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Abstract: Thymol is a natural antibacterial agent found in the essential oil extracted from thyme,
which has been proven to be beneficial in food and medicine. Meanwhile, the NOD-like receptor
family pyrin domain-containing 3 (NLRP3) inflammasome and autophagy have been reported to
play key roles in the progression of liver injury. However, the effects of thymol on the NLRP3
inflammasome and autophagy in protecting the liver remain unclear. The present study used a
mouse model with liver injury induced by lipopolysaccharides (LPS) to investigate the regulatory
mechanisms of thymol. We found that thymol alleviated LPS-induced liver structural damage, as
judged by reduced inflammatory cell infiltration and improved structure. In addition, elevated
levels of the liver damage indicators (alanine transaminase (ALT), aspartate transaminase (AST),
and total bilirubin (TBIL)) dropped after thymol administration. The mRNA and protein expression
of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-22), apoptosis-
related genes (caspase3 and caspase9), and the activity of apoptosis-related genes (caspase3 and
caspase9) were increased in LPS-treated livers, whereas the changes were alleviated after thymol
administration. Thymol inhibited LPS-induced increment in lactate dehydrogenase (LDH) activity in
primary hepatocytes of the mouse. In addition, thymol protected mice from liver injury by inhibiting
NLRP3 inflammasome activation induced by LPS. Mechanistically, the present study indicates that
thymol has liver protective activity resulting from the modulation of the AMP-activated protein
kinase—mammalian target of rapamycin (AMPK–mTOR) to regulate the autophagy pathway, hence
curbing inflammation.
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1. Introduction

Although functioning crucially in immune response and producing a considerable
number of inflammatory mediators, the liver remains susceptible to inflammatory injury [1].
Acute liver failure (ALF) is a severe illness with the characteristics of a significant necrosis
of the hepatocytes, rapid deterioration of the hepatic function, and eventually multiple
organ failure in patients with no preexisting liver disease [2,3]. On account of the severe
morbidity and mortality, finding effective medications to cure ALF and extensively studying
the mechanism of ALF are critical.

In addition, some natural products or ingredients have been tested in clinical trials,
due to their potential medicinal activity. Many dietary supplements, particularly polyphe-
nols, are reported to be promising candidates for treating various diseases, including
inflammations. Traditional Chinese medicine is a key element in ALF therapy [2]. As a
natural monoterpene phenolic compound, thymol has the potential to be antimicrobial,
anti-oxidative, and anti-inflammatory [4]. Furthermore, thymol is proven to help boost the
immune system by improving intestinal barrier function and combating harmful germs [5].
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However, the liver-protective impact of thymol under stressful conditions is little known.
Understanding the defensive mechanisms seems essential to the practical application of
thymol in boosting the body’s defenses.

LPS-induced liver injury is mediated by various pro-inflammatory mediators, includ-
ing tumor necrosis factor (TNF)-α and interleukin (IL)-6 [6,7]. Apoptosis is also involved in
liver injury, leading to characteristic changes including chromosomal DNA fragmentation
and caspase activation [8–10]. In addition to inflammation and apoptosis, a growing body
of research has discovered that the NOD-like receptor family pyrin domain-containing 3
(NLRP3) inflammasome activation directly affects several acute and chronic liver dis-
orders [11]. According to studies, the NLRP3 inflammasome is essential for pro-IL-1β
conversion into physiologically active IL-1β, as well as the IL-18 release, the onset of inflam-
mation, and the development of immunological responses [12,13]. Inhibiting the activation
of the NLRP3 inflammasome seems to be a useful technique for relieving the inflammation
of liver injury.

According to recent research, autophagy inhibits the inflammatory responses by
serving as a negative feedback mechanism for NLRP3 assembly [14]. It has been suggested
that autophagy plays an essential function in maintaining cellular homeostasis by self-
digesting proteins with a long half-life or organelles that have been destroyed in response to
external stimuli [15,16]. It is also recognized as having a role in modulating normal hepatic
function and the etiology of several liver disorders [17]. The LPS modulates autophagy
in the liver, indicating the pivotal role of autophagy in moderating hepatic function [18];
likewise, recent studies suggest that the activation of autophagy can alleviate apoptosis
and improve functional recovery from liver failure [1]. Since autophagy is triggered by
the inhibition of the kinase mammalian target of rapamycin (mTOR), a critical regulator
of autophagy [19], it is worth studying whether hepatocyte autophagy protects the liver
against injury.

The present study was designed to explore the liver-protective role of thymol. We
hypothesized that thymol alleviates the LPS-induced liver inflammation and hepatocyte
apoptosis by inhibiting the NLRP3 inflammasome activation and modulating the AMPK–
mTOR autophagy-signaling pathway.

2. Materials and Methods
2.1. Ethics Approval

The study was conducted according to the Laboratory Animal Management Regula-
tions (revised 2016) guidelines of Heilongjiang Province, China. The Institutional Animal
Care and Use Committee of Northeast Agricultural University (NEAU-(2011)-9) approved
the animal care and treatment procedures.

2.2. Chemicals

The thymol (purity > 98.5%), LPS (Escherichia coli 055:B5, L2880), and dimethyl sul-
foxide (DMSO, D4540) were obtained from Sigma-Aldrich (St. Louis, MO, USA). The
mouse monoclonal anti-β-actin (AA128), HRP-labeled goat anti-rabbit IgG (H + L), and
HRP-labeled goat anti-mouse IgG (H + L) antibodies (A0208, A0216) were purchased from
Beyotime (Shanghai, China). The following antibodies were used in this work: anti-IκB α

(4814, Cell Signaling Technology, Danvers, MA, USA), anti-phospho-NF-κB p65 (Ser536,
3033S, Cell Signaling Technology), anti-NLRP3 (AF2155, Beyotime), anti-IL-1β (AF7209,
Beyotime), anti-beclin1 (ab231341, Abcam), anti-ATG7 (AA820, Beyotime), anti-LC3B
(ab229327, Abcam, Cambridge, UK), anti-phospho-AMPK-α (Thr172, Cell Signaling Tech-
nology), anti-phospho-mTOR (Ser2448, D9C2, Cell Signaling Technology), anti-caspase-3
(WL02117, Wanleibio, Shenyang, China), and anti-cleaved caspase-9 (WL01838, Wanleibio).

2.3. Animals and Treatment

Thirty-six BALB/c male mice (7–8 weeks, 18–22 g) were procured from Liaoning
Changsheng Biotechnology Company (Benxi, China). Throughout the studies, the mice
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were kept in a temperature (22 ± 2 ◦C) and humidity (55 ± 5%) controlled environment
with a 12-h light/dark cycle and had free access to commercial standardized basal meals
and water. Following an acclimatization period of 5 days, the mice were randomly divided
into three groups (n = 12/group): Con, LPS, and LPS + Thy. The mice in the Thy group
were administered 80 mg/kg body weight (BW) thymol by gavage, while the others were
administrated with sterile saline by gavage. The thymol was first dissolved in DMSO,
heated to 60 ◦C at a concentration of 8 g/mL, and diluted in distilled water to 8 mg/mL.
Then the volume of the thymol solution was calculated according to the BW of each mouse.
On the 34th day, the mice in the control group were given sterile saline intraperitoneally,
while the others were given 10 mg/kg LPS intraperitoneally. After 4 h of LPS treatment, the
mice were anesthetized by diethyl ether inhalation and killed by cervical dislocation. Blood
was drawn by removing the eyeball of each mouse and each blood sample was incubated
for 30 min at room temperature before being centrifuged at 3000 rpm for 15 min at 4 ◦C.
The serum’s top layer was kept at −20 ◦C. The liver tissue was removed and fixed with
4% paraformaldehyde, while the rest was frozen in liquid nitrogen and stored at −80 ◦C.

2.4. Histopathological Analysis

The liver tissues were embedded in paraffin and sectioned at a thickness of 5 µm after
being fixed in 4% paraformaldehyde at 4 ◦C. The sections were stained with hematoxylin
and eosin (H&E). An optical microscope was used to capture the images. The severity
of liver damage was determined using a five-point scale (0–4 equaling none, slight, mild,
moderate, and severe, respectively).

2.5. Serum Biochemical Analysis

The alanine transaminase (ALT), aspartate transaminase (AST), total bilirubin (TBIL),
albumin (ALB), and total protein (TP) were analyzed with an automatic biochemical
analyzer (Roche Cobus Mira Plus, Switzerland) at the Heilongjiang Electric Power Hospital
(Harbin, China).

2.6. Immunohistochemistry (IHC) Staining

The tests were carried out according to the manufacturer’s instructions (Servicebio,
Wuhan, China). The paraffin-embedded liver slides were dewaxed with xylene and re-
hydrated with graded alcohols. The tissue slices were pressure-cooked in 0.01 M citrate
buffer (pH 6.0) for 20 min to extract antigen, then incubated with 3% hydrogen peroxide at
room temperature for 25 min to inhibit endogenous peroxidase. Then they were blocked
with 3% BSA for 30 min, followed by incubation with indicated primary antibody at 4 ◦C
overnight, and then with HRP-conjugated secondary antibodies for 50 min at room tem-
perature. Finally, the sections were counterstained with hematoxylin after being covered
with diaminobenzidine (DAB) color-developing solution and observed with a microscope.
The nucleus of hematoxylin stained was blue, and the positive expression of DAB was
brownish-yellow.

2.7. Quantitative Reverse-Transcription Polymerase Chain Reaction (qRT-PCR)

The total RNA was extracted from homogenous liver tissue using the RNAiso Plus
reagent (9109, Takara Bio, Inc., Otsu-Shiga, Japan) and the cDNA was synthesized, accord-
ing to the manufacturer’s procedure, using the PrimeScript RT Master Mix Kit (RR047A,
Takara Bio, Inc.). The qRT-PCR reaction was performed using SYBR Green mix (RR420A,
Takara Bio, Inc.). The PCR primer sequences were synthesized by Sangon Biotech Co., Ltd.
(Shanghai, China) and are listed in Table 1. The relative mRNA expression levels were
calculated using the 2−∆∆Ct method.
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Table 1. The sequences of primers for qRT-PCR.

Gene Primer (5′-3′) Gene Bank Accession

β-actin
F: GTGCTATGTTGCTCTAGACTTCG

NM_007393.5R: ATGCCACAGGATTCCATACC

TNF-α
F: GCCTCTTCTCATTCCTGCTTGTGG

NM_001278601.1R: GTGGTTTGTGAGTGTGAGGGTCTG

IL-6
F: CTTCTTGGGACTGATGCTGGTGAC

NM_001314054.1R: AGGTCTGTTGGGAGTGGTATCCTC

IL-22
F: TTCCAGCAGCCATACATCGTCAAC

XM_006513865.4R: GGTAGCACTGATCCTTAGCACTGAC

IL-1β
F: TCGCAGCAGCACATCAACAAGAG

XM_006498795.5R: AGGTCCACGGGAAAGACACAGG

IL-18
F: GTTAGGTGGGGAGGGTTTGTGTTC

XM_036154619.1R: GCAGCCTCGGGTATTCTGTTATGG

NLRP3
F: CCTGGTCTGCTGGATTGTGTGC

XM_039085397.1R: AGTCGTGGTCTTGGAGGTCTGG

Caspase3 F: TCTGACTGGAAAGCCGAAACTCTTC
XM_017312543.3R: GTCCCACTGTCTGTCTCAATGCC

Caspase9 F: ATGCTGTGTCAAGTTTGCCTACCC
NM_001355176.1R: GCTCCAGAATGCCATCCAAGGTC

p62(SQSTM1) F: TGGAGTCGGATAACTGCTCAGGAG
NM_175843.4R: AGACTGGAGTTCACCTGTGGATGG

ATG7
F: GGCACGAACTGACCCAGAAGAAG

XM_036152370.1R: GCAGACCAGCAGAGTCACCATTG

2.8. Elisa Assay

The Elisa kits for murine TNF-α (JM-02415M2), IL-6 (JM-02446M2), IL-22 (JM-02424M2),
IL-18 (JM-02452M2), and IL-1β (JM-02323M2) were purchased from Jingmei (Jiangsu Jing-
mei Biological Technology Co., Ltd., Jiangsu, China), and performed according to the
manufacturer’s guidance.

2.9. Western Blotting Analysis

The total protein from the liver tissues (0.1 g) was extracted using a RIPA buffer
mix containing 1% PMSF, and the protein lysates were denatured at 95 ◦C for 10 min.
Following the concentration assessed by the BCA Protein Assay kit (P0010, Beyotime), equal
proteins per sample were separated on 8–12% SDS-PAGE gels and subsequently transferred
onto poly-(vinylidene fluoride) (PVDF) membranes (Millipor, Billerica, MA, USA). The
membranes were blocked with 5% nonfat milk for 2 h, followed by immunoblotting with
the indicated primary antibodies at 4 ◦C overnight. It was then incubated with HRP-
conjugated secondary antibodies for 1 h at room temperature, followed by signal detection
using ECL Substrate (P0018AS, Beyotime). The band’s intensity was quantified using
ImageJ software 1.8.0. (National institutes of health, Bethesda, MD, USA), and β-actin was
used to normalize the relative intensity of target proteins.

2.10. TUNEL Staining

The tests were carried out, according to the manufacturer’s instructions (Servicebio,
Wuhan, China). The paraffin-embedded liver tissue of each group was incubated in two
changes of xylene for 20 min each and dehydrated in two changes of pure ethanol for 10 min
each, followed by dehydrating in gradient ethanol of 95%, 90%, 80%, and 70% ethanol,
respectively, for 5 min. Then they were repaired with protease K at 37 ◦C for 25 min
and then covered in permeabilized working solution (0.1% triton) and incubated at room
temperature for 20 min. The buffer is incubated at room temperature for 10 min. The TDT
enzyme, dUTP and the buffer in the TUNEL kit were mixed at a ratio of 1:5:50. Afterward,
the mixture was added to the objective tissue in a flat wet box and incubated at 37 ◦C for 2 h.
Again, it was incubated with the DAPI solution at room temperature for 10 min. Finally,
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the dyeing sections were observed and photographed using a fluorescence microscope; the
nucleus was labeled blue by DAPI, and the positive apoptosis cells were green.

2.11. Detection of Caspase3 and Caspase9 Activity

The liver’s relative caspase3 and caspase9 activities were performed using the activity
assay kits (C1116, C1158, Beyotime, China), according to the manufacturer’s instructions.
The liver homogenate was incubated on ice-cold lysis buffer for 5 min, then centrifuged at
10,000× g for 10 min. Subsequently, the supernatant liquid was gathered and incubated
with Ac-DEVD-pNA (2 mM) or Ac-LEHD-pNA (2 mM) at 37 ◦C for 2 h. After incubation,
absorbance was measured at 405 nm using a microplate reader (Tecan, Zürich, Switzerland).

2.12. Isolation and Culture of Primary Hepatocytes

As previously described, the primary hepatocytes were isolated from the BALB/c
male mice (7–8 weeks) [20]. The isolated hepatocytes were cultivated in a humidified
atmosphere with 5% CO2 at 37 ◦C. The viability of the cells was assessed using the trypan
blue exclusion test.

2.13. Detection of LDH Activity

The primary hepatocytes were seeded in 12-well plates in triplicate. For the detection
of LDH activity, the cell supernatant was collected after treatment with 120 µM thymol for
20 h, followed by treatment with 500 ng/mL LPS for 4 h. The LDH activity was quantified
using the activity assay kit (A020-2, Nanjing Jiancheng, China), according to the manufac-
turer’s instructions. The cell supernatant was collected and centrifuged at 12,000× g for
15 min. Each sample was incubated with the mechanism buffer and coenzyme I in the kit
at 37 ◦C for 15 min, followed by co-incubation of 2,4-dinitrophenylhydrazine at 37 ◦C for
15 min. Then, NaOH solution was added before incubating again at room temperature for
5 min, and the absorbance was measured at 450 nm using a microplate reader.

2.14. Statistical Analysis

The mean ± standard deviation (SD) was used to express the data in GraphPad
Prism version 8.0 (San Diego, CA, USA). One-way ANOVA followed by Tukey’s multiple
comparisons were used to conduct statistical analysis among multiple groups in SPSS 23.0
(SPSS Inc., Chicago, IL, USA). The standard for statistical significance was p < 0.05.

3. Results
3.1. Thymol Protects Mice from LPS-Induced Liver Injury

No visible liver histopathological changes existed in the Con group. The core veins
of the hepatic lobules aligned in a regular pattern, and the cell morphology was normal.
On the contrary, apparent histological changes with aberrantly distributed hepatocytes,
abnormal cell morphology, inflammatory cell infiltration, and a substantial amount of
ruptured hepatic cells were evident after the LPS administration. Compared to the LPS
group, the hepatic gross morphology was well maintained with less inflammatory cell
infiltration in the Thy group (Figure 1A). When compared consistently to the LPS group, the
histological score of the hepatic lesion was significantly decreased upon thymol treatment
(Figure 1B).

Furthermore, the activity of the biochemical markers, ALT, AST, and TBIL, increased
significantly after the LPS administration. Conversely, the serum ALB and TP levels
were obviously lower, indicating that LPS caused liver injury. However, the thymol
administration lowered the ALT and AST levels (Figure 1C–G). The above results suggest
that thymol has the potential to protect the liver from the LPS challenges.
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stained histologic sections of the liver (scale bars: 50 µm, 20 µm); and (B) analysis of the histological
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thymol. Differences were presented with different superscript letters (p < 0.05).

3.2. Thymol Protects Mice from Liver Injury via Suppressing Proinflammatory Cytokines

The overproduction of inflammatory mediators was probably involved in the modula-
tion of the acute-phase response of the hepatic lesions [11]; therefore, the thymol regulation
of the inflammatory responses was evaluated to understand its anti-inflammatory proper-
ties further. Moreover, controlling the acute-phase response to liver damage and infection
may entail the overproduction of inflammatory cytokines [8]. In this study, after the LPS
treatment, the mRNA expression of TNF-α, IL-6, and IL-22 increased considerably, indicat-
ing that the LPS stimulated the production of these inflammatory mediators (Figure 2A–C),
whereas the thymol inhibited the production of the inflammatory mediators, as verified
by ELISA (Figure 2D–F). In addition, the thymol mitigated an LPS-induced increase in
p65 phosphorylation and a decrease in the IκB-α protein levels (Figure 2G), indicating that
thymol plays a role in liver protection via alleviation of the LPS-induced expression of
pro-inflammatory cytokines.
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cytokines (A) TNF-α; (B) IL-6; and (C) IL-22 in the liver (n = 5–6). The concentration of (D) TNF-α;
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3.3. Thymol Protects Mice from Liver Injury by Inhibiting NLRP3 Inflammasome Activation

In response to caspase1, the inactive precursor forms of pro-IL-1β and pro-IL-18
cleaved into the active form of IL-1β and IL-18 [12]. The assembly and activation of
the NLRP3 inflammasome were investigated further based on the suppression of IL-1β
and IL-18 by thymol (Figure 3A,B). LPS considerably induced NLRP3 and IL-1β at both
mRNA and protein levels, and IL-18 at the protein level (Figure 3C–F). The elevated
expressions of NLRP3, IL-1β and IL-18 were dramatically reduced by thymol, which is
partially compatible with the immunohistochemistry data (Figure 3G). The activation of
the NLRP3 inflammasome was characterized by a significantly increased release of the
LDH [21]. In mouse primary hepatocytes, thymol inhibited the LPS-induced increase
in LDH activity (Figure 3H). The above results highlight that thymol inhibits the NLRP3
inflammasome activation, which probably helps to explain the decreases in IL-1β and IL-18.
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Figure 3. Tryptophan inhibits the NLRP3 inflammasome to defend against inflammation. The
mRNA expression of (A) IL-18; (B) IL-1β; and (C) NLRP3 in the liver (n = 5–6). The concentration of
(D) IL-18 and (E) IL-1β in the liver as examined by ELISA analysis (n = 5–6); (F) The expression and
quantification of NLRP3 and IL-1β in liver as determined by Western blotting. Values are normalized
to β-actin levels and expressed as the mean ± SD (n = 6); (G) Immunohistochemistry of NLRP3 and
IL-1β in the liver (200 × magnification). The mean optical density of immunohistochemistry. Values
are expressed as the mean ± SD (n = 3); (H) The activity of LDH in primary hepatocytes (n = 3). Con,
control; Thy, thymol. Differences were presented with different superscript letters (p < 0.05).

3.4. Thymol Protects Mice from Liver Injury via Suppressing Hepatocyte Apoptosis

As a critical process, the apoptosis of hepatocytes is involved in the early stages of
liver injury. Therefore, it was investigated further whether thymol modulated hepatocyte
apoptosis to improve liver health. The results showed that, although not statistically
significant, the LPS increased the mRNA level of caspase3 and caspase9, which was reversed
by thymol (Figure 4A,B). Furthermore, thymol markedly inhibited the LPS-induced increase
in the caspase3 and caspase9 activity (Figure 4C,D). The Western blot results consistently
showed that the LPS significantly induced the protein expression of the cleaved caspase9
and promoted the conversion of the pro-caspase3 to cleaved-caspase3, which was reversed
by thymol (Figure 4E). The TUNEL assay further corroborated these observations, showing
that thymol inhibited apoptosis in the LPS-challenged mice (Figure 4F). The above findings
suggest that thymol inhibits hepatocyte apoptosis in LPS-induced liver injury.
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Figure 4. Thymol ameliorates LPS-induced apoptosis. The mRNA levels of apoptosis-related genes
(A) caspase3 and (B) caspase9 in liver (n = 5–6). The activity of (C) caspase3 and (D) caspase9 in
liver (n = 5–6); (E) The expression and quantification of pro caspase3, cleaved caspase3, and cleaved
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expressed as the mean± SD (n = 6); (F) TUNEL apoptosis analysis (200×magnification). Con, control;
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3.5. Thymol Protects Mice from Liver Injury via Modulating the AMPK-mTOR-
Autophagy Pathway

The protein expression of the autophagy-associated proteins was examined to clarify
the pathways that account for the protective properties of thymol. The transformation from
LC3-I to LC3-II is a valid bio-indicator for autophagy activation [17]. Beclin1 is essential in
initiating autophagy by being involved in the autophagosomes’ formation [17]. The LPS
suppressed the mRNA and protein expression of Beclin1 and ATG7, while it increased p62
in the livers, which was reversed by the thymol pretreatment (Figure 5A–C). The Western
blot analysis consistently demonstrated that the LC3-II/LC3-I expression in the liver tissues
was decreased by the LPS and alleviated by thymol (Figure 5C).
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Figure 5. Thymol regulates the AMPK–mTOR autophagy pathway during inflammatory re-
sponses. The mRNA levels of autophagy-related genes (A) p62 and (B) ATG7 in the liver (n = 5–6);
(C) The expression and quantification of autophagy-related proteins in the liver as determined by
Western blotting. Values are normalized to β-actin levels and expressed as the mean ± SD (n = 6);
(D) The expression and quantification of p-AMPK and p-mTOR in the liver as determined by Western
blotting. Values are normalized to β-actin levels and expressed as the mean ± SD (n = 6). Con,
control; Thy, thymol. Differences were presented with different superscript letters (p < 0.05).

The kinases mTOR and AMPK are regarded as the indispensable intracellular reg-
ulators of autophagy [22]; therefore, the effect of the LPS and thymol exposure on the
expression of p-mTOR and its downstream target p-AMPK was determined. Likewise, the
impact of the LPS and thymol administration on the phosphorylation of both mTOR and
its downstream target AMPK in the liver was investigated in vivo. Interestingly, thymol re-
versed the LPS-induced mTOR activation and AMPK inhibition (Figure 5D). As mentioned
earlier, pretreatment with thymol protects mice against hepatic injury via the modulation
of the AMPK–mTOR autophagy pathway.

4. Discussion

Due to the involvement of the liver in detoxification and metabolic equilibrium in var-
ious ways, liver dysfunction is a widespread concern [22]. The current study demonstrates
that thymol pretreatment significantly decreases the liver inflammation and hepatocel-
lular apoptosis, preventing the hepatic injury caused by LPS in mice. Based on these
findings, the activation of the NLRP3 inflammasome and modulation of the AMPK–mTOR
autophagy-signaling pathway was suppressed by thymol (Figure 6).

When the hepatocytes are injured, the cell membrane integrity is compromised and
transaminases (ALT and AST) are released into the blood from hepatocytes, resulting in
elevated serum ALT and AST activities [23]. Consequently, ALT and AST are well-known
essential biochemical indicators for determining the severity of liver lesions [24]. The
content of ALB, a protein generated by the liver that contributes 40–50% of plasma TP, is
often associated with the synthesis function of the liver [25]. In this study, LPS-associated
hepatotoxicity was indicated by an increase in AST, ALT, and TBIL, and a decrease in TP
and ALB, as validated by H&E staining. Thymol could remarkably reduce the content
of these markers, which is congruent with the results reported by Yu et al. [26]. Thymol
supplementation prevents most, but not all, of the deleterious effects of LPS, which indicates
that it has a protective function for the liver lesions.
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Hepatic inflammatory responses co-occur with all of the liver diseases and were as-
sumed to be involved in the onset and progression of hepatic lesions [27]. Innate immune
cell activation and multiple pro-inflammatory cytokines, including TNF-α and IL-6, trigger
and amplify the inflammatory hepatic damage [28]. In the current study, the LPS upreg-
ulated the pro-inflammatory mediators TNF-α, IL-6, and IL-22, which were reversed by
thymol. The activation of NF-κB, a signaling molecule that can effectively regulate the
production of pro-inflammatory proteins, was suppressed by thymol. We hypothesized
that thymol could protect the liver from the LPS-induced inflammatory damage. Due to
apoptosis or necrosis, chronic and uncontrolled inflammation reportedly causes an enor-
mous loss of hepatocytes and hepatic function [29]. TNF-α, released by active macrophages,
has been demonstrated to mediate the hepatocyte injury by binding to the death TNF-α
receptor, leading to caspase activation [30]. Furthermore, caspase3 and caspase9 have been
implicated in apoptotic reactions on numerous occasions [31]. Compared to the control
group, the LPS administration induced the elevated activity of caspase3/9 and the protein
expression of cleaved caspase3/9. All of the changes in the hepatic tissue of mice decreased
after the treatment with thymol. These observations support the liver-protective role of
thymol via anti-inflammation and anti-apoptosis under the LPS challenge.

Recent studies discovered that, apart from triggering inflammatory responses, the LPS
stimulation elicited rapid NLRP3 inflammasome activation [32]. The NLRP3 inflammasome
is a pattern-recognition receptor in hepatocytes, Kupffer cells, sinusoidal endothelial cells,
and hepatic stellate cells, triggered by diverse stimuli including bacteria, viruses, and
fungi [33]. The activation of the NLRP3 inflammasome requires two stages: priming and
activation [34,35]. NLRP3 recruits ASC and caspase-1 to form the NLRP3 inflammasome,
leading to the maturation and secretion of IL-1β and IL-18 [36,37]. It has been proven that
the activated NLRP3 inflammasome plays a major role in liver injury. Blocking the NLRP3
inflammasome has been shown to reduce the chronic inflammatory hepatic pathology,
which may provide a novel strategy for treating chronic hepatic injury [38–40]. Furthermore,
accumulated IL-1β and IL-18 play a pro-inflammatory role in hastened liver pathology by
recruiting neutrophils [12]. The present study found that thymol significantly reversed
the increased expression of genes and proteins related to the assembly (NLRP3) and
activation (IL-1β and IL-18) of the NLRP3 inflammasome by LPS in the liver. Additionally,
the LPS-induced, increased LDH activity in the primary hepatocytes was inhibited by
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thymol, implying that thymol was, indeed, involved in the process of hepatocyte injury via
NLRP3 silencing.

Increasing studies suggest that autophagy and NLRP3 appear to be regulated by
each other. Autophagy is a conserved intracellular mechanism that maintains energy,
organelles, and protein homeostasis via a lysosomal breakdown of the damaged macro-
molecules or organelles, preventing cell damage and promoting cell survival [14]. The
previous study indicated that the macrophage autophagy modulates the liver immunolog-
ical reactivity after the LPS challenge via modulating the inflammasome activation [18].
Furthermore, the autophagy inhibition promotes apoptosis upregulation that is abnormal
and exacerbates the hepatocyte dysfunction [1]. All of the preceding findings support
that functional autophagy protects the liver against damage. Autophagy suppression
causes the buildup of depolarized mitochondria, and the released chemicals subsequently
become endogenous inflammasome activators, demonstrating that the NLRP3 degradation
is autophagy-dependent [41,42]. Autophagy promotes NLRP3 inflammasome degradation,
reduces caspase-1 activation, and inhibits the maturation and production of IL-1β and
IL-18 [43]. Depleting the autophagic proteins, such as LC3B and Beclin-1, triggers the
NLRP3 inflammasome activation and IL-1β and IL-18 secretion, validating the negative
regulation of the NLRP3 inflammasome activation by autophagy [44]. The present study
indicated that thymol dramatically restored the LPS-inhibited autophagy by evaluating
the levels of genes and proteins linked to autophagy, suggesting that thymol suppresses
the inflammasome via activating autophagy. In addition, the pathways by which thymol
regulates autophagy in the liver following exposure to LPS were also investigated. Among
the multiple pathways regulating autophagy, the AMPK/mTOR axis is classic and well
known [45]. When the AMPK is activated as p-AMPK, mTOR is prevented from activat-
ing into p-mTOR, leading to autophagy activation [46]. The increased phosphorylation
of mTOR and the decreased phosphorylation of AMPK by LPS were observed and, as
expected, thymol reversed the LPS-induced changes. These findings reveal that thymol
alleviates LPS-regulated autophagy and modulates the AMPK–mTOR pathway.

The exact involvement of autophagy in hepatic damage is unclear. However, according
to prior research, the autophagy increased dose-dependently in the mouse heart at low
dosages of the LPS, but gradually declined at higher dosages of 5–15 mg/kg [47]. This
indicates that autophagy was activated in moderate injury but suppressed in severe injury.
The current findings further suggest that autophagy was inhibited in the livers of the
LPS-challenged mice, and that the 10 mg/kg LPS delivered for 4 h could also reflect
serious liver injury in the mice. In contrast to our findings, researchers revealed that the
LPS-induced liver autophagy results in inflammation during sepsis [48]. The distinctions
between genetic manipulation and pharmacological modulation probably account for
these inconsistencies [49]. The significance of autophagy in inflammatory disease models
deserves further discussion.

In conclusion, the present study shows that thymol regulates the NLRP3 inflammasome–
autophagy pathway to protect the liver against LPS-induced damage. Therefore, thymol
has the potential to be developed into clinical medicine for treating the hepatic injury. For
the practical application of thymol against liver injury, more research on the protective
mechanisms of thymol, as well as preclinical trials, are required.
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