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Abstract: In future intelligent vehicle-infrastructure cooperation frameworks, accurate self-positioning
is an important prerequisite for better driving environment evaluation (e.g., traffic safety and traffic
efficiency). We herein describe a joint cooperative positioning and warning (JCPW) system based
on angle information. In this system, we first design the sequential task allocation of cooperative
positioning (CP) warning and the related frame format of the positioning packet. With the cooperation
of RSUs, multiple groups of the two-dimensional angle-of-departure (AOD) are estimated and then
transformed into the vehicle’s positions. Considering the system computational efficiency, a novel
AOD estimation algorithm based on a truncated signal subspace is proposed, which can avoid the
eigen decomposition and exhaustive spectrum searching; and a distance based weighting strategy
is also utilized to fuse multiple independent estimations. Numerical simulations prove that the
proposed method can be a better alternative to achieve sub-lane level positioning if considering the
accuracy and computational complexity.

Keywords: angle-of-departure; truncated signal subspace; distance based weighting; joint cooperative
positioning and warning; intelligent transportation systems

1. Introduction

Advanced vehicular assistance systems have become an upward trend with great attention in
both academic research and industrial application [1,2]. During the evolution process from traditional
human based driving to smart assisted driving, even to autonomous driving, the signal processing
techniques aiming at diverse perception data will play a critical role. Especially, strengthening the
safety [3,4], no matter what level the autonomous driving of on-road vehicles is, shall become a
principal task in the future. One of the vital issues is how to guarantee an accurate localization for
each on-road vehicle with the at least sub-meter level requirement [5,6].

As we know, global navigation satellite systems (GNSS), e.g., the Global Positioning System (GPS)
and BeiDou Navigation Satellite System (BDS), are widely used for current vehicular localization
and navigation; but they cannot always satisfy the rigorous requirements of some location based
services (LBS) [7–9]. The reasons involve the navigating signals being inevitably blocked or multipath
transmission in urban environments, the vehicle motion, the satellites’ absence, etc. More seriously,
the navigating signals can be recorded with malicious tampering and retransmitted to the vehicular
terminals. Besides the improvement of GPS and BDS with some inertial navigation (utilizing some
on-board kinematic sensors such as odometers, accelerometers, gyroscopes, etc.), the laser imaging
detection and ranging (LIDAR) technique can achieve a simultaneous localization and mapping for
intelligent vehicles, which is now accepted by more and more industries [10–13]. However, there still
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exist some problems that cannot be neglected if it is to be commercialized [14]. The first one is the
cost; and the second one, also the most important one, is that the quality of LIDAR images will
deteriorate because of the weak reflectivity of the wet road surface, which results in some detected
region disappearing in the LIDAR images (such a difference between LIDAR images and map images
will affect the further similarity calculation); in addition, the irregular snow lines inside the lane and
near the roadsides also can confuse the lane identifiability. Both situations will bring great hidden
danger to intelligent vehicles.

The wireless communication techniques provide a new alternative solution, which can become
a powerful supplement to localization. For example, the vehicular ad-hoc networks (VANETs)
have been designed with dedicated protocols and differentiated quality-of-service to achieve a
connected road environment [15,16], including vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications. In that sense, the cooperative positioning (CP) [17,18] becomes an effective
measure to improve the localization accuracy by jointly fusing multiple location-related parameters
exchanged among a series of VANET nodes. Generally, these location based parameters include
maximum movable distance [19], channel state information (CSI) [20], received signal strength indicator
(RSSI) [21,22], time-of-arrival (TOA), and time-difference-of-arrival (TDOA) [23,24].

In [25], two road-side units (RSUs) are utilized to broadcast their position and road geometry
information, the vehicle combining them with odometer data and Doppler shift of the received signals
to achieve a lane-level localization accuracy. References [26,27] investigated a vehicle-to-infrastructure
based CP where each vehicle measures its position through the direction-of-arrival (acquired by a
uniform linear array on the vehicle) and the known RSU position (acquired in each beacon packet).
Such CP gains a better performance than GPS based localization. However, there exist four potential
shortcomings. The first one is that the vehicle motion and the road unevenness will generate mechanical
vibration so that the ULAbecomes unstable, which consequently influences DOA estimation; the second
one is that the accuracy of DOA estimation highly depends on the array aperture so that the vehicle
should be equipped with a larger scale antenna array, which will increase the cost. Although the
coprime-array [28,29] can achieve increased degrees of freedom compared with the traditional uniform
array, it still requires complicated operations; the third one is that one-dimensional angle estimation
alone cannot distinguish the vehicle in the adjacent lane, which will induce the ambiguity of the spatial
position; the last one is the angle estimation algorithm because it must simultaneously consider the
estimation accuracy and computational complexity rather than focus on one of them [30], which is a
basic requirement for timeliness. In addition, among the above CP strategies, an important function,
i.e., the cooperative warning with respect to traffic safety, is neglected. In a highly connected road
environment, each intelligent vehicle has the responsibility of guaranteeing the driving safety and road
efficiency, that is the so-called cooperative safety. Such cooperation is embodied at least in an active
reporting of the traffic accident or vehicle fault by V2I links to RSUs; consequently, each individual
road, even the whole road networks, can gain global control.

In this paper, aiming at solving the aforementioned impasses, we introduce a novel joint
cooperative positioning and warning system on the basis of spatial angle information. The positioning
mainly depends on the wireless V2I links and kinematic model without considering the GNSS.
The warning is depicted by the safety distance and the vehicle’s deceleration. Besides the detailed
design of sequential allocation for CP warning tasks and the data format of localization packets,
we also propose the computationally efficient AOD estimation algorithm and multiple detection fusing
strategy to achieve sub-lane level positioning. To summarize, the main contributions of this paper
are three-fold:

1. An angle-awareness based framework of the joint cooperative positioning and warning system is
first discussed, which includes the positioning model based on state representation, the warning
mechanism based on safety distance, and the CP warning task allocation and related data formats
for periodic interaction.
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2. To decrease the computational complexity, a truncated signal subspace based algorithm for angle
estimation is proposed, which avoids matrix eigen decomposition and spectra searching.

3. To decrease the adverse influence of the near-far effect caused by angle estimation and improve
the positioning accuracy, a distance based weighting strategy is also designed, which only utilizes
the estimated positions without extra calculations.

The rest of this paper is organized as follows: In Section 2, the overview of the joint cooperative
positioning and warning (JCPW) system is introduced. More details on the proposed algorithm are
described in Section 3. Section 4 discusses the distance based weighting strategy for the initial position
estimation. The numerical results are shown in Section 5, and Section 6 gives the conclusions.

Notation: (·)∗, (·)T , and (·)H denote the complex conjugate, transpose, and Hermitian transpose,
respectively. Symbol “⊗” denotes the Kronecker product.

2. Joint Cooperative Positioning and Warning Overview

We assume as a reference scenario in Figure 1 a fully connected intelligent vehicle network
deployed along a given road segment with a double-lane width equal to W meters, belonging to
an urban canyon environment. Without loss of generality, two different kinds of nodes are present:
L RSUs, {R1, R2, . . . , RL}, placed on the roadsides; and multiple intelligent vehicles, randomly located
on the lanes, are traveling along arbitrary trajectories. The JCPW system mainly depends on the
on-board processor and RF wireless module to achieve data transceiving and positioning.
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Figure 1. A graphical illustration of joint cooperative positioning and warning (JCPW).

2.1. Cooperative Positioning

For intelligent vehicle V, if requiring sub-lane-level localization accuracy, a more appropriate
way is to perform self-positioning with the aid of multiple RSUs’ cooperation. There are two main
reasons. One is that the centralized positioning schemes will give rise to a heavy computational load
for RSUs, and they usually require complex algorithms or multi-user schemes to discern vehicles.
The other is that, although the V2V communications can provide relative position information, it is
usually unreliable because the communication links vary dynamically and are vulnerable to being
blocked or having severe distortion [31]. Besides, GNSS is also a common choice. However, taking the
GPS for example, it suffers from GPS signal blockage and multipath, as well as inadequate accuracy
(∼10 m) [32]. Therefore, we only consider the V2I communications, in which the line-of-sight (LOS)
path generally dominates in such a condition [33]. In addition, the cooperative positioning in our
system refers to multiple RSUs’ cooperation for achieving decentralized positioning.

The CP stage includes the localization data transmitting and receiving, AOD estimating,
and position calculating. The first event is in time span TTR, and the last two events are in
time span TP, that is to say, a CP interval TCP = TTR + TP. For a better understanding,
let the RSU position pR = [xR, yR, zR]

T be fixed and exactly known, while the vehicle’s position
pV(t) = [xV(t), yV(t), zV(t)]T is contrary. It is reasonable to consider that the velocity of the vehicle
keeps nearly invariant during TTR, and the acceleration contributes very little due to the sufficiently
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high packet rate. The real-time velocity reading v(t) = [vx(t), vy(t)]T and acceleration reading
aV(t) = [ax(t), ay(t)]T can be acquired from the vehicular sensors. Besides, the two-dimensional
AOD information θ and φ denotes the elevation (i.e., the angle between the z-axis and the LOS signal)
and azimuth (i.e., the angle between the x-axis and the projection of the LOS signal) of a vehicle,
respectively, which is defined by the Cartesian coordinates of the RSU; see Figure 1.

We define the vehicle’s state vector as:

c(t) = [pT
V(t) vT(t)]T . (1)

then in the k-th CP interval, k = 1, 2, . . . , the kinematics used in the positioning stage is a constant
model with invariant velocity and acceleration. It is given by the following iterative formulas,

c(ts) =

{
c(Tk−1) + w(ts) if Tk−1 ≤ ts < Tk−1 + TTR

Γc(ts−1) + ΞaV(ts−1) if Tk−1 + TTR ≤ ts < Tk (2)

where we use subscript “s” for discrete time indexes, w(ts) represents the noise item, and:

Γ =

 I2 02×1 (ts − ts−1)I2

01×2 1 01×2

02 02×1 I2

 , Ξ =

 1
2 (ts − ts−1)

2I2

01×2

(ts − ts−1)I2


where Γ denotes the state transition matrix that applies the effect of the vehicle’s state at time ts−1 on
the one at time ts; and Ξ is the control matrix that applies the effect of acceleration aV(ts−1) on the
current vehicle’s state vector.

In (2), the first formula gives the initial position states, and the second one gives the estimations of
subsequent positions for the left time span T− TTR with the help of velocity and acceleration readings.
The elements xV(Tk−1) and yV(Tk−1) of c(Tk−1) are the only unknown parameters. Once the elevation
θ and azimuth φ are estimated, which will be introduced in Section 3, we can further estimate the
vehicle’s initial positions at time Tk−1 according to basic geometry relations, i.e.,

x̂V(Tk−1) =
1
K
K
∑
i=1

ωi[z̄i tan θ̂i cos φ̂i + xRi ] (3)

ŷV(Tk−1) =
1
K
K
∑
i=1

ωi[z̄i tan θ̂i sin φ̂i + yRi ] (4)

where z̄i = zRi − zV . Herein, we consider K RSUs for cooperation. The weighting coefficients {ωi}Ki=1
need to be designed to improve the accuracy of localization, which will be reserved for Section 4.
Based on the above kinematic model and estimated position information, the whole trajectory would
be retrieved.

It is worth mentioning that, based on (2), the positioning at time Tk can be given by state vector
c(Tk) = Γc(Tk−1) + ΞaV(Tk−1) and measurement vector γ(Tk) = H(c(Tk)) + v(Tk), whereH(c(Tk))

is a nonlinear mapping function with respect to the AOD estimation and v(Tk) is noise. To reduce the
influence of noise, the extended Kalman filter (EKF) [34] will be a better choice due to it being able
to provide optimal position estimations in the mean-squared sense for a Gaussian noise distribution.
However, two basic restrictions should be considered beforehand, i.e., the identification of the
probability distribution and the determination of the covariance information of the measurement error,
which are not easy tasks due to the limited number of sampling in actual scenarios. Therefore, we leave
them as future works.
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2.2. Warning

In our considered system, the traffic safety is guaranteed in an active manner, i.e., each
intelligent vehicle periodically monitors the surrounding traffic status that is broadcast by RSUs;
meanwhile, its own states, such as traffic accident, component fault, velocity, acceleration/deceleration
rate, remaining energy, etc., should be reported in a timely manner. To do so, the RSUs can infer the
global traffic status, and each vehicle can also acquire safety-related traffic parameters, for example
deceleration and safety distance.

We now consider a basic scenario that is depicted in Figure 2a, in which vehicle V1 with length
L1, velocity v1, and acceleration a1 and vehicle V2 with length L2, velocity v1, and acceleration a1 are
driving along a road. According to the vehicle kinematics, we can calculate the safety distance Ds

to characterize the warning strategy. The total safety distance includes three components. The first
one is distance Dw, which represents the moving distance of vehicle V2 after it receives the warning
message from the RSUs and begins to decelerate. The second one is distance Dr, which represents the
relative moving distance when V2 slows down with deceleration ad until the relative speed between
two vehicles becomes zero. The last one is the minimum headway distance Dh, which needs to be
guaranteed when the relative speed reaches zero. Therefore, the safety distance is represented by:

Ds = Dw + Dr + Dh (5)

where Dw = d2 − d1 and d1 and d2 denote the moving distance of V1 and V2 in time span TR2v,
respectively, so that Dw = (v2 − v1)TR2v +

1
2 (a2 − a1)T2

R2v. As we know, the velocity difference of two
vehicles at time (t0 + TR2v) is ∆v = v2n − v1n = (v2 − v1) + (a2 − a1)TR2v, and vehicle V2 begins to
slow down with a desired deceleration a2d, which will generate relative deceleration ∆a = a2d − a1;

therefore, we can get Dr = d4 − d3 =
∫ ∆v

∆a
0 (∆v− ∆a · t)dt = (∆v)2

2∆a . The minimum headway distance
Dh = 1

2 (L1 + L2) + dmin, where dmin is the minimum distance between two vehicles.
It is worth mentioning that the desired deceleration a2d in Equation (5) is the only unknown

parameter, which has a direct relationship with the warning strategy. By simple derivation,
the estimated desired deceleration:

â2d =
(∆v)2

2(D̂− Dw − Dh)
+ a1 (6)

where D̂ is the estimated inter-vehicle distance D based on the vehicles’ positions. The qualitative
deceleration-distance curve is shown in Figure 2b. For a given distance Dtemp, the corresponding atemp

is the least desired deceleration. Vehicle V2 performs a reasonable braking according to the real-time
distance information for avoiding accidents.
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Figure 2. The warning systems: (a) two vehicle scenario; (b) a qualitative deceleration-distance curve.
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Remark 1. For the above qualitative analysis, it actually relies on some assumptions, i.e., vehicle V1 keeps its
constant deceleration before stopping; vehicle V2 keeps its acceleration unchanged during TR2v and then slows
down with an assigned constant deceleration no less than that of vehicle V1. More complicated scenarios and
related parameters’ evaluation will be left for future work. Given that the measured distance D̂ depends on the
position of two vehicles, hence the following work will focus on the problem of the vehicle’s positioning.

2.3. Task Sequence and Data Frame Format

The JCPW system refers to two important sub-functions: positioning and warning; therefore,
an efficient task sequence should be designed. We first give a detailed explanation and analysis about
the designed task sequences. For convenience, the basic structure is shown in Figure 3.

t

T
k-1 T

k
T

k+1

CP WarningWarningWarningCP CP

T
k+2

TCP TW

TTR TP Tv2R TR2v

Accident

Figure 3. A graphical representation of the task sequences. CP, cooperative positioning.

For one time interval T, there are three parts. The first one with time interval TCP is used for
positioning. Without loss of generality, we assume K RSUs participate in the current CP. That is to say,
KTL is required, where TL denotes the allocated time span of localization data for one RSU. In each TL,
a series of orthogonal code sequences c(t) with length TO is transmitted to assist the vehicle in AOD
detection. The data format is shown in Figure 4, where we depict a case that K = 3 RSUs, and the
orthogonal sequence c(t) is repeated G + 1 times with a total length TL = (G + 1)TO.

c1(t) c1(t+TO) ... c1(t+GTO)

c2(t) c2(t+TO) ... c2(t+GTO)

cMN(t) cMN(t+TO) ... cMN(t+GTO)
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...

RSU-3
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c2(t) c2(t+TO) ... c2(t+GTO)

cMN(t) cMN(t+TO) ... cMN(t+GTO)

...

A
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a 
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Repeated Codes

...
...

...
...

... ...

Figure 4. A graphical illustration of the localization data format.

As shown in the aforementioned kinematic models (see Equation (2)), during the AOD detections,
all the data packets transmitting from RSUs and received by the vehicle are completed in a time span of
TTR. Due to the speed of light being much larger greater the vehicle’s speed and the high data rate of the
orthogonal sequences, it is reasonable to neglect the time consumption in the stage of transmitting and
receiving; consequently, a computationally efficient algorithm for AOD detection is very necessary for
accurate localization. That is to say, the time span of data processing, i.e., TP = TCP − TTR, will become
a dominant factor in the subsequent localization. In TTR, the vehicle’s position is roughly thought to be
kept unchanged; after that, it will be calculated by inertial equations. Obviously, a small TP is a benefit
for reducing the position error. In addition, during the data processing, multiple two-dimensional
AODs are estimated separately due to the RSUs cooperating in a successive manner. Strictly speaking,
this AOD information cannot be transformed into the same position because the vehicle is moving
in TTR; however, the time differences between the successively transmitted localization data from
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different RSUs are also negligible; that is to say, we can consider all K estimated AODs as effective
measurements for the initial position xV(Tk−1) and yV(Tk−1). For example, consider such a scenario
in which all K = 5 RSUs locate approximately 100m around the vehicle; the system bandwidth is
10 MHz; the localization data codes are selected from a 64× 64 Hadamard matrix, and each repeat
20 times; the vehicle moves 20 m/s along the longitudinal direction. Only considering the line-of-sight
communication link, we can see that, during one localization data time, the vehicle moves forward
0.256 cm; and all five RSUs will contribute a movement of 1.28 cm.

The second part with time span TW = Tv2R + TR2v is used for warning. In this stage, there are
two basic contents, i.e., the active state information reporting from the vehicle (to the RSUs) with
time span Tv2R and the periodic traffic status received from the RSUs (to the vehicle) with time span
TR2v. In the time sequence, the first event has the highest priority because all other vehicles have to
depend on the current vehicle’s status to make a reasonable strategy for further driving. Different from
the common state information, those emergent events, for example traffic accidents, loosing control,
malfunction, etc., are much more important for traffic safety. In particular, given the randomness of
traffic accidents, the conflict of the tasks in the time sequence is inevitable; see Figure 3, in which the
accident labeled by a red star occurs in the CP stage. In such scenarios, the vehicle’s on-board central
processing unit should execute an interruption and switch to the warning stage. If the active reporting
module still works, the last time positioning results and other related vehicle state information will
automatically report to the RSUs; if it unfortunately falls into a breakdown, the subsequent vehicles will
take responsibility for uploading the accident information. By doing so, the system can be guaranteed
a timely traffic status reporting.

Besides the above two important parts, the third one is reserved for further exploiting functions,
for example vehicle platoon control, high definition map matching, and so on. The reserved time span
is T − TCP − TW .

3. Computationally Efficient Two-Dimensional AOD Estimation

Different from the research works [27,35], we focus on the computationally efficient AOD
estimation rather than simply assuming they are obtained beforehand or utilizing directional antennas.
We herein just take one RSU for example in the following content because the others share the same
data model and processing procedures.

3.1. Data Model

In the designed CP system, the RSU is equipped with a uniform rectangular array (URA) with
M× N omnidirectional antenna elements, and the vehicle is equipped with a single omnidirectional
antenna. The Cartesian coordinate is shown in Figure 1. Let the antenna element in origin o be the
reference point. The (m, n)-th antenna locates in the xoy plane with coordinate ( λ

2 m, λ
2 n, 0), where λ is

the wavelength of the carrier frequency, antenna element spacing d = λ/2, and m = 0, 1, . . . , M− 1;
n = 0, 1, . . . , N − 1.

We assume that the time synchronization and frequency synchronization between the RSU
and vehicle have been calibrated. The V2I communication is in the line-of-sight (LOS) condition,
which is depicted by the Rician channel model with parameter κ [36]. In addition, the system
is working in narrow-band. Based on the designed localization data frames, all MN antennas
simultaneously transmit orthogonal code sequences cq(t), q = 1, . . . , MN. The signals propagate from
the RSU to the vehicle over different paths, resulting in the superposition of multipath components
(MPCs); therefore, besides the LOS signal component, it is reasonable to assume that there are K
MPCs, each of which has its own AOD pairs θp and φp, p = 1, 2, . . . , K. Let the propagation delay
τp, attenuation coefficient Ap, and AOD pair {θp, φp} denote the p-th parameterized path [33,37].
Without loss of generality, given that the wireless environment has to undergo changes due to
the vehicle’s movement, we assume the attenuation coefficient Ap is block-variant, i.e., it remains
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unchanged within TO, but varies with different TO; the LOS signal component is deemed as the first
path in the following derivation.

Therefore, the complex baseband signal received by the vehicle can be expressed as [37,38]:

r(t) =
K

∑
p=1

MN

∑
q=1

G

∑
g=0

Ap[g]ejϕq(θp ,φp)cq(t− gTO − τp) + n(t) (7)

where g indexes the transmission of cq(t); n(t) is zero-mean Gaussian white noise with covariance σ2
n .

For the p-th signal component, ϕq(θp, φp) represents the phase difference between the q-th antenna
and the reference one, obviously, ϕ1(θp, φp) = 0.

We herein neglect the delay difference between MPCs, i.e., τ1 ≈ {τp}P
k=2, and τ1 induced by the

LOS component can be effectively eliminated by correlation detection. By performing match-filtering,
we can get:

ym,n[g] ≈
P

∑
k=1

Ap[g]ej(m−1)µk ej(n−1)υk + wm,n[g] (8)

where:
µk =

2πd sin θk cos φk
λ

, υk =
2πd sin θk sin φk

λ
(9)

ym,n[g] is the match-filtered result with respect to the {m, n}-th antenna in the URA, and wm,n[g] is the
noise after match-filtering.

Let a(µk) and b(υk) be the x-axis and y-axis steering vectors,

a(µk) = [1, ejπµk , ej2πµk , . . . , ejπ(M−1)µk ]T (10)

b(υk) = [1, ejπυk , ej2πυk , . . . , ejπ(N−1)υk ]T (11)

and let:
y[g] = [y1,1[g], y2,1[g], . . . , yM,1[g], . . . , yM,N [g]]T (12)

then it has:
y[g] = [b(υ1)⊗ a(µ1), . . . , b(υK)⊗ a(µK)]s[g] + w[g] (13)

where vector s[g] = [A1[g], A2[g], . . . , AK[g]]T ∈ CK×1, and noise vector w[g] has the same form as y[g].
Furthermore, defining A = [a(µ1), a(µ2), . . . , a(µK)] ∈ CM×K, B = [b(υ1), b(υ2), . . . , b(υK)] ∈ CN×K,
therefore, the joint array manifold Ã = B�A, so Equation (13) can be expressed by:

y[g] = Ãs[g] + w[g] (14)

3.2. Truncated Signal Subspace for AOD Estimation

Many research works such as [26,27] directly utilize the multiple signal classification (MUSIC)
algorithm to achieve angle estimation. The basic spectrum function is given by:

P(θ, φ)|(θ,φ)⇔(υ,µ) =
1[

b(υ)⊗ a(µ)
]HU0UH

0
[
b(υ)⊗ a(µ)

] . (15)

where the noise subspace U0 is acquired by the eigenvalue decomposition of R = E{y[g]yH[g]}, i.e.,

R = [US U0]

[
ΣS 0
0 Σ0

] [
UH

S
UH

0

]
(16)
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where signal subspace US ∈ CMN×K consists of the eigen-vectors with respect to the K largest
eigenvalues (that construct ΣS = diag{η1, η2, . . . , ηK}), and the remnant eigen-vectors form noise
subspace U0.

However, there are some restrictions forP(θ, φ) in actual scenarios. First, it is difficult to determine
the real number of MPCs, which will result in the erroneous partition of the signal subspace and noise
subspace. Specifically, if the MPCs are coherent with each other, the MUSIC algorithm has to solve
the rank-deficient problem at the cost of decreasing the array aperture. Second, the globe searching
in the two-dimensional angle domain is very exhaustive, which will consume huge time complexity.
In addition, the identification of the LOS component also requires extra calculations.

As shown in the aforementioned task sequences, the time complexity of the parameter
estimation during CP processing has a direct influence on the positioning error. That is to say,
the two-dimensional AOD estimation algorithm for the LOS signal component should simultaneously
satisfy the requirements for lower computational complexity and higher estimation accuracy. To achieve
such an objective, we mainly adopt two techniques.

On the one hand, in order to effectively utilize the observed data Y = [y[0], y[1], . . . , y[G]], we can
double the length of the data by taking advantage of the complex conjugate version, i.e., constructing
the so-called forward-backward observing matrix [39],

Ỹ =
[
Y JY∗

]
(17)

where J is the matrix with ones on its anti-diagonal and zeros elsewhere. Such an operation can
promote the accuracy of AOD estimation.

On the other hand, we try to directly extract the signal subspace with respect to the LOS signal
without performing matrix decomposition. According to the subspace theory, US and Ã span the same
signal subspace, namely US = ÃT, where T is a nonsingular matrix. In our scenario, the LOS signal
component plays a dominant role in the propagation environment, i.e., it usually has the strongest
power; therefore, the truncated signal subspace u1 ∈ CMN×1, which is defined by the eigenvector
corresponding to the largest eigenvalue, is actually a low-dimensional approximation to the signal
subspace US. Strictly speaking, the subspace dimension reducing indeed results in partial loss of
MPC information; however, we are only concerned with the LOS signal component because it is
directly related to the vehicle’s position. As we know, the depiction of the dominant LOS signal
is the Rician κ factor, which is defined by the power ratio between the LOS component and other
MPCs. Larger κ means the array steering vectors of the LOS component contribute more in the signal
subspace; hence, we can use the truncated signal subspace u1 as an estimation to the array manifold
vector ãLOS, i.e., u1 ≈ τ1ãLOS, where τ1 denotes the value in the first row and first column of T.

To this end, we introduce an iterative method, which is based on the power iteration scheme [40].
The basic principle is as follows. Considering an initial non-zero vector u(0)

t ∈ CMN×1, it can be
expressed in terms of the linear combination of all eigen-vectors of R, i.e.,

u(0)
t = α1u1 +

K

∑
k=2

αkuk (18)

Left-multiplying both sides of (18) by the covariance matrix R, we have:

Ru(0)
t = α1Ru1 +

K

∑
k=2

αkRuk = α1η1u1 +
K

∑
k=2

αkηkuk. (19)

If we repeat the above multiplication l times, i.e.,

Rlu(0)
t = α1ηl

1u1 +
K

∑
k=2

αkηl
kuk ⇐⇒

Rlu(0)
t

ηl
1

= α1u1 +
K

∑
k=2

αk
ηl

k

ηl
1

uk. (20)
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As we can see, due to the LOS signal being dominant compared with other MPCs in our considered
scenario, i.e., η1 > η2, η3, . . . , ηK, hence the following conclusion holds when l → ∞,

ut ,
Rlu(0)

t

ηl
1
→ α1u1 (21)

The conclusion in Equation (21) illustrates that ut is a reasonable approximation of the truncated
signal subspace u1. Based on that, we summarize the above procedures in Algorithm 1.

Algorithm 1 Truncated signal subspace extraction.

Input: The estimated auto-correlation matrix R̂ = ỸỸH ∈ CMN×MN ;
Output: The estimated ãLOS;
1: Initializing
2: l = 1; ε = 10−3

3: Auxiliary vectors u(0)
t = [1, 0, . . . , 0]T and u(1)

t = [1, 1, . . . , 1]T;
4: while ‖ u(l)

t − u(l−1)
t ‖≥ ε do

5: l = l + 1;
6: u(l)

t = Ru(l−1)
t ;

7: end while
8: return ut = u(l)

t .

Once we get ut by Algorithm 1, according to the following approximate relation,

ãLOS ≈ γut (22)

where γ is an unknown complex constant. We can directly calculate the two-dimensional AOD of the
LOS signal component, i.e.,

µ̂1 =
1

M(N − 1)

M

∑
i=1

N

∑
k=2

∠
[

ãLOS(i, k)
ãLOS(i, k− 1)

]
(23)

υ̂1 =
1

N(M− 1)

N

∑
k=1

M

∑
i=2

∠
[

ãLOS(i, k)
ãLOS(i− 1, k)

]
(24)

where ∠[·] is to get the phase. ãLOS(i, k) is the [(i− 1)M + k]-th element of ãLOS.

3.3. Computational Complexity Analysis

In order to estimate the two-dimensional AOD information, if the forward-backward observing
matrix Ỹ is also utilized, the computational cost of the typical MUSIC algorithm attains in the
order of O

{
2GM2N2 + M3N3 + δ1δ2[MN(MN − K) + MN − K]

}
flops, where one flop means once

complex multiplications, and δ1 and δ2 are the total spectrum searching times within the search range,
respectively. Besides, the reduced-dimensional MUSIC algorithm [41], which is an improved version in
computational cost, attains in the order of O

{
2GM2N2 + M3N3 + δ3[(M2N + M2)(MN − K) + M2]

}
flops (based on a condition that the elevation θ and azimuth φ are transformed into two angles
measured respectively by the LOS signal and the x-axis and y-axis). However, the proposed algorithm
only attains in the order of O

{
2GM2N2 + δ4M2N2} flops, where δ4 is the total number of iterations in

Algorithm 1. For an easy comparison, we ignore the small quantity of higher order and then give the
ratio for the computational costs of both algorithms,
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O
{

2GM2N2 + M3N3 + δ1δ2[MN(MN − K) + MN − K]
}

O
{

2GM2N2 + δ2M2N2
} ≈

O
{

2G + MN + δ1δ2
}

O
{

2G + δ4
} (25){

2GM2N2 + M3N3 + δ3[(M2N + M2)(MN − K) + M2]
}

O
{

2GM2N2 + δ2M2N2
} ≈

O
{

2G + MN + δ3(M + M−K
N )

}
O
{

2G + δ4
} (26)

Numerically, if we let the scale of antenna array M = N = 10, the number of repeated codes
G = 20, the total number of MPC K = 20, the searching step of MUSIC algorithm is set as 0.1◦,
so that it implies δ1 = 900 within the range of elevation and δ2 = 1800 within the range of azimuth.
For reduced-dimensional MUSIC, δ3 = 1800. The iteration number of the proposed algorithm is
smaller than 20. Therefore, the computational cost of the proposed algorithm is just approximately
1/27,000 of that of the MUSIC algorithm and is approximately 1/270 of that of reduced-dimensional
MUSIC algorithm.

4. Distance-Weighted Positioning

We can directly utilize the multiple estimated two-dimensional AOD information to achieve
the vehicle’s positioning; however, the accuracy of angle detection is vulnerable to the influence
of the vehicle’s position. We herein call this problem the near-far effect, which indicates the fact
that the farther the vehicle is from the RSU, the less reliable the corresponding positioning result is.
For example, if one vehicle is located a large distance, it travels a little further, and the positioning will
give rise to a great error even if all the conditions are the same. Furthermore, such a phenomenon will
get worse in a noisy environment.

The fundamental reason behind the above phenomenon is that, when the elevation θ is large
enough to approach 90◦ and/or the azimuth φ approaches 0◦ or 180◦, the antenna array will gradually
function as endfire mode. In such a mode, the effective aperture of the antenna array is greatly
reduced. That is to say, there is no sufficient array aperture to guarantee a satisfactory accuracy of
angle estimation.

As we know, elevation and azimuth establish a one-to-one mapping with a point on the lane plane,
which means that the position has no ambiguity. Therefore, for a vehicle in a dense RSU deployment
scenario, if it locates near the position that induces one RSU to work in endfire mode, correspondingly
it also falls into the non-endfire mode of other RSUs. That inspired a method for reducing the adverse
influence of the near-far effect, i.e., a distance based weighting strategy. It trusts the “near” positioning
results more than the “far” ones. To be specific, according to the estimated two-dimensional angles,
we can retrieve the distance information Di between the vehicle and i-th RSU, i.e.,

{
θ̂i, φ̂i

}
⇒
{

x̂V,i(Tk−1), ŷV,i(Tk−1)
} PRi

,zV
=⇒ Di (27)

where Di =‖ pRi − p̂V,i(Tk−1) ‖2. Without loss of generality, for K RSUs participating in cooperative
positioning, we have distance information D1,D2, . . . ,DK, so the weighting coefficients can be
determined by:

ωi =
1/Di

∑Ki=1 1/Di
. (28)

Taking two RSUs for example, if D1 < D2, then according to Equation (28), the weighting coefficients
ω1 and ω2 are:

ω1 = D2/(D1 +D2) (29)

ω2 = D1/(D1 +D2) (30)

Obviously, the positioning result with small distance information will play an important role in final
position determining; see Equations (3) and (4).
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There exist several weighting strategies, for example weighting based on the received signal
strength (RSS) (or the estimated signal-to-noise ratio (SNR)), i.e., ω ∝ RSS, and weighting based on
the Cramér–Rao lower bound (CRB) of angle estimation, i.e., ω ∝ 1

CRB . Among them, the RSS falls
off inversely proportional to the square of the distance between the vehicle and RSU in free-space.
However, on the one hand, it is just a qualitative factor for evaluating the angle estimation and is
unable to reflect the directional affect; on the other hand, although the statistical distance can be
estimated from the propagation model, it is unreliable due to the random fluctuation of multipath
signals. The CRB provides a bound on the covariance matrix of any unbiased estimation of angle,
which includes many factors such as SNR, snapshot length G, and array manifold a(µk) and
b(υk) [39,42]. However, there are no simple and practical methods to obtain noise variance, and also,
the SNR exhibits random fluctuation [27]. In addition, the calculation of the CRB is computationally
high and needs to be re-calculated when the angle information changes.

To sum up, we summarize the whole CP procedure in Table 1. Besides the basic data{
y(i)[g]

}G
g=1, i = 1, 2, . . . ,K as shown in Section 3.1, the kernel of this procedures lies in Step 1,

Step 2, and Step 5. Through data extension in Step 1, the accuracy of angle estimation can be improved
because the Cramer–Rao lower bound is in inverse proportion to the length of observed data. In Step 2,
Algorithm 1 utilizes an iterative manner to extract the signal subspace with respect to the LOS signal
component rather than adopting matrix decomposition, and simultaneously, the subsequent AOD
estimation in Step 3 is in a closed-form expression rather than in searching, which is computationally
efficient. The final estimations of the vehicle’s positions in Step 7 actually fuse all K detected AOD
information through the distance based weighting method in Step 5.

Table 1. The vehicle’s position estimation procedures.

Given A series of received data from K RSUs,
{

y(i)[g]
}G

g=1, i = 1, 2, . . . ,K.

Step 1. (Data Extension) Construct Ỹ(i) via (17).

Step 2. (Subspace Extraction) Run Algorithm 1 to obtain ã(i)LOS.

Step 3. (Parameters’ Estimation) Estimate µ
(i)
1 and υ

(i)
1 according to (23) and (24).

Step 4. (Parameters’ Conversion) Convert µ̂
(i)
1 and υ̂

(i)
1 into θ

(i)
1 and φ

(i)
1 by (9).

Step 5. (Weighting Determination) Determine the weighting coefficients by (28).

Step 6. (Data Traversal) Repeat Step 2 ∼ Step 5 until all the data of K RSUs are processed.

Step 7. (Position Calculation) Calculate the vehicle’s positions during TTR by (3) and (4) and calculate

other positions by (2).

Remark 2. Looking back at the aforementioned safety distance based warning in Section 2.2, once we acquire
the vehicles’ positions, the desired deceleration of vehicle V2 can be calculated via (6) with the aid of the designed
sequential task allocation in Figure 3. Due to different decelerations resulting in different driving experiences,
the warning strategies can be expressed by a series of levels, for example if aL−1 < a2d < aL, L = 1, 2, . . . ,L,
then the warning belongs to the L level. A large value of deceleration means a high warning level and also means
a big emergency. The thresholds will be determined and evaluated by actual driving tests in the next works.
Besides, the vehicle’s positioning error inevitably produces erroneous inter-vehicle distance D and further affects
the desired deceleration a2d of vehicle V2. In order to understand such a relationship, we try to analyze the
first-order perturbation of the desired deceleration. According to (6), let the estimated distance D̂ = D + δD,
then we have:

(a2d + δ)(D + δD − D̄) =
1
2
(∆v + δ∆v)

2 + (a1 + δa1)(D + δD − D̄) (31)
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where D̄ = Dw + Dh and δ, δD, δ∆v, and δa1 denote the perturbations of the desired deceleration a2d,
the inter-vehicle distance D, the velocity difference ∆v, and acceleration a1, respectively. After a lengthy,
but straightforward derivation and ignoring the second-order items, we can get:

δ =
a1 − a2d
D− D̄

δD +
∆v

D− D̄
δ∆v + δa1 = ρ1δD + ρ2δ∆v + δa1 (32)

This manifests that, theoretically, if other factors are correctly measured, the bias of the desired deceleration
a2d is proportional to that of inter-vehicle distance D. In particular, based on first-order perturbation analysis,
if the positioning errors in the x and y directions are independent identically distributed and of zero-mean,
then E{δ} = ρ1E{δD} = 0. Further, the mean-squared error is E{δ2} = ρ2

1E{δ2
D}.

5. Numerical Examples

In order to demonstrate the effectiveness and advantages of the proposed AOD estimation
algorithm and the localization scheme, in this section, a series of Monte Carlo numerical simulations
are presented. We assume that the RSU R is deployed on top of a traffic light with height 6 m.
The vehicle proceeds along the lane, and the lane width is set as 3.5 m. The onboard unit (OBU)
antenna is deployed on the vehicle’s rooftop position with a total height of 1.8 m.

In the following simulations, the system works at carrier frequency fc = 5.9 GHz with
bandwidth B = 10 MHz, and the data length for positioning is fixed as G = 20. For the LOS
component, we adopt the dual slope model [43] to describe the path loss, i.e., the path loss PL(D) =

PL(D0) + 10γ1 log10(D/D0) for D0 < D ≤ DC; and PL(D) = PL(D0) + 10γ2 log10(D/DC) +

10γ1 log10(DC/D0) for D > DC, where PL(D0) is the signal attenuation in free-space at distance
D0. According to [43], we chose D0 = 10 m, Dc = 80 m, γ1 = 1.9, and γ1 = 3.8. Besides the LOS
component, the other 20 MPCs come uniformly from any direction in angular-domain θ ∈ [0◦, 90◦] and
φ ∈ [0◦, 180◦); the phase and magnitude of the attenuation coefficient for each signal component are
modeled as random variables with a uniform distribution in (0, 2π) and (0, 1), respectively. We use the
Ricean κ factor to indicate the power proportion, which is defined as the ratio of the power in the LOS
component to the total power in the diffused non-LOS components. Through the whole simulations,
the parameter ε in Algorithm 1 is set as 10−3.

Simulation 1: We first consider the root mean-squared error (RMSE) performance. For comparison,
we just consider one RSU with coordinate {0, 0, 6} participating in positioning under two cases,
respectively. One is the “far” case that the vehicle locates at {θ, φ} = {74.5◦, 6.7◦}, D = 15.67 m;
the other is the “near” case that the vehicle locates at {θ, φ} = {39.6◦, 30.3◦}, D = 5.45 m. The antenna
array M = N = 10. The noise power is given by Pn = −174 + 10 log10 B = −104dBm for temperature
T = 300 K. Considering other unavoidable link loss, we let Pn = −74 dBm. According to different
transmitting power, we can set a different received SNR. The antenna gains are absorbed into the SNR.
Let κ = 5, and the total number of Monte Carlo simulations is set as 1000.

Figure 5a reports the RMSE performance of the estimated LOS two-dimensional AOD. The MUSIC
algorithm serves as a benchmark because it is a typical high-resolution algorithm. Correspondingly,
Figure 5b gives the comparison of the average running time when executing the algorithm one time.
For the MUSIC algorithm, we set the searching step as 0.1◦ and the searching range from ψ− 5◦ to
ψ + 5◦, ψ ∈ {θ, φ}. From the simulation results, we can make two conclusions. First, for both cases,
the RMSE performance of the proposed algorithm is slightly inferior to the MUSIC algorithm; however,
the much lower computational complexity makes it a better alternative to the exhaustive searching
algorithm. Second, at the same SNR level, the “far” position manifests inferior error performance to
the “near” one, which proves the near-far effect in angle based positioning.

Simulation 2: We then consider the cumulative distribution of the average absolute error for
LOS AOD estimation provided by the proposed algorithm. This evaluation criterion is defined by
Pζ(θ1, φ1) = P{[| θ̂1 − θ1 | + | φ̂1 − φ1 |]/2 ≤ ζ}, where ζ denotes a series of allowed angle scales.
We choose ε from 0◦ to 2.5◦ with step 0.1◦. The purpose of this simulation is to examine the error level
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under different conditions. The simulation results is shown in Figure 6. We can conclude that the
AOD estimation accuracy can be improved with the increase of the κ factor, the scale of the antenna
array, and the SNR. For example, at κ = 3, M = N = 6, and SNR = 10 dB, the error cumulative
distribution shows Pζ(θ1, φ1)|ζ=1.3◦ = 1, and it turns to Pζ(θ1, φ1)|ζ=0.5◦ = 1 at κ = 8, M = N = 10,
and SNR = 10dB, which illustrates that the error values are strongly converging.

0 5 10 15 20
10

−1

10
0

SNR  /dB

R
M

S
E

  /
de

gr
ee

 

 
Proposed algorithm in "near" case
Proposed algorithm in "far" case
MUSIC algorithm in "near" case
MUSIC algorithm in "far" case

(a)

6 7 8 9 10 11 12
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Scale of antenna aray with M=N

A
ve

ra
ge

 s
in

gl
e 

ru
nn

in
g 

tim
e 

 /s

 

 
Proposed Algorithm
MUSIC Algorithm

(b)

Figure 5. Performance evaluation for LOS angle-of-departure (AOD) estimation with different
algorithms. (a) RMSE performance comparison; (b) Average single running time comparison.
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Figure 6. The cumulative distribution of the average absolute angle estimation error under
different conditions.

Simulation 3: We now evaluate the positioning performance. For convenience, we assume that
there are two RSUs locating at {0, 0, 6}m and {12, 0, 6}m, respectively. One vehicle travels along the
middle line of the lane and passes five points where the CP is launched. The coordinates of these
points and the corresponding AOD and distance information are listed in Table 2. The transmitting
power is set as 10 dBm. The Ricean κ = 3. The path loss model is the same as previous simulations.

Besides the proposed distance based weighting, we also compare two different strategies, i.e.,
the uniform weighting and the CRB based weighting. Figure 7 gives the positioning RMSE of all
five points. As we can see, the CP with distance based weighting performs better than the uniform
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weighting and is slightly inferior to the CRB based weighting. It is worth mentioning that the CRB
based weighting stems from the complicated CRB expression [39]; although it gives the smallest error
in positioning, the fast and accurate calculation is impractical because, on the one hand, the array
manifold of all MPCs and noise variance should be known and, on the other hand, the computational
burden is heavy. Oppositely, the proposed one makes a better trade-off between the positioning
accuracy and the computational complexity.

Table 2. Parameter arrangement for positions to be located.

Ref. No.
Para. xV yV D θ φ

RSU-1 @ {0, 0, 6}m

−2 m 1.75 m 5.0 m 32.3◦ 131.2◦

1.5 m 1.75 m 4.79 m 28.7◦ 49.4◦

5 m 1.75 m 6.76 m 51.6◦ 19.3◦

8.5 m 1.75 m 9.65 m 64.2◦ 11.6◦

12 m 1.75 m 12.8 m 70.9◦ 8.3◦

RSU-2 @ {12, 0, 6}m

−2 m 1.75 m 14.62 m 73.4◦ 172.9◦

1.5 m 1.75 m 11.43 m 68.5◦ 170.5◦

5 m 1.75 m 8.35 m 59.8◦ 166◦

8.5 m 1.75 m 5.74 m 43◦ 153.4◦

12 m 1.75 m 4.55 m 22.6◦ 90◦
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Figure 7. The positioning RMSE comparison for different weighting strategies.

6. Conclusions

We designed a basic framework of a joint cooperative positioning and warning system from the
perspective of angle-awareness. In this framework, the cooperative positioning model based on state
representation, the warning mechanism based on safety distance, and the sequential task allocation were
discussed. Besides, in order to reduce the computational complexity of angle-awareness and improve the
cooperative positioning accuracy, we proposed a truncated signal-subspace based algorithm for AOD
estimation and a distance based weighting strategy for position estimation, respectively. Compared
with the exhaustive searching based algorithms such as two-dimensional MUSIC, the proposed one
maintains acceptable performance and decreases the computational complexity. Besides, the proposed
distance based weighting method also achieves a similar level of positioning accuracy as the theoretical
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CRB based weighting, which is more practical. Therefore, both proposed methods can be used as better
alternatives in a practical positioning and warning system. Actually, there exist some important issues
that need to be considered; therefore, future works will focus on the optimization of the deployment
of RSUs, the real-time high-accuracy trajectory tracking based on Kalman filtering, and the fusion of
supplementary information such as a camera or LIDAR.
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