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Abstract 

Background:  Selecting and prioritizing candidate disease genes is necessary before 
conducting laboratory studies as identifying disease genes from a large number of 
candidate genes using laboratory methods, is a very costly and time-consuming task. 
There are many machine learning-based gene prioritization methods. These meth-
ods differ in various aspects including the feature vectors of genes, the used datasets 
with different structures, and the learning model. Creating a suitable feature vector 
for genes and an appropriate learning model on a variety of data with different and 
non-Euclidean structures, including graphs, as well as the lack of negative data are very 
important challenges of these methods. The use of graph neural networks has recently 
emerged in machine learning and other related fields, and they have demonstrated 
superior performance for a broad range of problems.

Methods:  In this study, a new semi-supervised learning method based on graph 
convolutional networks is presented using the novel constructing feature vector for 
each gene. In the proposed method, first, we construct three feature vectors for each 
gene using terms from the Gene Ontology (GO) database. Then, we train a graph 
convolution network on these vectors using protein–protein interaction (PPI) network 
data to identify disease candidate genes. Our model discovers hidden layer representa-
tions encoding in both local graph structure as well as features of nodes. This method 
is characterized by the simultaneous consideration of topological information of the 
biological network (e.g., PPI) and other sources of evidence. Finally, a validation has 
been done to demonstrate the efficiency of our method.

Results:  Several experiments are performed on 16 diseases to evaluate the proposed 
method’s performance. The experiments demonstrate that our proposed method 
achieves the best results, in terms of precision, the area under the ROC curve (AUCs), 
and F1-score values, when compared with eight state-of-the-art network and machine 
learning-based disease gene prioritization methods.

Conclusion:  This study shows that the proposed semi-supervised learning method 
appropriately classifies and ranks candidate disease genes using a graph convolutional 
network and an innovative method to create three feature vectors for genes based 
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on the molecular function, cellular component, and biological process terms from GO 
data.

Keywords:  Gene prioritization, Graph convolutional networks, Protein–protein 
interaction, Semi-supervised learning, Gene identification

Background
The prioritization of candidate genes involves identifying and evaluating the genes to 
demonstrate which ones are most likely to be associated with a particular disease or 
phenotype. Ranking genes based on their association with disease is the most com-
mon way to determine candidate gene prioritization. A gene with a higher rank is 
more likely to be associated with the disease and is more likely to be investigated fur-
ther, compared to one with a lower rank. Prioritizing candidate genes is crucial since 
these methods will allow biomedical researchers to investigate in-depth only a lim-
ited number of potentially useful genes. Therefore, candidate gene prioritization can 
greatly accelerate translational bioinformatics and the advancement of new therapies 
[1].

PPI data provided by recent high-throughput technology [2] can serve as a criti-
cal resource for candidate-gene prioritization since genes associated with a particular 
disease phenotype tend to be clustered in specific locations in the network of PPI [3]. 
However, relatively simple techniques have been applied for gene-prioritization includ-
ing searching for neighboring disease genes and finding the shortest paths between can-
didate genes and known disease proteins.

Computational methods use different biochemical resources in different ways to cal-
culate the association between genes and rank the candidate disease genes. A number of 
databases have been produced by investigators to help deal with the problem of identi-
fying and prioritizing genes, such as the first protein structure, signal pathways, textual 
sources, gene ontology, gene expression, and PPI networks [4]. Due to the fact that genes 
(proteins) associated with a particular disease have a tendency to interact, PPI has been 
used as the main dataset in most methods, and it is a source of information when gener-
ating features for each gene.

To separate candidate genes from non-disease genes, machine learning strategies 
such as supervised learning, unsupervised learning, semi-supervised learning, and fea-
ture extraction have been used. According to a principle known as guilt by association, 
a gene’s function is revealed by its interactions with other genes. We can estimate candi-
date genes’ function in prioritizing genes by discovering their relation to seed genes. The 
functional characteristics of seed genes are discovered using machine learning methods. 
Then, they compute the similarity between seed genes and candidate genes for classifica-
tion [5]. One of the most widely used machine learning approaches is semi-supervised 
learning. Using semi-supervised learning, unlabeled data is leveraged to improve per-
formance. In many semi-supervised learning algorithms, the supervised loss function 
on labeled data and the unsupervised loss function on both labeled and unlabeled data 
are optimized simultaneously. A graph-based semi-supervised learning algorithm mod-
els the loss function as the weighted sum of the supervised loss over labeled samples 
and the graph Laplacian regularization term [6, 7]. The graph Laplacian regularization 
assumes that nearby nodes in a graph will often have the same labels. The reason why 
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graph Laplacian regularization is effective is that it constrains the labels to be consistent 
with the graph structure [8].

In spite of the wide range of disease gene prioritization methods available now, com-
putational gene prioritization methods fall into four major categories [5], including text 
mining methods, network-based, machine learning, and hybrid methods. Based on the 
published scientific literature, the text mining method identifies gene to complex dis-
order associations. As the knowledge sources, these methods use GO, Human Protein 
Reference Database (HPRD), Kyoto Encyclopedia of Genes and Genomes (KEGG), and 
Medical Literature Analysis and Retrieval System Online (MEDLINE). Cosine similarity, 
Jaccard similarity, Pearson’s correlation, latent semantic analysis, information content, 
and document vectorization are some examples of common text mining metrics [9–14]. 
Text mining-based methods have disadvantages such as the inaccessibility of informa-
tion because of license and privacy concerns, limitations of text processing, reduced per-
formance caused by the syntax and semantics of the document, and redundancy from 
the absence of concept organization [15].

In network-based methods, biological data is represented as a network, and gene 
rankings are computed using graph mining techniques. It is further subdivided into the 
direct neighborhood such as NGP [16], ICN [17], CIPHER-HIT [18], and resnikHPO 
[19] which calculates the rank of every node in the network based on its association to 
directly connected nodes, diffusion-based such as MAXIF [20], and HDiffusion [21] 
that utilize both direct and indirect node interactions for ranking, and random walk 
methods. Some notable examples of these methods include GPEC [22], ORIENT [23], 
RWRHN [24], RWRM [25]. The ORIENT method enhances the RWR method by add-
ing weights associated with interactions close to known disease genes, while any gene-
protein relationship network can be used. The RWRHN method predicts and prioritizes 
candidates for inherited diseases from a heterogeneous network containing such diverse 
genes. By merging a variety of genomic networks into a multigraph, RRRM provides a 
data platform, which is then used for developing a random walk algorithm by computing 
the transition matrix using modifying step process.

In recent years, numerous novel methods based on networks have been successfully 
applied to prioritizing genes, which integrate different omics data to identify candidate 
genes [26–29]. Nevertheless, most analysis of omics data only maps genes into networks 
without any further investigation of network topology. Additionally, several network 
diffusion methods, like DawnRank [30], spread expression information across protein 
interaction networks by uniformly choosing neighborly nodes as their successors. Gen-
tili et al. [31] have proposed a BRW (biological random walk) method for leveraging bio-
logical information for gene prioritization. The random walk also has some advances in 
other research fields. A method for predicting lncRNA-disease associations (IRWRLDA) 
proposed by Chen et  al. [32] is one such method. By choosing a uniform probability 
of seed nodes associated with disease and analyzing lncRNA expression and disease 
semantic similarity separately, both methods contribute to enhance the initial probabil-
ity of restart term. Real-world scenarios, on the other hand, are more likely to show such 
tendencies and to prefer selecting the neighbor to a greater degree than uniformly. It is 
rarely considered by the previously mentioned random walk–based methods. The topo-
logical characteristics of seedlings have not been considered in some methods, although 
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some realize the importance of seed genes [33]. Thus, it is beneficial to utilize topologi-
cal characteristics of the graph and other information regarding nodes (genes) and prop-
agation tendency for a novel method to identify disease genes.

Machine learning techniques, including unsupervised and supervised learning, fea-
ture extraction, etc., can be used to distinguish disease genes and non-disease genes in 
a list of candidate genes. The concept of ’guilt by association’ indicates a gene’s func-
tionality by its interaction with other genes. Gene prioritization estimates candidate 
gene functionality by identifying their association with seed genes. Prioritization is fun-
damentally connected to the concept of machine learning, which strives to learn from 
past behaviors and apply this knowledge in assessing the behavior of upcoming inputs. 
Machine learning methods identify seed genes’ functional properties and use that infor-
mation to compute their similarity to candidate genes for ranking. Gene prioritization 
can be accomplished by machine learning techniques due to their added advantages 
over traditional approaches. In the literature, a variety of gene prioritization models 
have been developed based on machine learning algorithms. Adie et al. [34] developed 
a gene prioritization method named PROSPECTR based on a decision tree algorithm to 
rank genes according to their involvement in disease. Nitsch et al. [35] proposed three 
approaches to score disease candidate genes using network-based methods, including 
kernel ridge regression, heat kernel, and Arnoldi kernel approximation. The authors 
modeled brain development gene expression using a support vector machine (SVM) and 
a feature selection method, for the classification and prioritization of autism spectrum 
disorder (ASD) risk genes. ProDiGe [36] formulated the disease gene prioritization as 
an example of the problem known as learning from positive and unlabeled examples (PU 
learning).

In recent years, deep learning models on graphs (e.g., graph neural networks) have 
appeared in machine learning and other related areas, and achieved superior perfor-
mance in a variety of problems. Graph convolutional networks are a popular type of 
deep graph learning technique. In terms of the spatial domain (also known as the ver-
tex domain), graph convolution can be viewed as an aggregation of node representa-
tions based on the node neighborhoods. Introducing these operations opens a window 
to graph convolutional networks [37]. Graph convolutional models are a form of neu-
ral network architecture that takes advantage of the graph structure and aggregates 
neighborhood information in a convolutional manner [38]. Graph convolutional net-
works have a high level of capability in learning graph structures and have been suc-
cessfully used for a variety of problems and applications, including drug discovery [39] 
and molecular property prediction [40]. The majority of graph convolutional networks 
methods [41–44] consider the problem of candidate disease gene prioritization as a link 
prediction problem and use convolutional graph networks and graph embedding on 
integrated networks. The presented methods are limited by the lack of use of other data 
sources with a non-graph structure and inadequate features for each node.

To rank genes, hybrid approaches utilize two or more prioritization methods. In spite 
of hybrid methods’ numerous benefits, implementing them demands high effort, complex 
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data management, and advanced programming techniques. NCBI and other common data-
bases, such as HPRD, MeSH, etc., can be used as data sources for hybrid methods. A few 
examples in this category include PrixFixe [45], ENDEAVOR [46], GeneMANIA [47], Gene 
Prospector [48] and DAPPLE [49], NetRanker [50], GeneTIER [51].

There are a few limitations to the current network-based inference algorithms: they 
do not use node feature vectors, and they still suffer from shallow learning mechanisms. 
Another challenge for this problem is that there are a small portion of labeled genes and a 
large number of unlabeled genes, which makes conventional supervised learning techniques 
inapplicable. Feature vectors are a crucial component of machine learning algorithms, and 
a lack of them leads to reduced efficiency. In machine learning-based methods, the lack 
of negative data can result in negative data being picked at random, which can negatively 
impact their performance. The aim of this study is to provide a semi-supervised learning 
approach using graph convolutional networks along with an innovative method for build-
ing gene feature vectors in order to overcome the limitations of candidate gene prioritiza-
tion. We consider the problem of disease gene prioritization as classifying nodes (genes) 
in a graph (PPI network), where labels are only available for a small subset of nodes. This 
problem can be framed as graph-based semi-supervised learning. The proposed method 
called the graph convolutional network for gene prioritization, in short GCNGP, works in 
three phases: First, we extract the Molecular Function (MF), Cellular Component (CC), and 
Biological Process (BP) terms from the GO Database for all associated genes of 16 diseases, 
and three feature maps are created for each one. Then, for each gene, three feature vectors 
are formed based on the presence or absence of the terms collected in the previous step. In 
the second phase, three PPI networks are created using the features derived from phase 1, 
and then a graph convolutional network is trained using the graphs and semi-supervised 
learning approach. The proposed method is validated in the third phase. In this phase, a test 
set of 100 genes containing a disease gene from a set of genes associated with a disease is 
constructed, along with 99 genes located in the nearest genomic interval. Then, these genes 
are ranked using the trained graph convolutional network from phase 2. We present a brief 
summary of the proposed model in Fig. 1. Compared to other well-known approaches, the 
proposed method incorporates a number of contributions:

1.	 For the first time, this study presents a semi-supervised learning algorithm based on 
graph convolutional networks that aims to prioritize disease candidate genes.

2.	 An innovative method based on GO data is used to construct a feature vector for 
each gene.

3.	 To rank genes, the customized convolution operator is used directly on the vertex 
domain, and information is propagated via the PPI network. Additionally, direct and 
indirect interactions between genes are considered.

4.	 Using both GO and PPI databases simultaneously and thereby improving the learn-
ing and accuracy of the proposed method.

5.	 Utilizing the structural characteristics of every node in the network along with the 
feature vector created for each node.
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Methods
’Guilt by association’ is a principle that takes into account a gene’s interaction with 
others in order to illustrate its functionality. Gene prioritization estimates candidate 
gene functionality by identifying their association with seed genes. Prioritization is 
fundamentally connected with the idea of machine learning, which strives to learn 
from past behaviors and apply this knowledge in assessing the behavior of upcom-
ing inputs [5]. Machine learning is useful to find out how a seed gene’s properties are 
similar to those of the candidate gene, and also to learn the ranking. During prioritiz-
ing and identifying disease genes using PPI network data, only a few genes (proteins) 
have a class label, and the rest are unlabeled. Therefore, we can frame this problem as 
semi-supervised graph-based learning [52, 53], where label information is smoothed 

Fig. 1  The overview of the proposed graph convolutional network for gene prioritization (GCNGP) method
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across the graph utilizing some type of explicit graph-based regularization, such as 
using a graph Laplacian regularization term in the loss function [38]:

where L0 indicates the supervised loss w.r.t. based on the labeled part of the graph, 
f (.) can be a neural network like differentiable function, � is a weighing factor, and X 
represents a matrix of node feature vectors Xi . � = D − A is the unnormalized graph 
Laplacian of an undirected graph G = (V ,E) with N  nodes Vi ∈ V  , edges (Vi,Vj) ∈ E , 
an adjacency matrix A ∈ RN×N(binary or weighted), and a degree matrix Dii = j Aij . 
For the formulation of Eq. (1), it is assumed that the connected nodes of the graph often 
have the same label.

Like the method proposed in [38], in this study, a neural network model f (X ,A) is 
used to encode the graph structure directly. Here, first, we describe how to construct 
feature vectors for each gene, then we discuss graph convolution, and finally, we discuss 
semi-supervised learning and the training model used in this study.

Feature vector construction

The GO dataset can be viewed as a bag of terms, which contains three categories of 
terms. The categories include Molecular Function, Cellular Component, and Biological 
Process. In this paper, three feature vectors are constructed based on each category of 
terms using a new method. As shown in Fig. 2, each protein in our proposed approach is 
treated as a set of terms (document), where gene annotation terms are words. In order to 
construct the feature vector, the annotated GO terms of the genes related to each disease 
in Table 1 are extracted from the GO annotation database, then a set of terms is created 
for each category.

Suppose the sets MF_termset(Gi) = {F1, F2, . . . , Fl} , CC_termset(Gi) =
{
C1,C2, . . . ,Cq

}
 , 

and BP_termset(Gi) = {P1,P2, . . . ,Pr} correspond to the Molecular Function, 

(1)L = L0 + �Lreg , with Lreg =
∑

i,j

Aij

∥∥∥f (Xi)− f
(
Xj

)2∥∥∥ = f (X)T�f (X)

Fig. 2  The overall schema of the proposed feature vectors construction method



Page 8 of 25Azadifar and Ahmadi ﻿BMC Bioinformatics          (2022) 23:422 

Cellular Component terms, and Biological Process terms of the gene Gi , respectively. 
After extracting these terms, the three sets of terms,GMF =

⋃
∀iMF_termset(Gi) , 

GCC =
⋃

∀iCC_termset(Gi) , and GBP =
⋃

∀iBP_termset(Gi) , are generated for the genes 
associated with the diseases in Table  1. Then, using each of these sets, three feature 
maps are created as follows:

Finally, for each gene Gi , depending on the presence or absence of each GO term in the 
GMF , GCC , and GBP sets in the term sets of Gi , three feature vectors with equal length are 
constructed according to Eqs. (5)–(7).

where FGi , CGi and PGi are feature vectors constructed based on the Molecular Function, 
Cellular Component, and Biological Process terms for the Gi , respectively.

(2)GMF = {F1, F2, F3, . . . , Fm}

(3)GCC = {C1,C2,C3, . . . ,Cm}

(4)GBP = {P1,P2,P3, . . . ,Pm}

(5)FGi =
{
Fi,1, Fi,2, Fi,3, . . . , Fi,m

}
, Fi,j =

{
1 if Fj ∈ MF_termset(Gi)

0 else

(6)CGi =
{
Ci,1,Ci,2,Ci,3, . . . ,Ci,m

}
, Ci,j =

{
1 if Cj ∈ CC_termset(Gi)

0 else

(7)PGi =
{
Pi,1,Pi,2,Pi,3, . . . ,Pi,m

}
, Pi,j =

{
1 if Pj ∈ PF_termset(Gi)

0 else

Table 1  List of diseases and number of known genes for each of them that have been used in 
experiments

Disease Number 
of genes

Pancreatitis 6

Parkinson’s disease 21

Celiac disease 16

Atherosclerosis 43

Esophageal cancer 8

Crohn’s disease 17

Breast cancer 27

Alzheimer’s disease 21

Ulcerative colitis 24

Endometriosis 5

Cirrhosis 7

Myocardial infarction 32

Tuberculosis 12

Lymphoma 7

Rheumatoid arthritis 24

Asthma 29
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Convolutions on graph

In this paper, we investigate a multi-layer graph convolutional network (GCN) that 
operates according to the following propagation rule [38]:

where Ã = A+ IN is the adjacency matrix of the undirected graph G with added self-
connections. IN indicates the identity matrix, and Wi is a layer-specific trainable 
weight matrix. σ(.) denotes an activation function, such as the ReLU(.) = max(0, .). 
H (i) ∈ RN×D represents the matrix of activations in the ith layer; H0 = X . X is the matrix 
of node (gene) feature vectors that is constructed in the previous step. Since the features 
have values of either 0 or 1, the multiplication operator uses the OR operation instead of 
the addition operation, and the multiplication of the two matrices is rewritten as follows:

Semi‑supervised node classification

In this paper, we use a graph-based semi-supervised learning method presented in 
[8]. This method requires a graph adjacency matrix A, labeled samples x1:L, y1:L , and 
unlabeled samples xL+1:L+U  as inputs. There is an embedding indicated by ei for each 
sample i . This framework is developed using feed-forward neural networks. The 
k − th hidden layer of the network for the input feature vector x is formulated as:

where Wk and bk  indicate parameters of the h− th layer and h0(x) = x . In this study, 
ReLU(x) = max(0, x) is used as the nonlinear function. The loss function can be formu-
lated as follows:

where Ls and Lu are supervised loss based on the labeled part of the graph, and unsu-
pervised loss of predicting the graph context, respectively. The semi-supervised learn-
ing model is outlined in the following by forming an unsupervised loss based on sample 
context from the graph, and then the supervised loss.

(8)H (i+1) = σ

(
WiÃHi

)

(9)

C = A ∗H

C =



c11 · · · c1n
...

. . .
...

cn1 · · · cnn


, A =



a11 · · · a1n
...

. . .
...

an1 · · · ann


, and H =



h11 · · · h1m
...

. . .
...

hn1 · · · hnm




such that

cij =

�
1 ifc

′

ij ≥ 1

0 else

where c
′

ij = ai1h1j + ai2h2j + · · · + ainhnm =

n�

k=1

aikhkm, for i = 1, . . . , n and j = 1, . . . ,m

(10)hk(x) = ReLU
(
Wkhk−1(x)+ bk

)

(11)Ls + �Lu
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Unsupervised loss of predicting the graph context

In order to formulate unsupervised loss, a sampling context method has been used. 
In this method, (i, c, γ ) is sampled from a distribution, where i indicates a sample and 
c is a context if γ = +1,  then (i, c) is a positive pair, and if γ = −1,   then it is a nega-
tive pair. Based on (i, c, γ ) , the cross-entropy loss is minimized by classifying (i, c) to a 
binary label γ:

where σ is the sigmoid function formulated asσ(x) = 1/(1+ e−x) , and I(.) is an indicator 
function that outputs 1 when the argument is true; otherwise,0 . As a result, the unsuper-
vised loss is as follows:

The distribution p(i, c, γ ) can be directly derived from the sampling methodology. 
This method samples two types of context. The first type of context uses graph A to 
encode the structure (distributional) information, and the second type uses labels to 
inject label information into the embeddings.

Supervised loss

In order to formulate supervised loss, an embedding e is defined for each sample. The 
embedding e is formed by applying l1 layers on the input feature vector, e = hl1(x) . 
Then, other remaining l2 layers are applied on the : hl2(e) = hl2

(
hl1(x)

)
 , represented 

as hl(x) wherel = l1 + l2 . Based on this formulation, embedding e is a parameter-
ized function of the featurex . In more detail, the probability of predicting label y is 
expressed as follows:

where hk(x) is obtained by applying k layers on the input feature vector x . When ei 
replaced with hl1(xi) in Eq. (13), the loss function is:

Figure 3 illustrates a schematic representation of the overall model for semi-super-
vised learning, using a multi-layer GCN.

(12)−I(γ = 1)logσ
(
wT
c ei

)
− I(γ = −1)logσ

(
−wT

c ei

)
,

(13)Lu = −E(i,c,γ ) log σ
(
γwT

c ei

)

(14)p(y|x) =
exp

[
hk(x)T , hl(x)T

]
wy∑

y′ exp
[
hk(x)T , hl(x)T

]
wy′

(15)Ls = −
1

L

L∑

i=1

log p
(
yi|xi

)

(16)−
1

L

L∑

i=1

log p
(
yi|xi

)
− �E(i,c,γ ) log σ

(
γwT

c h
l1(xi)

)
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Training

After sampling a batch of labeled samples, we optimize the loss function of class label 
prediction by performing a gradient step. Following that, to optimize the loss function 
of context prediction, a batch of context (i, c, γ ) is sampled, and another gradient step 
is performed. The procedure of the training model is presented in Algorithm 1 [8].

Stochastic gradient descent

Our model is trained using stochastic gradient descent (SGD) [54]. In this method the 
excess error E = E[E

(
f̃n

)
− E(f ∗)] can be divided into three parts according to this 

method:

Fig. 3  The overall view of the proposed graph convolutional network method
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where Eapp represents the approximation error which is a measure of how closely func-
tions in F  can approximate the optimal solution f ∗ . A larger family of functions can 
reduce the approximation error. Eapp is calculated using the following equation:

In this case, f ∗ = argminf E(f )  represents the best possible prediction function, F  is a 
parametrized family of functions, and f ∗

F
= argminf ∈FE(f ) represents the best function 

in F .
Eest is the estimation error which used to determine how well we can minimize the 

empirical risk En(f ) instead of the expected risk E(f ) . Smaller families of functions or 
larger training sets can reduce the estimation error. The following equation is used to 
calculate Eest:

where fn = argminf ∈FEn(f ) is the empirical optimum.
Eopt is the optimization error that measures how the approximate optimization affects 

the expected risk. By running the optimizer longer, you can reduce the optimization 
error. Depending on the training set size and the family of functions, additional comput-
ing time may be required. Eopt is calculated as follows:

where f̃n is a solution that minimizes the objective function with a predetermined accu-
racy En

(
f̃n

)
< En

(
fn
)
+ ρ.

The gradient descent can be represented as follows:

where Tmax , and \max are maximal computation time and the maximal training set size, 
respectively. ρ is the optimization accuracy, and \ represents the number of examples.

Candidate gene prioritization

In order to rank candidate genes, we used the output from the model, where the output 
with the higher value corresponds to the higher ranking. A final ranking is computed 
by averaging the results obtained from all three types of constructed feature vectors for 
genes. The procedure of the proposed candidate gene prioritization is represented in 
Algorithm 2.

(17)E = Eapp + Eest + Eopt

(18)Eapp = E
[
E
(
f ∗
F

)
− E

(
f ∗
)]

(19)Eest = E
[
E
(
f ∗
F

)
− E

(
f ∗
)]

(20)Eopt = E

[
E
(
f̃n

)
− E

(
fn
)]

(21)min
F ,ρ,n

E = Eapp + Eest + Eopt subject to

{
\ ≤ \max

T
(
F , ρ, \

)
≤ Tmax
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Computational complexity analysis

A computational complexity analysis is performed in this section. In the first step, three 
feature vectors were constructed for each gene. The computational complexity of this 
step is O(n) where n is the number of genes in the original set. In the second step, a 
graph convolutional network is trained using the semi-supervised learning approach. 
The computational complexity of the forward convolution is O(L.I .n.m2) where L is the 
number of layers, I represents the maximum number of iterations, and m is the number 
of features. Moreover, the computational complexity of the semi-supervised training is 
O(L.I .(N1 + N2).m

2) where N1 , and N2 are the size of a batch of labeled instances and 
a batch of context from p(i, c, γ ) , respectively. Therefore, the computational complex-
ity of this step of the proposed method is O(L.I .n.m2 + L.I .(N1 + N2).m

2) , which can 
be reduced to (L.I .n.m2) . According to the computational complexities of all steps, the 
final computational complexity of the proposed method will be O(n+ L.I .n.m2) which is 
reduced to O(L.I .n.m2).

Results
In this section, several experiments are conducted to evaluate the performance of the 
proposed method. TensorFlow [55] is used in practice for an efficient implementation of 
Eq. (8) on GPUs with sparse-dense matrix multiplications.

Dataset

Our experiments utilize human protein–protein interaction (PPI) data retrieved from 
NCI’s Entrez Gene Database [56]. Interaction data on this database is sourced from other 
databases. For example, HPRD, Biological General Repository for Interaction Data-
sets (BioGRID), and Biomolecular Interaction Network Database (BIND) are among the 
sources. The final PPI network has 8959 proteins and 33528 interactions between these 
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proteins after removing nodes with no interactions. In this study, GPL10558 ontology data 
was used to construct the feature vectors for each gene, which contains 44945 terms. To 
construct the feature vector from this collection, 1671 MF terms, 1653 CC terms, and 1644 
BP terms were extracted for 299 genes known for diseases, and then three feature vectors 
were created for each gene based on these terms. In all three feature vectors, the length 
equals the number of terms in the largest term set, which is 1671.

Experimental setting

We train a four-layer GCN and evaluate its performance on a test set. A test set of 100 
genes containing a disease gene from a set of genes associated with a disease is constructed, 
along with 99 genes located in the nearest genomic interval. Additional experiments are 
performed using deeper models with layers up to 10. Training all models for a maximum of 
200 epochs (training iterations) is performed using stochastic gradient descent (SGD), with 
a learning rate of 0.01 and early stopping at the window size of 10, which means that the 
training stops after a validation loss does not decrease for 10 consecutive iterations. Using 
the method described in [57], we initialize the weights.

Using the evaluation criteria described following, we evaluate the quality of each algo-
rithm’s ranking. Leave-one-out cross-validation approach is used to assess the effectiveness 
of different methods for prioritizing genes associated with the disease. Based on the used 
dataset, we run the steps described below for every gene u known to cause disease D:

•	 In this study, the target gene u is placed in a sophisticated linkage interval along with 99 
other genes located closest to it in terms of genomic proximity. Candidate set C is made 
up of genes within this artificial linkage interval (including u).

•	 Genes in C are ranked by applying each prioritization algorithm.
•	 The gene u is removed from the list of genes associated with D. During the experiment, 

u is called the target gene. The rest of the gene set related to D form seed set S.

Evaluation criteria

By varying the threshold on the rank of a gene to be classified as a "predicted disease gene", 
first ROC curves (precision/recall) are plotted. As a result of consideration of threshold 
ranks, sensitivity can be defined as the percentage of lists where the left-out gene is ranked 
higher than the threshold and specificity as the percentage of lists where the left-out gene 
is ranked lower than the threshold. Based on various threshold ranks, sensitivity and spec-
ificity values were calculated and used to construct a ROC curve, from which AUC was 
calculated. Gene prioritization methods are evaluated by using AUC as a standard meas-
ure of efficiency. If AUC = 100%, the defector gene is prioritized as the top priority. While 
AUC = 50% indicates a random ranking of the defector genes. The precision, recall, and 
F1-score calculations are also performed, as part of the evaluation of our method according 
to Eqs. (22)–(24).

(22)p = Precision =
TP

TP + FP
× 100
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where TP, FP, and TN  are respectively the numbers of true positive, false positive, and 
true negative.

Using the Genetic Association Database (GAD) [58], our analysis included 16 diseases 
and the known genes associated with each one. In Table 1, the number of known pro-
teins associated with each disease used in this study is listed.

Performance evaluation

The proposed method’s results are compared with eight state-of-the-art methods. Brief 
descriptions of these methods can be found in the following:

GPEC [22]: GPEC is designed for recognizing genes that are more likely associated 
with particular diseases. An algorithm based on random walk with restart along with a 
gene-protein link network is used in this plugin to identify gene priorities.

DADA [59]: Different uniform prioritization methods are effectively combined with 
statistical regulation strategies in this method. PPI network is used to assess the degree 
distribution of known diseases and candidate genes using several statistical adjustment 
methods.

HSSVM [60]: Using the HeteSim [61] measure, this method calculates the relative 
importance of different or the same type of node types in a heterogeneous network. 
HSSVM combines the HeteSim measure with a machine learning method to account 
how similar nodes are. Each path contributes differently to the relevance score, so the 
machine learning method is utilized to determine the weight for each path. In order to 
determine the weights of various paths, a positive and unlabeled learning method was 
implemented.

Arete [62]: In this framework, two existing network-based gene prioritization meth-
ods are combined using an isolation forest-based integrative ranking method. The 
method includes a random walk with restart (RWR) and an iterative neighborhood-
based approach.

WCR​STAR​ [63]: To prioritize disease genes, this method integrates tissue-specific 
molecular networks. As a result, each disease can have its own tissue-specific network(s). 
Based on network propagation, this method formulates candidate gene prioritization as 
an optimization problem. If a disease has multiple tissue-specific networks, based on 
this method, each tissue-specific network can be assessed for its relative importance. It 
can deal with noisy and incomplete network data. The optimization problem is solved 
by creating fast algorithms whose time complexity increases linearly with the number of 
nodes in the molecular networks.

C-PUGP [64]: In this method, positive-unlabeled (PU) learning technique is utilized 
for gene prioritization using clustering and one-class algorithms. In this method, it has 
been attempted to make a set of reliable negative examples in three steps. First, positive 
samples are clustered. In the next step, a single-class sorting algorithm is taught using 

(23)r = Recall =
TN

TP + FP
× 100

(24)F1− score =
(2 ∗ p ∗ r)

p+ r
× 100
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the clusters obtained from the previous step, and in the last step, a dependable negative 
sample is defined as the convergent point of negative data.

TLGP [65]: A transfer learning-based gene prioritization (TLGP) is proposed in this 
method, using knowledge transferred from other cancers (source) to prioritize genes in 
cancer (target). This method is based on the hypothesis that knowledge sharing between 
cancers improves the performance of gene prioritization.

GPrior [66]: A tool based on positive-unlabeled learning that selects an optimal set of 
classification algorithms including, logistic regression, support vector machine (SVM), 
random forest, decision tree, and adaptive boosting to tune the proposed method for 
each particular phenotype.

In order to impartial assessment, the same training and test sets and leave-one-out 
cross-validation for all of the eight methods above are used. The comparison of the 
results is presented in Tables 2, 3, and Figs. 4, 5. Tables 2, and 3 show the AUCs calcu-
lated for each of 16 diseases using our method compared to eight other methods for 
thresholds equal to 5, and 10, respectively. The results show that the proposed method 
often has higher AUCs values than other methods in each case. The increase of average 
AUCs value is 3.4 and 3.56 percent better than the best method, the TLGP method, for 
thresholds equal to 5 and 10, respectively.

There are 299 genes associated with all 16 experimental diseases. For each gene associ-
ated with a disease, we generated a list of 100 test genes according to their rank. We con-
structed a ROC curve based on all 299 rank lists, which can be seen in Fig. 4. Because 
the ROC curve for our method is above other methods, the AUC value of our method 
is larger than other methods. Figure 5 confirms that our proposed method is the best in 
terms of precision and F1-score, while C-PUGP is better in terms of recall. It may be due 

Table 2  The AUCs values of different methods over 16 diseases for threshold = 5

Disease Methods

GCNGP C-PUGP DADA HSSVM GPEC Arete WCR​STAR​ TLGP GPrior

Pancreatitis 80.76 76.95 71.99 68.51 50.72 67.55 72.26 77.12 74.71

Parkinson’s disease 75.28 69.72 61.45 57.38 48.65 51.39 68.48 71.86 68.95

Celiac disease 77.95 71.07 67.61 61.27 42.96 53.02 72.28 73.90 70.43

Atherosclerosis 80.25 78.81 73.66 70.33 61.48 64.14 75.80 78.09 75.24

Esophageal cancer 78.61 76.15 69.63 65.95 60.52 63.38 69.92 74.55 69.78

Crohn’s disease 69.90 66.39 62.05 59.89 52.66 60.16 66.21 66.98 64.36

Breast cancer 74.08 71.22 68.76 68.29 55.79 61.05 69.54 72.57 69.19

Alzheimer’s disease 76.39 69.76 66.18 61.90 59.37 67.80 68.17 71.83 68.42

Ulcerative colitis 67.83 61.98 59.03 57.64 49.13 59.74 62.97 63.81 62.85

Endometriosis 84.30 80.59 74.84 70.61 53.85 77.32 79.53 80.87 79.66

Cirrhosis 59.92 55.09 51.76 49.47 41.62 52.97 56.88 55.69 54.18

Myocardial Infarction 71.48 65.83 60.91 56.17 44.21 55.82 66.02 67.71 64.13

Tuberculosis 78.75 74.07 67.22 66.19 52.98 67.46 71.44 75.05 73.22

Lymphoma 73.87 71.65 58.11 55.72 50.78 54.29 72.68 71.93 71.07

Rheumatoid Arthritis 66.09 62.53 61.68 59.16 55.73 55.89 61.95 62.64 61.16

Asthma 63.94 59.86 54.82 55.27 53.04 57.98 58.85 60.28 58.39

Average 73.71 69.48 64.36 61.48 52.09 60.62 68.31 70.31 67.86



Page 17 of 25Azadifar and Ahmadi ﻿BMC Bioinformatics          (2022) 23:422 	

to its focus on the production of suitable negative samples that C-PUGP performed bet-
ter in recall. The increase in performance is 3.6 and 1.5 percent better than best method, 
C-PUGP method, in terms of precision, and F1-score, respectively.

The best results are obtained for the datasets considered here by using a three- 
or four-layer model. As layers deeper than 7 are added, training without residual 

Table 3  The AUCs values of different methods over 16 diseases for threshold = 10

Disease Methods

GCNGP C-PUGP DADA HSSVM GPEC Arete WCR​STAR​ TLGP GPrior

Pancreatitis 93.65 87.58 85.19 79.24 66.86 72.39 81.10 90.01 86.25

Parkinson’s disease 88.82 76.84 69.98 68.84 60.92 66.48 77.66 83.65 75.19

Celiac disease 87.39 79.75 74.25 70.15 59.28 69.36 80.85 79.17 71.92

Atherosclerosis 96.55 91.66 90.08 81.95 72.67 79.14 89.28 92.40 90.38

Esophageal cancer 87.44 86.78 81.63 78.11 71.09 76.38 78.34 85.82 82.59

Crohn’s disease 82.73 80.25 77.29 76.85 69.16 76.50 79.09 80.07 78.44

Breast cancer 87.66 85.62 80.76 75.70 70.05 73.81 81.54 86.38 82.11

Alzheimer’s disease 90.45 82.19 83.64 82.96 76.27 80.25 84.17 85.87 81.95

Ulcerative colitis 79.36 78.46 77.96 71.27 69.91 72.74 75.52 77.98 75.16

Endometriosis 96.05 90.44 88.32 85.50 70.85 81.65 87.76 91.16 89.18

Cirrhosis 74.48 70.91 71.80 66.67 59.09 68.04 71.45 71.43 70.62

Myocardial infarction 91.69 87.35 87.95 82.41 68.66 75.90 85.69 89.05 86.57

Tuberculosis 95.35 91.80 89.15 80.29 71.18 79.82 90.13 92.34 90.48

Lymphoma 92.81 88.39 85.78 82.33 73.06 82.66 89.92 89.15 86.39

Rheumatoid arthritis 84.97 80.16 80.72 72.54 70.33 71.68 79.35 80.93 78.69

Asthma 86.19 83.92 81.18 79.46 64.47 77.49 80.97 83.11 81.27

Average 88.47 83.88 81.61 77.14 68.37 75.27 82.05 84.91 81.70

Fig. 4  ROC curves corresponding to all the disease genes for GCNGP and other methods
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connections becomes increasingly difficult, as the number of nodes in a model’s con-
text increases in proportion to the size of their l  th-order neighborhood. A growing 
model depth can also cause overfitting due to the increased number of parameters. 
Classification performance is influenced by the depth (number of layers) of a pro-
posed model shown in Fig. 6.

Furthermore, the proposed method has been compared to graph convolutional net-
works based methods. These methods are described briefly below:

Fig. 5  Comparison between GCNGP and other methods based on precision, recall, and F1-score

Fig. 6  A comparison of classification accuracy for the different number of layers. Each marker indicates the 
average classification accuracy for the training and testing phases
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PGCN [41]: This method employs graph convolutional neural networks to learn 
embedding for genes and diseases. In this method a heterogeneous network is con-
structed by putting together the genetic interaction network, the human disease 
similarity network, and the disease-gene association network. Gene prioritization is 
treated as a link prediction problem in this method.

RGCN [42]: As part of RGCN, disease similarities, gene similarities, and disease-gene 
associations are used to construct a multi-relational network. Link prediction is used 
here to model the disease gene prioritization problem.

GCAS [43]: The GCAS method infers new phenotype-gene associations from this ini-
tial set of associations using graph convolution. Genes, diseases, phenotypes, pathways, 
and ontological associations are integrated into a heterogeneous network in this method.

GCN-MF [44]: GCN-MF combines Graph Convolutional Networks (GCN) with 
matrix factorization in order to solve the problem of disease-gene association. To reduce 
the effect of sparsity, a margin control loss function is used, in this method.

Tables 4 and 5 represent the AUCs calculated for each of 16 diseases using our method 
compared to four other methods for threshold equal to 5, and 10, respectively. These 
results demonstrate that our proposed method not only outperforms classical models, 
but it has superiority in comparison to the recently graph convolutional networks devel-
oped models. Figure  7 shows the results of our proposed method compared to other 
graph convolutional networks methods in terms of precision, recall, and F1-score.

Statistical analysis of the proposed method

We conduct the Friedman test [67] as a means of analyzing the performance of our 
method and those of the others. It is a nonparametric statistic used to evaluate the 
results of various methods on a range of various datasets. As a result, the rank of every 
gene prioritization method is determined based on the specific disease. The SPSS sta-
tistics acquired by IBM [68] are used for this purpose. Hypothesis H0 is based on 

Fig. 7  Comparison between GCNGP and other graph convolutional networks methods based on precision, 
recall, and F1-score
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Table 5  The AUCs values of different graph convolutional networks methods over 16 diseases for 
threshold = 10

Disease Methods

GCNGP GCAS RGCN PGCN GCN-MF

Pancreatitis 93.65 90.44 88.18 89.05 89.25

Parkinson’s disease 88.82 87.29 84.75 83.69 85.90

Celiac disease 87.39 83.08 82.77 80.88 85.10

Atherosclerosis 96.55 92.97 89.35 91.64 94.89

Esophageal cancer 87.44 85.15 84.58 81.29 86.96

Crohn’s disease 82.73 81.36 78.84 80.01 80.52

Breast cancer 87.66 84.49 81.69 83.13 85.73

Alzheimer’s disease 90.45 85.25 83.86 82.49 88.27

Ulcerative colitis 79.36 75.77 72.61 74.16 77.07

Endometriosis 96.05 95.29 91.54 89.99 92.43

Cirrhosis 74.48 71.01 69.37 70.71 72.55

Myocardial infarction 91.69 86.82 82.95 85.36 89.18

Tuberculosis 95.35 94.66 91.62 92.13 93.69

Lymphoma 92.81 88.91 86.25 85.79 90.14

Rheumatoid arthritis 84.97 83.54 80.08 81.22 82.25

Asthma 86.19 83.09 82.92 83.88 84.24

Average 88.47 85.57 83.21 83.46 86.14

Table 4  The AUCs values of different graph convolutional networks methods over 16 diseases for 
threshold = 5

Disease Methods

GCNGP GCAS RGCN PGCN GCN-MF

Pancreatitis 80.76 73.38 76.18 78.01 78.57

Parkinson’s disease 75.28 71.25 70.90 74.59 73.16

Celiac disease 77.95 73.81 70.39 71.27 75.82

Atherosclerosis 80.25 76.66 73.11 75.05 75.98

Esophageal cancer 78.61 75.15 74.77 75.86 79.10

Crohn’s disease 69.90 65.49 63.26 65.07 67.44

Breast cancer 74.08 71.69 71.87 70.78 72.88

Alzheimer’s disease 76.39 73.94 70.85 69.97 74.29

Ulcerative colitis 67.83 65.81 62.19 62.92 64.66

Endometriosis 84.30 81.17 79.67 79.95 83.13

Cirrhosis 59.92 56.94 55.09 56.19 57.75

Myocardial infarction 71.48 70.18 67.75 66.54 69.49

Tuberculosis 78.75 75.97 71.54 70.72 76.91

Lymphoma 73.87 72.45 69.19 70.04 71.97

Rheumatoid arthritis 66.09 64.93 63.17 61.59 64.68

Asthma 63.94 60.74 59.13 59.91 61.39

Average 73.71 70.60 68.69 69.28 71.70
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the similarity of the average ranks between the groups in the Friedman test. The null 
hypothesis is rejected if there is a significant difference between at least two groups. If 
the level of significance of the Friedman test is less than the level of error, it is impossible 
to determine whether the difference between at least two specimens is deducted from 
the results. To satisfy the constraint, the level of significance must be less than 0.05 since 
the test error is considered 5%. The Friedman test results of the proposed method are 
shown in Tables 6 and 7 in comparison to the other methods. Specifically, Table 6 lists 
the average rankings of all models based on different thresholds. Based on these results, 
it appears that the proposed method has the best ranking as compared with all other 
models. Based on all evaluated thresholds, it is possible to conclude that the GCNGP is 
the best performing method. Based on Table 7, we can see that the Friedman test returns 
a P value of 3.13× 10−22 for threshold = 5. This value is less than 0.05, so it can be stated 
that the proposed method yields significantly different results. Further P value from the 

Table 6  Average ranks of different methods for different threshold values

Threshold Methods

GCNGP C-PUGP DADA HSSVM GPEC Arete WCR​STAR​ TLGP GPrior

5 1 3.25 6.37 7.37 9 7.18 3.87 2.25 4.68

10 1 3.31 4.75 7 9 7.81 4.5625 2.56 4.93

Table 7  The results of the statistical test

Threshold

5 10

Chi-Square 120.12 113.52

df 8 8

P value 3.13× 10
−22

7.19× 10
−21

Table 8  Average ranks of different graph convolutional networks methods for different threshold 
values

Threshold Methods

GCNGP GCAS RGCN PGCN GCN-MF

5 1.06 3 4.56 4.06 2.31

10 1 2.69 4.63 4.31 2.38

Table 9  The results of the statistical test for of different graph convolutional networks methods

Threshold

5 10

Chi-square 49.9 56.65

df 4 4

P value 3.79× 10
−10

1.5× 10
−11
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Friedman test for threshold = 10 confirms that our method differs significantly from 
others.

The Friedman test has also been performed for the proposed method compared to 
other graph convolutional networks methods. In Table  8, all graph convolutional net-
works models are ranked according to various thresholds. Compared to all other GCN-
based models, the proposed method shows the best ranking. The Friedman test returns 
a P value of  3.79× 10−10 for threshold = 5 as shown in Table 9. This value is less than 
0.05, so it can be stated that the proposed method yields significantly different results. 
Furthermore, our method is significantly different from other GCN-based methods 
based on the Friedman test for threshold = 10.

Discussion
Various factors contribute to the superior performance of the proposed GCNGP method 
over other compared gene prioritization methods. There are three contributions that 
help explain why the proposed method is superior.

1.	 One of the most problematic aspects of existing gene prioritization methods is the 
reliance on a single data resource. In order to overcome this problem, our proposed 
method takes advantage of different datasets. In our method, in addition to using the 
PPI network, the GO dataset was used to gather knowledge for each gene. For this 
purpose, three feature vectors were constructed using the GO dataset for each gene.

2.	 A majority of network-based methods rely solely on the intrinsic and structural 
properties of nodes. The proposed method also uses features based on other data 
sources in addition to the structural properties of each node, and in the end, a repre-
sentation of each node is derived by applying the convolution of that node’s features 
to its neighbors.

3.	 In some previous studies, the gene prioritization problem is viewed as a two-class 
classification, in which random unknown genes are depicted as negative examples. In 
this paper, the gene prioritization problem is considered a semi-supervised learning 
problem, that is trained and tested using the graph convolutional network, a popular 
graph deep learning models. Moreover, what distinguishes our method from others 
is the capability of propagating information in the PPI network as well as considering 
direct and indirect interactions between genes for ranking.

Memory limitations were the primary bottleneck in our proposed method due to the 
size of the feature vectors and the dimensions of the PPI network.

Conclusion
A variety of machine learning approaches have been utilized to predict disease genes 
based on the rule that genes associated with the same disorder are more likely to have 
similar features; however, many of these methods still have shallow learning mecha-
nisms. Furthermore, the lack of appropriate representations for genes is another chal-
lenge with disease gene identification. Such methods are focused on capturing the 
properties of genes. Additionally, traditional methods usually use disease genes as the 
positive training set and unknown genes as the negative training set to build binary 
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classification models. There is no doubt that convolutional graph networks have a con-
siderable amount of ability to learn graph representations and node classifications, and 
they have achieved excellent results for a variety of tasks and applications. This type of 
neural network architecture utilizes graph structure and incorporates aggregating infor-
mation from neighbors in a convolutional way.

In this paper, we proposed a semi-supervised learning method based on a graph con-
volutional network to classify and rank candidate disease genes. We propose a novel 
method called GCNGP based on PPI network data, and an innovative method to create 
three feature vectors for genes based on the Molecular Function, Cellular Component 
and Biological Process terms from GO data. A customized convolutional network, and 
extracting the knowledge set from GO data and constructing feature vectors for each 
gene are the main idea and novelty of the proposed method. First, all Molecular Func-
tion, Cellular Component, and Biological Process terms of disease genes are extracted 
from the GO database. Then, for each gene three feature vectors are constructed. Sec-
ond, a graph convolutional network is trained on PPIs networks and feature vectors 
of nodes from the previous step. Third, the validation of the proposed method is per-
formed. The performance of proposed method is compared with eight well-known gene 
prioritization methods and four graph convolutional networks methods using a variety 
of criteria. The experimental results demonstrated that the proposed gene prioritization 
method can considerably outperform other methods. The use of edge features and net-
work embedding methods such as node2vec could be a promising direction for future 
research. In addition to drug disease association and homolog detection for protein 
structure prediction, the framework we developed can be easily applied to other impor-
tant problems in computational biology and biomedical network analysis.
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