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Purpose: The purpose of this study was to assess the accuracy of artificial neural
networks (ANN) in estimating the severity of mean deviation (MD) from peripapillary
retinal nerve fiber layer (RNFL) thicknessmeasurements derived from optical coherence
tomography (OCT).

Methods:Models were trained using 1796 pairs of visual field and OCT measurements
from 1796 eyes to estimate visual field MD from RNFL data. Multivariable linear regres-
sion, random forest regressor, support vector regressor, and 1D convolutional neural
network (CNN) models with sectoral RNFL thickness measurements were examined.
Three independent subsets consisting of 698, 256, and 691 pairs of visual field and OCT
measurements were used to validate the models. Estimation errors were visualized to
assess model performance subjectively. Mean absolute error (MAE), root mean square
error (RMSE), median absolute error, Pearson correlation, and R-squared metrics were
used to assess model performance objectively.

Results: The MAE and RMSE of the ANN model based on the testing dataset were 4.0
dB (95% confidence interval = 3.8–4.2) and 5.2 dB (95% confidence interval = 5.1–5.4),
respectively. The ranges of MAE and RMSE of the ANN model on independent datasets
were 3.3–5.9 dB and 4.4–8.4 dB, respectively.

Conclusions: The proposedANNmodel estimatedMD fromRNFLmeasurements better
than multivariable linear regression model, random forest, support vector regressor,
and 1-D CNNmodels. The model was generalizable to independent data from different
centers and varying races.

Translational Relevance: Successful development of ANNmodels may assist clinicians
in assessing visual function in glaucoma based on objective OCT measures with less
dependence on subjective visual field tests.
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Introduction

Primary open angle glaucoma (POAG) is a leading
cause of irreversible blindness worldwide.1,2 Glaucoma
causes the slow degeneration and eventual death
of retinal ganglion cells (RGCs) and their atten-
dant axons3 accompanied by characteristic structural
changes and patterns of visual field loss.4 Major
risk factors for POAG include elevated intra-ocular
pressure (IOP), African ancestry, family history, and
older age.5,6 Most of the affected individuals at the
early stages of disease are unaware they have glaucoma,
which in turns leads to delayed care and irreversible
vision loss.7 Visual deterioration accelerates at compar-
atively late stages of glaucoma,8,9 concurrent with
sharp increases in the costs of treatment.10–12 There-
fore, early detection and proactive management of
glaucoma would positively impact clinical and public
health.

Currently, glaucoma is mainly diagnosed by visual
field testing and optic nerve assessment through
fundus photography or optical coherence tomography
(OCT) imaging.13 Visual field testing through standard
automated perimetry (SAP) provides a subjective
psychophysical test that typically takes a few minutes
to complete.14 Deterioration rates based on visual field
tests have been used as functional surrogate end points
in most recent glaucoma clinical trials.6,15,16 Although
widely used, visual field testing generates surprisingly
inconsistent and variable results, especially as the visual
field deteriorates, and particularly in patients with
suspected glaucoma.17,18

These weaknesses underlie a general concern that
visual field tests may be too insensitive or imprecise,
or both, to adequately measure treatment efficacy in
clinical trials over a short duration. In an attempt to
address this deficiency, methods that rely on longi-
tudinal visual field analysis and thus require either
more frequent visual field tests over time or acquir-
ing visual field tests over a longer period of time,
are being used with the goal of generating a statisti-
cally reliable outcome with which to monitor glaucoma
development. Both of these approaches incur more
cost.19–22 Given the limitations of current visual field
testing, there has been growing interest in OCT as a
more reliable glaucoma assessment. Spectral domain
OCT, a relatively newer generation ophthalmic imaging
technique based on the principle of optical interfer-
ometry, noninvasively provides 2- and 3-dimensional
high-resolution images of optic nerve head and
surrounding peripapillary retinal layers as well as
quantified measurements, all generated within a few
seconds.23

Artificial intelligence (AI) has made significant
advancement in ophthalmology and glaucoma over
the past few years.24–31 This early success has led to
critical questions regarding whether OCT measure-
ments are predictive of glaucoma status and, if so,
whether AI might be utilized to provide objective,
OCT-based monitoring of visual functional loss and
glaucoma status. A successful solution might augment
or replace subjective visual field testing with objective
OCT imaging for glaucoma assessment.

Several teams have previously attempted to estimate
visual field parameters from OCT measurements using
conventional statistical and conventional machine
learning approaches.32–34 Recently, deep learning
models have been offered to estimate global and local
visual field damage from raw OCT scans and quanti-
fied thickness measurements.35–37 Zhu et al. developed
linear and nonlinear regression models to estimate
visual fields from RNFL thickness measurements
obtained from scanning laser polarimetry (SLP).32
The mean absolute error (MAE) between the observed
and estimated visual field threshold sensitivity values
was approximately 3.9 dB. However, both linear and
nonlinear models significantly underestimated the true
sensitivity values of eyes in the early stages and overes-
timated the sensitivity values of eyes in the moderate
and advanced stages of glaucoma.

Bogunovic and colleagues developed several
learning models, including support vector regres-
sor machines (SVM), to estimate visual field from
quantified OCT (Spectralis) measurements from
122 subjects and achieved a root mean square error
(RMSE) of approximately 3.7 dB averaged across
all visual field test locations.33 The same team used
quantified measurements of RNFL and ganglion
cell and inner plexiform layers captured by Spectralis
OCT for estimating visual field sensitivity values a
few years later.34 Using another small sample size
with fewer than 100 subjects, the model significantly
underestimates or overestimates true visual field values
at both ends of the glaucoma spectrum. Moreover,
small sample sizes make it challenging to generalize the
findings.

Sugiura et al. developed a complex deep learning-
based model to estimate sensitivity at visual field test
locations using several OCT-derived retinal layer thick-
ness profiles and achieved an RMSE of about 6.1 dB.35
Christopher et al. proposed a deep learning model to
both diagnose glaucoma and to estimate global visual
field parameters from OCT-derived RNFL thick-
ness maps, OCT en face images, and confocal laser
scanning ophthalmoscopy (CSLO) images.36 In detect-
ing glaucomatous visual field damage, these deep learn-
ing models estimated mean deviation (MD) withMAE
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of about 2.9 dB. However, in the absence of any visual-
ization of the error distributions, it is challenging to
understand whether this level of MAE is mainly due to
existence of a greater number of normal eyes and eyes
at the early stages of glaucoma, which typically have
smaller estimation errors compared to eyes at the later
stages of glaucoma. In the absence of visualization,
it is also not obvious to assess whether the proposed
model is biased toward the two ends of the glaucoma
spectrums.

Yu et al. combined OCT images from macula and
optic disc to estimate visual field global parameters
using a 3-D deep learning model.37 The best MD
estimation accuracy of RMSE approximately 2.4 dB
and MAE approximately 2.3 dB for MD achieved
when OCT data of both macula and optic disc were
combined. Despite relatively low mean error rates,
the distribution of errors was heavily skewed and
reflected the tendency toward overestimating visual
field indices for eyes at the moderate to advanced stages
of glaucoma. Furthermore, most of the proposed
conventional and deep learning models, including Yu
et al., were not validated using independent datasets to
assess generalizability.

In this paper, we describe an artificial neural
network (ANN) model to estimate MD based on a
large dataset of RNFL thickness measurements from
OCT circle scans. We provide validation of the model
using three independent datasets from different races,
different instruments, and different scanning types. We
show that our model is significantly simpler than most
of the recently proposed deep learning models, yet (1)
achieves a competing degree of accuracy, (2) performs
well at estimating visual field parameters of eyes at the
early stages of glaucoma, while also providing reason-
able accuracy in later stages of glaucoma, and (3) is
generalizable to unseen cohorts. Moreover, our results
also help establish the degree to which the accuracy
visual fields can be estimated from OCT parameters
and demonstrate how AI models might avoid overes-
timation of visual field parameters from OCT images
of eyes at the later stages of glaucoma.

Methods

Subjects and Datasets

Four independent cohorts with different ethnicities
were used in this study to develop and validate the
AI model. Participants gave written informed consent,
and institutional review boards (IRBs) were approved
at the respective sites. Methods adhered to the tenets
of the Declaration of Helsinki. All visual field tests

were collected from the Humphrey Field Analyzer II
(Carl Zeiss Meditec, Inc., Dublin, CA, USA) using
standard 24-2 testing pattern with the Swedish inter-
active thresholding algorithm and global parameters,
including MD and PSD, were exported. Tests with
greater than 33% fixation losses, 20% false-negative or
false-positive error rates were excluded. For all eyes, the
corresponding OCT images were required to be within
180 days from the visual field testing date.

The OCT data of the training/testing and the first
two validation subsets were collected from Spectralis
instruments (Heidelberg Engineering, Heidelberg,
Germany) using 3.46 mm circular scans centered on
optic disc. The OCT data of the third validation subset
was collected from Cirrus instruments (Carl Zeiss
Meditec, Inc.) using Optic Disc Cube protocol (200 ×
200) within a 6 × 6 mm area. Spectralis OCT scans
with signal strength <15 and Cirrus OCT scans with
signal strength <6 were excluded.

The training/testing dataset included 1796 visual
field and OCT pairs from 1796 eyes (1796 patients),
the dataset was split at a ratio of 0.7, 0.1, and 0.2 for
training, validation, and testing, respectively. This first
validation dataset included 698 visual field and OCT
pairs from 698 eyes of patients with glaucoma of the
RotterdamEyeHospital. The second validation dataset
included 256 visual field and OCT pairs from 64 eyes
of 64 patients who visited the Jules Stein Eye Insti-
tute, University of California Los Angeles (UCLA),
and 691 visual field andOCTpairs from 691 eyes of 691
patients visiting theMassachusetts Eye andEar (MEE)
glaucoma service. For the MEE dataset, the circular
scans were estimated from the cube scan in 256 sectors.
More specifically, the A-scans closest to 256 sectors on
the 3.46 mm circle around the optic disc were selected
from the original 200 × 200 and appropriate smooth-
ing and interpolation was applied. This procedure is
inspired by the circle scan that Cirrus approximates
from cube scans and provides on printout.

Development of the Artificial Neural
Network Model

Circular RNFL thickness values were averaged to
generate 64 sectors for all OCT data (Fig. 1). An ANN
model was then developed to estimate visual field MD
values from64RNFL sectors using the training, valida-
tion, and testing dataset (Fig. 2). We developed several
ANN models with different numbers of layers and
neurons and eventually selected the simplest model
with only one hidden layer and 256 neurons. Stochas-
tic gradient descent (SGD) was used as the optimizer,
root mean squared error (RMSE) was used as the loss
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Figure 1. Circle scan around the optic disc of a sample right eye (OD). Left: A total of 768 A-scans are captured starting from the yellow
circle clockwise. Right: Every 12 A-scans were averaged to generate 64 sectors around the optic disc.

Figure 2. Diagram of the Artificial Neural Network (ANN) model
for estimating visual fields from circumpapillary RNFL thickness
measurements.

function for backpropagation, and the learning rate
was set to 0.001. The model was trained for up to 1000
epochs.

Development of Multivariable Linear
Regression, Random Forest, Support Vector
Regressor, and 1-D CNNModels

Multivariable linear regression (LR) model was
implemented by inputting seven RNFL global and
sectoral parameters as the inputs to the model and

visual field MD as the output of the model. Random
forest (RF), support vector regressor (SVR), and 1-
D CNN models were implemented with 64 sectors as
inputs and evaluated by MAE, RMSE and R-squared.

The number of trees was optimized for the RF
model. A total of 100 estimators and default values of
other parameters generated the least RMSE.

For SVR model, different kernels and regulariza-
tion parameters were examined and optimized by a grid
search and the model with radial basis function (RBF)
kernel and C parameter (regularization) of 100 gener-
ated the least RMSE. The number of layers, neurons,
optimizers, and learning rate were optimized by a grid
search for the 1-D CNN model. The best performance
of the 1-D CNN model was achieved with one convo-
lutional layer with 256 neurons, kernel size of 3, one
dense layer with 512 neurons, dropout of 0.25, and
using an SGD optimizer at a learning rate of 0.001.

Evaluating Models

The accuracy of the ANN model in estimating
visual field MD was assessed using MAE, RMSE, R-
squared, and Pearson correlation. In addition to objec-
tive metrics, the distributions of errors were visualized
using scatter plots to assess bias along the glaucoma
spectrum.

We also performed ablation test on ANN model
to uncover which sectors were more important in
estimating MD from RNFL data. In each experiment,
we excluded several sectors of the estimated visual
field MD based on the remaining RNFL sectors. We
then compared the accuracy of the model in terms
of R-squared to see which group of excluded sectors
impacted the accuracy significantly. We also performed
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a similar experiment based on the RF model. More
specifically, we identified and ranked more important
sectors (features) in the RF model for estimating visual
field MD from input RNFL sectors.

Results

The average age of the subjects in the testing and
Rotterdam, and MEE independent datasets were 65.8,
66.0, and 60.8 years, respectively. About 56% of partic-
ipants in the Rotterdam dataset were women. Table
1 shows the glaucoma severity level of eyes in all
datasets. Figure 3 shows the distribution of MD for
eyes in the testing and independent datasets. Whereas
patients in the MEE dataset were mostly normal or in
the early stages of glaucoma, patients in the UCLA
dataset were at the later stages of glaucoma.

Table 2 presents the overall accuracy of all models
in estimating visual field MD from RNFL data based
on the testing subset. The ANN model estimated MD
from RNFL data with R-squared of 0.64, MAE of
4.0 dB, and RMSE of 5.2 dB. Table 3 illustrates the
performance of the ANN model based on the testing
subset and the independent validation subsets. The R-
squared, MAE, and RMSE of the ANN model using
three independent subsets were in the range of 0.3–0.67
dB, 3.3–5.9 dB, and 4.4–8.4 dB, respectively.

Table1. AverageValueof RNFL andMD inTraining and
Three Independent Datasets

Dataset RNFL (SD); μm MD (SD); dB

Training 71.3 (20.3) −8.5 (8.4)
Rotterdam 69.8 (20.0) −6.7 (7.9)
UCLA 61.0 (13.2) −9.1 (6.3)
MEE 83.8 (14.5) −3.7 (5.1)

Figure 4 left shows the scatter plot of the true
versus estimated visual field MD of the ANN model
based on the testing subset. Figure 4 right shows the
scatter plot of the true versus estimated visual field
MD of the linear regression model based on the testing
subset. Figure 5 demonstrates the scatter plot of the
true versus estimated visual field MD of the ANN
model based on three independent validation subsets.

Estimating visual field MD using a linear regression
based on seven RNFL summary parameters, includ-
ing global RNFL thickness and average RNFL thick-
ness in temporal, temporal-superior, temporal-inferior,
nasal, nasal-superior, and nasal-inferior, resulted in R-
squared of 0.51 dB, MAE of 5.4 dB, and RMSE of
6.5 dB, in which all were significantly (P < 0.01) higher
than the error rates of the ANN model (see Table 2).

Figure 5 demonstrates the scatter plot of the
true versus estimated visual field MD of the ANN
model based on the Rotterdam, UCLA, and MEE
subsets. Table 3 illustrates the accuracy of the ANN
model in estimating MD for eyes in the early and
moderate to advanced stages of the glaucoma. R-
squared of the ANNmodel based on the MEE dataset
was negative. As we calculated the R-squared based
on the sum of squares of the residual and total error,
for MEE, the model provided a fit worse than a
straight line.

Table 4 presents the accuracy of the ANN model
in estimating MD for eyes at different severity levels
of glaucoma. Using testing subset, the ANN model
estimated MD from RNFL data of eyes in the early
stages of glaucoma (MD ≥ −6 dB) with MAE of
3.6 dB and RMSE of 4.8 dB. The model’s MAE
and RMSE for eyes at the later stages of glaucoma
(MD < −6 dB) were 4.6 dB and 5.9 dB, respectively.
The MAE and RMSE of the model for eyes at the
early stages of glaucoma (MD ≥ −6 dB) using three
independent subsets were in the range of 2.4–5.0 dB

Figure 3. Distribution of eyes in the training and three independent datasets across glaucoma spectrum. Left: Distribution of eyes based
on the global retinal nerve fiber layer thickness. Right: Distribution of eyes based on visual field mean deviation.
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Table 2. Estimation Error of Different Models Based on the Testing Subset
MAE (dB) RMSE (dB) R-Squared

(95% Confidence (95% Confidence (95% Confidence
Model Interval) Interval) Interval)

ANN 4.0 (3.8–4.2) 5.2 (5.1–5.4) 0.64 (0.59, 0.68)
RF 4.0 (3.8–4.2) 5.4 (5.2–5.4) 0.47 (0.43–0.51)
SVR 4.2 (4.0–4.4) 5.7 (5.5–5.9) 0.41 (0.36–0.47)
1-D CNN 4.1 (3.9–4.3) 5.5 (5.3–5.7) 0.45 (0.35–0.54)
LR (7 summary
parameters)

5.4 (5.2–5.6) 6.5 (6.3–6.7) 0.51 (0.45–0.56)

LR (64 sectors) 5.2 (5.0–5.4) 6.7 (6.5–6.9) 0.17 (0.14–0.23)

Table 3. Accuracy of the Artificial Neural Network (ANN) Model in Estimating Visual Field Mean Deviation (MD)
From Retinal Nerve Fiber Layer (RNFL) Thickness Measurements

Dataset Testing Rotterdam UCLA MEE

Mean absolute error (MAE); dB; 95% CI 4.0 (3.8, 4.2) 3.3 (2.77, 3.83) 3.9 (3.58, 4.36) 5.9 (5.3, 6.6)
Root mean square error (RMSE); dB; 95% CI 5.2 (5.1, 5.4) 4.4 (3.72, 5.08) 5.3 (4.88, 5.83) 8.4 (7.4, 10.4)
Median absolute error; dB; 95% CI 3.1 (2.7, 3.7) 2.6 (2.23, 3.16) 2.9 (2.58, 3.37) 3.5 (3.1, 4.9)
Pearson correlation; 95% CI 0.81 (0.80, 0.83) 0.84 (0.81, 0.86 0.61 (0.52, 0.68) 0.62 (0.57, 0.66)
R-squared; 95% CI 0.64 (0.59, 0.68) 0.67 (0.47, 0.86) 0.30 (0.11, 0.43) −1.74 (−2.86, −0.77)

Figure 4. Scatter plots of the true versus estimated mean deviations (MD) of the testing dataset. Left: Outcome of the Artificial Neural
Network model based on 64 RNFL sectors. Right: Outcome of the linear regression based on seven RNFL summary parameters.

and 3.1–7.4 dB, respectively. The MAE and RMSE
of the model for eyes at the later stages of glaucoma
(MD < −6 dB) using three independent subsets
were in the range of 4.2–10.0 dB, and 5.2–11.9 dB,
respectively.

Table 5 shows the outcome of the ablation test
on the ANN model based on the testing subset.
We observed that excluding sectors 41–64 impacted
the accuracy of the model more than the other
sectors.

Figure 6 shows the feature importance of the 64
sectors superimposed on the fundus photograph for
easier interpretation.

Discussion

The ability of AI models to accurately estimate
visual field damage from OCT images has several
advantages. it may complement and subsequently
reduce the burden of subjective visual field testing in
patients with glaucoma. It could support less frequent
visual field testing and individualization of testing
requirements to individual patients. Eventually, it may
even fulfil the long-term hope of replacing subjective,
time-consuming, and inconsistent visual field testing
with more rapid, objective, and more reproducible
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Figure 5. Scatter plots of the true versus estimatedmean deviations (MD) of the ANNmodel based on independent subsets. Left: A subset
with 691 visual fields and OCT pairs from Rotterdam eye hospital.Middle: A subset with 256 visual fields and OCT pairs from UCLA. Right:
A subset with 691 visual fields and OCT pairs fromMEE. The MEE subset included Cirrus cube scans while other subsets included Spectralis
circle scans.

Figure 6. Feature (sector) ranking based on the random forest regressor (RF) model. Left: Sectors that were more important in estimating
visual field mean deviation from 64 RNFL sectors. Right: Importance sectors were color coded and superimposed on fundus photograph to
provide a user-friendly visualization. More important sectors are presented in greenish colors.

Table 5. Ablation Rest on Artificial Neural Network
(ANN) Based on the Testing Subset

Sectors Excluded R2 (95% Confidence Interval)

None 0.64 (0.59, 0.68)
1–10 0.62 (0.56–0.67)
1–20 0.59 (0.52–0.65)
1–30 0.57 (0.50–0.63)
1–40 0.51 (0.40–0.59)
41–50 0.55 (0.48–0.62)
51–60 0.60 (0.52–0.66)
41–60 0.46 (0.37–0.53)
41–64 0.42 (0.36–0.51)

OCT imaging. However, even with recent advance-
ments in AI, we have yet to reach these ultimate goals.

We developed several linear and nonlinear models
for estimating the visual field MD from RNFL thick-
ness measurements. More complex models are often

believed to perform better; however, it is known that
more complex models typically make more assump-
tions, leading to narrower application and less gener-
alizability. Occam’s razor theory suggests selecting
simpler machine learning models may be desirable,
particularly if the accuracy is not significantly compro-
mised.38 We showed that a simple ANN model can
estimate global visual field MD without compromising
the accuracy when compared with other linear or more
complex 1-D CNN models.

We trained and tested the ANN model using a
relatively large subset of OCT and visual field pairs,
and validated the model using three different subsets.
The error in estimating visual field MD in terms of
MAE and RMSE was 4.0 dB and 5.2 dB, respectively.
Our model’s error is lower than the model reported by
Sugiura et al.35 that achieved an RMSE of about 6.1
dB, and comparable to the error level (MAE of 3.9 dB)
of themodel developed by Zhu et al.32 that usedRNFL
profiles quantified from SLP images. The RMSE about
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3.7 dB in two studies33,34 that used several retinal layers
to estimate MD is lower than ours, however, there
are caveats that make generalization of their results
challenging: (1) the number of subjects in the first study
was approximately 120 and in the second study approx-
imately 100, which makes generalization of findings
challenging; (2) models significantly underestimate the
true sensitivity values of eyes in the early stages and
significantly overestimate the sensitivity values of eyes
in the moderate and advanced stages of glaucoma.
In contrast, the error distribution of our model is
relatively symmetric (see Fig. 4 left).

A critical step in our training was to select the OCT
and visual field pairs uniformly across all stages of
glaucoma severity (see Fig. 3). However, this is not
the case for almost all the previously published papers,
which included significantly greater number of eyes in
the early stages of glaucoma. For instance, two deep
learningmodels proposed previously36,37 have reported
significantly smaller MAEs in the range of 2.3–2.9 dB.
The models have used OCT en face images, CSLO
images, or OCT images from the macula and optic
disc to estimate visual field parameters. Although the
numbers of samples in both studies are large, there
are several other concerns regarding both studies: (1)
the number of eyes at the early stages of glaucoma is
significantly larger than the eyes at the later stages of
glaucoma, and (2) it is unknown whether the distri-
bution of estimation error is relatively symmetric or
biased at the ends of the glaucoma spectrum. The first
concern is critical because models typically perform
better for estimating visual field MD of normal eyes
and eyes at the earlier stages of glaucoma compared
to eyes at the moderate and end stages of glaucoma.
As such, a model that uses relatively larger numbers of
normal eyes and eyes at the early stages of glaucoma
may misleadingly generate lower error rates compared
to models that exploit eyes selected uniformly across
the full glaucoma spectrum. The second concern is
critical because in the absence of appropriate visualiza-
tion of the error distributions using scatter or Bland-
Altman plots, it is challenging to understand whether
the model is biased toward one end or both ends of the
glaucoma spectrum.

A unique aspect of our study is the inclusion
of three independent subsets from different centers,
different instruments, and even different scan types in
order to validate models. Using Rotterdam and UCLA
subsets, we achieved MAE and RMSE lower than 5.3
dB, similar to the error rates using the testing subset.
Whereas the training subset was selected from a local
pool of data, theRotterdam subset was from a different
race reflecting a significant degree of generalizability

of the model to other races and data from other insti-
tutes (see Fig. 5 left). However, the degree of generaliz-
ability of the model using MEE subset was not similar
to other two validation subsets (see Fig. 5 right). This
may be due to two reasons: (1) the OCT data from
MEE were collected from Cirrus instruments, whereas
the OCT data from other subsets were collected from
Spectralis instruments. (2) The OCT data from MEE
were in cube scan format that were approximated to
circular scan computationally for the sake of compar-
ing models. This approximation included interpola-
tion and smoothing as well that may deviate from the
true values of circular A-scans. (3) The eyes in the
MEE dataset had a significantly different distribution
of global RNFLandMDcompared to all other subsets
(see Fig. 3).

A major problem facing most models that attempt
to estimate visual field parameters from OCT data
is the floor effect that the instrument is unable to
detect further RNFL loss beyond a certain point. We
combined all datasets and observed that OCT reaches a
“floor” at global RNFL thickness of about 40 microns,
below which no useful data is obtained. Therefore, no
matter how severe the visual field defect, the OCT is
unable to reflect structural damage beyond this floor.
This fact may explain why most of the models in the
literature significantly underestimate the severity of
visual fields for eyes at the advanced stages of the
glaucoma.

A critical question would be, what is the highest
degree of accuracy feasible for models that estimate
visual field parameters from OCT. It is well known
that visual field test is variable, particularly in the late
stage of the disease, where significant disease variability
exists.17,18 We used sequences of visual field test results
from a cohort consists of 133 eyes from 71 patients with
POAG, inwhich visual fields were collected once aweek
for an average of 10 consecutive weeks, thus appro-
priate for assessing test-retest variability.39 For each
visual field test point, we subtracted the total deviation
(TD) values from the subsequent test for each eye and
repeated this process for all visual field test points and
all the sequences in this subset. The test-retest variabil-
ity of visual field test points was in the range of 1.6–4.4
dB for visual field test points. Base on this test-retest
experiment, visual field tests have inherent variability
close to 4.4 dB. Thus, it may be a realistic goal for AI
models based on OCT to be able to estimate visual
field parameters up to 4.4 dB error, which is inherent
to visual fields.

To examine the clinical relevance of findings and
to see which RNFL sectors were more important in
estimating visual field MD from 64 RNFL sectors, we
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performed two tests. First, the ablation test based on
the ANN model by excluding some of the sectors and
observing the accuracy of the model. The outcome of
the ablation test revealed that sectors in the temporal-
inferior region were more important in estimating
visual field severity from RNFL data (see Table 5). A
finer experiment was performed by the RF regressor in
which we observed that NRFL sectors in the temporal-
inferior and temporal-superior were more important
in estimating MD from 64 RNFL sectors (see Fig. 6).
Findings agreed with previous literature.40,41

We used large datasets to train AI models, devel-
oped several models, including 1-D CNNs, selected the
simplestmodel with the highest accuracy, and validated
the results using three different subsets from differ-
ent centers, instruments, and scan types; however, our
study has limitations as well. Our models did not
benefit from 2-D convolutional deep neural networks
as we did not have access to raw OCT images. We also
did not estimate each visual field test point and only
estimated visual field MD. Follow-up studies would
be desirable to incorporate raw images and estimate
each visual field test locations as MD estimates do not
provide information on the regional nature of the visual
field loss.

In conclusion, we developed an ANN to estimate
visual field MD from input RNFL data. We validated
our algorithm with three independents subsets and
demonstrated that the performance of the model is
close to test-retest variability in visual fields. Our study
suggests that successful development of AI models
to estimate visual field parameters from OCT data
could augment or even replace subjective and tedious
visual field testing with objective and rapid OCT
imaging.
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