm, fraction metabolized.
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Cmax and AUC. The prediction of AUC ratios was good 
for both enzymes with AFE 0.94 and 0.98 and precision of 
1.08 and 1.12 for CYP2C8 and CYP2C9, respectively. The 
prediction of Cmax ratios was also close to unity with an 
AFE of 1.09 for CYP2C8. However, a slight trend toward 

underprediction of the Cmax ratio was observed for the 20 
CYP2C9 clinical studies that were evaluated in the qualifi-
cation with a bias of 0.88.

For CYP1A2, the prediction accuracy was good with 
an AFE of 0.98 and 1.01 and an AAFE of 1.17 and 1.21 

F I G U R E  2   Comparison of predicted and observed AUC and Cmax ratios for competitive (a, b) and mechanism based (c, d) inhibitors for 
CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. AUC, area under the curve; Cmax, maximum plasma concentration

T A B L E  2   Precision (AFE) and bias (AAFE) of the DDI predictions for the different interaction matrices evaluated

Scenario n

Cmax AUC

AFE (bias) AAFE (precision) AFE (bias) AAFE (precision)

Competitive inhibitors 123 0.91 1.20 0.92 1.19

MBI inhibitors 78 1.03 1.20 1.03 1.26

CYP1A2 20 0.98 1.17 1.01 1.21

CYP2C8 12 1.08 1.16 0.94 1.08

CYP2C9 20 0.88 1.13 0.98 1.12

CYP2C19 9 1.02 1.11 1.09 1.22

CYP2D6 26 1.03 1.20 0.95 1.17

CYP3A4 114 0.93 1.11 0.95 1.26

Abbreviations: AAFE, absolute average fold error; AFE, average fold error; AUC, area under the curve; Cmax, maximum plasma concentration; DDI, drug-drug 
interaction; MBI, mechanism-based inhibition.
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for Cmax and AUC, respectively. Out of the 20 DDIs stud-
ied, only three fell outside the 1.5-fold prediction accuracy 
from observed AUC ratio data and one against the Cmax 
ratio data. The clinical studies involved interactions be-
tween caffeine and fluvoxamine (1 instance), theophylline 
and fluvoxamine (2 studies), and tizanidine and ciproflox-
acin (1 study).

There were nine DDI studies available to evaluate 
the prediction of CYP2C19 DDIs with three substrates,  
S-mephenytoin, omeprazole, and imipramine. The Cmax 
was predicted well across all nine studies with an AFE 
1.02 and AAFE 1.11 and all studies fell within 1.5-fold of 
the observed clinical data. There was also a good predic-
tion of the AUC ratio across the substrate’s studies with a 

F I G U R E  3   Predicted and observed AUC ratios for the qualification of CYP1A2 (a), CYP2C8 (b), CYP2C9 (c), CYP2C19 (d), CYP2D6 (e), 
and CYP3A4 (f) mediated competitive and mechanism-based inhibition using the Simcyp Simulator (V19R1). AUC, area under the curve

F I G U R E  4   Predicted and observed Cmax ratios for the qualification of CYP1A2 (a), CYP2C8 (b), CYP2C9 (c), CYP2C19 (d), CYP2D6 
(e), and CYP3A4 (f) mediated competitive and mechanism-based inhibition using the Simcyp Simulator (V19R1). Cmax, maximum plasma 
concentration
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bias of 1.09 and precision 1.22. One of the two predictions 
with omeprazole and the MBI inhibitor ticlopidine fell 
outside the two-fold criteria against the observed clinical 
data.

CYP2D6 predictions were assessed for 26 clinical stud-
ies involving the six substrates; there was a good predic-
tion accuracy with AFE of 1.03 and 0.93 and AAFE of 1.20 
and 1.17 for Cmax and AUC ratios, respectively. Four of the 
predictions fell outside of 1.5-fold of the observed Cmax 
ratios for the substrates nebivolol and tolterodine. Three 
of the predictions fell outside of 1.5-fold for the AUC ra-
tios for the substrates dextromethorphan, metoprolol, and 
tolterodine.

CYP3A4/5 by substrate

The Fg values ranged from 0.11 to 0.99 and the F ranged 
from 0.03 to 0.85 for the 16 substrates used to evaluate 
CYP3A4 mediated DDIs (Table 1) which were consistent 
with observed data (when available). The CYP3A4 interac-
tions and precision and bias are shown in Figures 3, 4, and 
Table 2. A total of 114 DDIs were evaluated for CYP3A4 
mediated interactions and there was a slight trend toward 
an underprediction of the Cmax and AUC ratios across 
the entire dataset with a bias of 0.93 and 0.95 for both the 
Cmax and AUC ratios, respectively. Overall, the precision 
of the predictions was good for both Cmax and AUC ratios 
with an AAFE of 1.22 and 1.26, respectively. The predic-
tions were within 1.5-fold of observed Cmax ratios for all 
except nine of the interactions where four of these also 
fell outside two-fold of the observed Cmax ratio. The AUC 
ratio was predicted well with 81% of the predictions falling 
within 1.5-fold of the observed data, only two predictions 
were outside of two-fold from the observed AUC ratio 
for simulations with quinidine and erythromycin, and 
simvastatin and erythromycin.

DISCUSSION

In this study, we identified a DDI matrix involving sub-
strates and inhibitors of CYP1A2, CYP2D6, CYP2C8, 
CYP2C9, CYP2C19, and CYP3A4, which was then used 
for qualification of the Simcyp Simulator (V19R1). The 
DDI qualification matrix consisted of compound files that 
were already available within the Simcyp Simulator and 
had previously been selected for development based on 
the FDA recommendations for reference index substrates 
and inhibitors.11 This included a range of weak, moderate, 
and strong inhibitors that caused DDIs via competitive or 
MBI and substrates that were susceptible to differing de-
grees of inhibition. In total, 34 substrates and 24 inhibitors 

were identified for inclusion in the DDI qualification ma-
trix. Although describing the development and verifica-
tion of each of the files is beyond the scope of the current 
publication, it is important to note that compound file 
summaries are prepared for all substrates and inhibitors 
and include details of the predicted versus observed PK 
parameters and DDIs. An example compound summary 
for midazolam is shown in Figure S1. These summaries 
can easily be regenerated in later versions of the Simcyp 
Simulator. Similarly, the DDI matrix can be applied to re-
qualify subsequent versions.

Of the 123 simulated DDIs involving competitive inhi-
bition (20 CYP1A2; 4 CYP2C8; 16 CYP2C9; 4 CYP2C19; 
17 CYP2D6; and 62 CYP3A4), the prediction accuracy was 
good with a bias of 0.91 and precision of 1.20 for the Cmax 
ratio and 0.92 and 1.19, respectively, for the AUC ratio. 
The prediction accuracy was similar across all CYP en-
zymes studied. Only 8% of the simulated DDIs were out-
side of the 1.5-fold predicted/observed AUC ratios. Thus, 
based on the predictive performance of the platform, and 
the fact that all CYP enzymes are likely to behave the same 
mechanistically, the Simcyp Simulator (V19R1) can be 
considered to be qualified with respect to CYP-mediated 
competitive inhibition.

For an investigational new drug (IND), it is pertinent to 
provide some guidance for assessing the DDI potential of 
the drug either as a victim or perpetrator based on the find-
ings of our study. Indeed, the CYP1A2, CYP2C8, CYP2C9, 
CYP2C19, and CYP3A4 inhibitors presented here can be 
used with confidence to assess the CYP-mediated drug 
interaction potential of novel drugs as victims. However, 
it is important to recognize, that during model develop-
ment, for a number of substrates included in the DDI 
qualification matrix, a clinical DDI study was used to op-
timize their fmCYP values and was then verified using an 
independent clinical DDI study (if available). Thus, for 
drugs in development, even though initial simulations 
can be carried out to assess the DDI potential as victim 
drugs, it is likely that a clinical DDI study with a strong 
inhibitor (typically) or mass balance study is warranted 
to refine the relative contributions of clearance routes.1,4 
Thereafter, the qualification dataset described herein can 
be used to support untested DDI scenarios involving mod-
erate or weak inhibitors of the relevant CYP enzyme as 
has typically been the case.4,17

The results presented here indicate that the CYP1A2, 
CYP2C8, CYP2C9, CYP2C19, and CYP3A4 substrates 
included in this analysis can be applied with confidence 
to assess the CYP-mediated drug interaction potential of 
novel drugs as perpetrators. First, as performed here, it 
is essential to demonstrate that the PBPK model devel-
oped for the perpetrator is able to capture the observed 
plasma concentration–time profiles and PK parameters at 
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clinically relevant doses.18 Second, the in vitro determined 
inhibitory parameters of the drug may require some cali-
bration or optimization prior to assessing the DDI poten-
tial of the compound, as described below.

A range of inhibition constant (Ki) values from differ-
ent in vitro sources were available for each of the inhibi-
tors included in this analysis and were determined using 
pooled human liver microsomes (HLMs) or recombinant 
systems (supersomes, baculosomes, or bactosomes). After 
correction for nonspecific microsomal binding at the rel-
evant protein concentration, an average Ki value was de-
termined for each of the inhibitors. Of the inhibitors and 
metabolites included in the DDI qualification matrix, 63% 
had interaction parameters from in vitro data and the re-
mainder were optimized based on clinical data (in vivo 
values). Thus, the qualification dataset described here can 
fully support untested scenarios (comedications and less 
sensitive substrates) for perpetrators of CYP1A2, CYP2C8, 
CYP2C9, CYP2C19, and CYP3A4 typically when a clinical 
study has been performed to assess the DDI potential of 
the drug using a sensitive substrate, thus allowing optimi-
zation of the relevant in vitro Ki value if needed.

Of the 18 CYP3A4 inhibitors used in our study, only 
three had optimized Ki values. Thus, if an IND is identi-
fied as a CYP3A4 inhibitor and the Ki value for the positive 
control determined in the same incubation is similar to 
that used in our simulations (Table S2), it may be pertinent 
to use the qualification dataset described here to support 
untested scenarios involving CYP3A4-mediated inhibi-
tion without conducting a clinical DDI study. However, it 
will be entirely dependent on the predicted magnitude of 
interaction and whether it is likely to be clinically signif-
icant or not. In the former case, a clinical DDI study may 
still be warranted, whereas, in the latter case, a sensitiv-
ity analysis using an appropriate range of Ki values (see 
below) may suffice.

Among the 37% of inhibitors where an optimized Ki 
value was used, with the exception of two weak inhibitors, 
the median difference between the optimized and in vitro 
Ki values was about 10-fold. Reasons for the differences 
between in vivo and in vitro Ki values have been discussed 
in the literature previously and include possible inhibi-
tion by metabolites, general environmental differences 
between in vitro and in vivo enzyme systems, partition-
ing into organelles (e.g., lysosomal distribution) or cellu-
lar membranes, and active uptake processes altering local 
concentrations.19-21 As it is not always possible to identify 
these mechanisms a priori, we suggest conducting appro-
priate sensitivity analyses for compounds in development 
to assess the impact of a range of Ki values on the mag-
nitude of interaction. Thus, when in vitro Ki values of 
CYP1A2, CYP2C8, CYP2C9, CYP2C19, and CYP3A4 per-
petrators indicate negligible DDI liability with a sensitive 

substrate, we recommend predicting the impact of Ki val-
ues up to 10-fold lower. If the DDI potential remains low, 
then it is likely that the clinical study can be waived espe-
cially if supported by the qualification dataset presented 
here, which includes a range of weak inhibitors.

Of the 78 simulated DDIs involving mechanism-based 
inhibitors (8 CYP2C8; 4 CYP2C9; 5 CYP2C19; 9 CYP2D6; 
and 52 CYP3A4), the prediction accuracy was good with a 
bias of 1.03 for both Cmax and AUC ratios and a precision of 
1.20 and 1.26 for Cmax and AUC ratios, respectively. With 
the exception of two cases, all inactivation parameters 
used in the simulations were based on in vitro data. This 
finding is in line with that of a recent publication where 
data from both HLM and human hepatocytes were shown 
to give good predictions of clinical DDIs.22 However, given 
the uncertainty often associated with inactivation param-
eters, it is likely that the qualification described here can 
only fully support untested scenarios (comedications and 
less sensitive substrates) for perpetrators of CYP1A2, 
CYP2C8, CYP2C9, CYP2C19, and CYP3A4 when a clin-
ical study has been performed to assess the DDI potential 
of the drug. In addition to inactivation parameters for the 
inhibitors, estimates of enzyme turnover in the liver (kdeg) 
are required for DDI predictions. In vivo enzyme levels 
are governed by the rates of de novo enzyme synthesis 
and degradation which differ for CYP enzymes and thus, 
result in different enzyme turnovers.23 Thus, it is import-
ant to indicate which values were used for each enzyme; 
values were 0.0183 (CYP1A2), 0.0301 (CYP2C8), 0.0067 
(CYP2C9), 0.0267 (CYP2C19), 0.0099 (CYP2D6), and 
0.0193 h−1 (CYP3A4).24 Based on the predictive perfor-
mance of the platform, and the fact that all CYP enzymes 
are likely to behave the same mechanistically, the Simcyp 
Simulator (V19R1) can be considered to be qualified with 
respect to CYP-mediated MBI.

The overall prediction accuracy of the Simcyp Simulator 
in terms of CYP3A4-mediated DDIs was reported pre-
viously using an earlier version of the platform (V15). 
Marsousi et al.25 simulated 74 CYP3A4-mediated DDIs 
involving ketoconazole, itraconazole, clarithromycin, and 
rifampicin; a geometric mean fold error (GMFE) of 1.5 
was obtained when the predicted AUC ratios were com-
pared against corresponding observed data. Furthermore, 
a recently published summary of the current drug inter-
action guidance from the EMA contained an example of a 
platform qualification for prediction of CYP3A4-mediated 
MBI, which was finally accepted by the EMA.17 This anal-
ysis consisted of 27 clinical DDI study designs, including 
the inhibitors diltiazem, erythromycin, fluoxetine, and 
ritonavir and five different CYP3A4 victim substrates; a 
GMFE of 1.3 was reported based on a comparison of pre-
dicted versus observed AUC ratios. Interestingly, it was 
indicated by the EMA reviewers, that qualification is only 
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valid for simulations or scenarios covered by the qualifi-
cation dataset. Qualification examples or approaches in-
volving other PBPK platforms have also been published 
for CYP3A4-mediated DDIs26 and CYP1A2 or CYP2C19 
interactions,27 respectively.

In summary, our analysis demonstrates that the 
Simcyp Simulator can be used with confidence to assess 
the DDI potential of INDs as victims or perpetrators of 
CYP-mediated interactions involving competitive inhibi-
tion or MBI.
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