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LETTER TO EDITOR

Tri-modal liquid biopsy: Combinational analysis of
circulating tumor cells, exosomes, and cell-free DNA using
machine learning algorithm

Dear Editor,
Analysis of tumor biomarkers in circulation, commonly
known as liquid biopsy, has been highlighted as an effec-
tive real-time monitoring technique for the surveillance of
therapeutic responses and tumor progression.1–3 However,
existing liquid biopsy assays that utilize a single tumor
biomarker lack the sensitivity and specificity required to
obtain clinically reliable information.4 In this study, we
established a multimodal liquid biopsy (MMLB) system
that integrates the expression profiles of the three differ-
ent tumor biomarkers, circulating tumor cells (CTCs), exo-
somes, and cell-free DNA (cfDNA), using amachine learn-
ing algorithm (Figure 1).
CTCs, exosomes, and cfDNA were isolated using algi-

nate beads functionalized with anti-epithelial cell adhe-
sion molecule antibodies (aEpCAM), anti-CD63 antibod-
ies (aCD63), and polydopamine-silica (PDA-SiO2), respec-
tively. Prior to clinical application, the capture capabil-
ity of the bead-based systems was validated using in
vitro samples (Figure S1). The aEpCAM-functionalized
beads achieved ∼73.1% capture efficiency of EpCAM+

SW480 cells, with ∼99.4% leukocyte removal, ∼93.4% cell
retrieval, and ∼87.0% cell viability (Figure 2A). Mean-
while, aCD63-functionalized beads achieved slightly lower
recovery of exosome nucleic acids (∼38% less) and PDA-
SiO2 beads achieved 1.27-fold more capture of cfDNA
compared with commonly-used commercial kits (Fig-
ures 2B and 2C). Furthermore, all three assays demon-
strated high selectivity toward their target biomarkers
(Figures 2D–2F).
The clinical applicability of the beads was investigated

using samples obtained from 72 colorectal cancer patients,
14 patients with benign colorectal tumors, and 14 healthy
individuals (Table S1). All three systems were capable
of differentiating cancer patients from non-cancer con-
trols, with an AUC-ROC of 0.826 (CTCs; p < 0.001), 0.763
(exosomes; p < 0.001), and 0.820 (cDNA; p < 0.001),
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whichwas greater than commercially available assays (Fig-
ures 2G–2L and S2–S5). However, the diagnostic capabil-
ities of the bead-based systems were still insufficient to
be applied in clinical practice due to the inherent vari-
ability of each measurement. CTCs were only found in
65.3% of cancer patients, exosomes were elevated in both
benign andmalignant tumor patients, and cfDNA levels of
early-stage patients were similar to those of the non-cancer
cohorts.
To improve the diagnostic accuracy, k-means clustering

was utilized to deduce patterns among the three assays
(Figures 3A and 3B). The optimal number of clusters (k)
was determined to be five based on the elbow method
(denoted as A1–A5; Figure S6). Between the clusters, there
was a significant difference in the expression profiles of
the three biomarkers (Figures 3C–3E). Interestingly, 92.9%
(13/14) of healthy individuals and 85.7% (12/14) of patients
with benign tumors belonged to cluster A1, which exhib-
ited the lowest expression of all three biomarkers (Table
S2). Principle component analysis (PCA) was then used to
simplify CTC-exosome-cfDNA expressions into a 2D plot
(Figure 3F). The x-axis of the plot (PCA-X) demonstrated
moderate-to-strong correlations with all three biomarkers.
The PCA-X was thus defined as MMLBScore which was
equivalent to the linear combination of CTCs, exosomes,
and cfDNA, with standardized coefficients of 0.600, 0.592,
and 0.184, respectively (Figure S7). The MMLBScore was
significantly higher among cancer patients (0.40 ± 1.11)
compared to non-cancer cohorts (−1.03 ± 0.33; p < 0.001),
exhibiting a greater AUC-ROC (0.894; p < 0.001) than any
of the single biomarkers (Figures 3G–3K).
We repeated the clustering and PCA on samples from

patients with malignant tumors (MMLBCancer) to deter-
mine if the score was predictive of pathological status
and survival outcomes (Table S3). A strong correlation
was found between MMLBCancer and the T-stage of a
tumor (Figures 4A-4E and S8), with an AUC-ROC of
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F IGURE 1 Schematic illustration of the machine learning-based multimodal analysis of the triple tumor biomarkers – CTCs, exosomes,
and cfDNA: (A) A graphical abstract of the multimodal liquid biopsy analysis. (B) Schematic illustration depicting the experimental and
analytical procedures for the isolation of CTCs, exosomes, and cfDNA using functionalized alginate beads. (C) Clustering of the CTC counts,
exosome NA amounts, and plasma cfDNA concentrations based on the machine learning algorithm; (D) Establishment of MMLBScore for each
cohort based on PCA. (E) Validation of the clinical utility of the MMLB analysis

0.761 (p < 0.001) for identifying patients with T-stage ≥ 3.
MMLBCancer outperformed all three biomarkers individ-
ually, as well as serum antigens that are routinely tested
in clinical practice (Figures 4F and S9). MMLBCancer also
exhibited a moderate correlation with patients’ LVI status,
presence of nodal metastasis, and prevalence of distant
metastasis (Figures S10 and S11). Furthermore, a Kaplan–
Meier survival analysis demonstrated that patients with
low MMLBCancer (≤median) exhibited a 3.36-fold (p =

0.009) longer mean disease-free survival (DFS) than
those with high MMLBCancer (Table S4), whereas no
significant differences were found from the single tumor
biomarkers (Figures 4G–4J). Likewise, MMLBCancer
outperformed all three biomarkers for predicting the
overall survival (OS) of patients (Figures 4K–4N). As a
result, the hazard ratio of MMLBCancer was 1.370 (p =

0.006) and 1.623 (p = 0.015) for predicting DFS and OS,
respectively, demonstrating superior prediction capa-
bilities in comparison to any of the single biomarkers
(Figure 4O).

The MMLB analysis was further applied to detect KRAS
mutations (MMLBKRAS) by combining CTC counts, miR-
100 expression in exosomes, and the fraction of cfDNA
KRAS mutant alleles, which have all been reported to be
overexpressed in patients with KRAS mutation.5,6 Clus-
tering analysis revealed that the group which had the
lowest expression for all three biomarkers (K1) showed
significantly lower tissue KRAS mutant allele fraction
(∼5.5%) than the other two groups (∼16.9%) (Figures 4P,
4Q, and S12–S15). Furthermore, PCA demonstrated that
MMLBKRAS exhibited a strong correlation with tissue
KRASmutation status anddetected themutationwithhigh
accuracy (Figures 4R–4U and S16).
OurMMLB analysis demonstrated that the utilization of

machine learning algorithms has great advantages, as our
system was shown to have greater diagnostic/prognostic
values than simply adding ormultiplying individual tumor
biomarkers (Table S5). It should also be noted that the
MMLB analysis is not only limited to our bead-based sys-
tems but is also applicable to other liquid biopsy assays. In
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F IGURE 2 The diagnostic capability of the new bead-based system for (A) CTCs, (B) exosomes, and (C) cfDNA tested using the human
colorectal cancer cell line, SW480 cells. (D-F) Target specificity of the bead-based system, validated by comparing CTCs, exosomes, and
cfDNA captured on each type of functionalized beads to those captured on bare alginate beads. Note that the capture of all three biomarkers
was not prominent on the bare alginate beads, implying that the alginate itself does not contribute to the capture of tumor biomarkers. (G)
Number of CTCs, (H) amount of exosome NA, and (I) concentration of plasma cfDNA quantified from a cohort consisting of 72 patients with
malignant tumors, 14 patients with benign tumors, and 14 healthy individuals. For exosomes and cfDNA, the bead-based system was
compared with commercially available kits, ExoQuick kit, and Qiagen mini kit, respectively. (J-L) ROC curves demonstrating the diagnostic
capability of the new bead-based system for distinguishing the patients with malignant tumors from healthy individuals, patients with benign
tumors, and overall non-cancer cohorts (healthy individuals + patients with benign tumors)

future studies, improvements will be validated in a larger
patient cohort with various tumor types using highly sen-
sitive liquid biopsy assays that our group has developed
previously.7–10
In conclusion, we have demonstrated that a machine

learning-based approach that integrates CTC, exo-
some, and cfDNA liquid biopsy measurements into a
single-score MMLB system was more predictive than
each marker alone. This approach may overcome the

limitations of existing liquid biopsies with limited
sensitivity and specificity. MMLB analysis demon-
strated significantly improved accuracy in diagnosing
malignancies, determining the pathological status of
patients, predicting survival outcomes, and detecting
gene mutations. These findings suggest that our approach
markedly enhances liquid biopsy assays to ultimately
achieve personalized medicine and improve patient
outcomes.
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F IGURE 3 Machine learning-based clustering of the three tumor biomarkers (CTCs, exosomes, and cfDNA) to establish MMLBScore and
validate its diagnostic potential: (A) A 3D scatter plot demonstrating CTC count, exosome NA amount, and plasma cfDNA level of each
patient depending on the status (malignant, benign, and healthy) of the cohorts. (B) A k-means clustering of the cohorts based on the
expression levels of the three tumor biomarkers. A total of 41, 18, 20, 8, and 13 samples were designated to each cluster, denoted as A1, A2, A3,
A4, and A5, respectively. (C-E) CTC count, exosome NA amount, and plasma cfDNA level for each cluster. (F) PCA applied to reduce the
complexity of the 3D plot (CTCs, exosomes, and cfDNA) into the arbitrary 2D plot, with the x- and y-axes consisted of two best linear
approximations for stratifying the clusters. The x-axis in the 2D scatterplot was determined as MMLBScore, which minimized the
mean-squared reconstruction error of the clusters and demonstrated a strong correlation with the status of the cohorts. (G and H) MMLBScore
depending on the status of the cohorts. (I and J) The ROC curve and a heatmap of AUC-ROC values demonstrating the enhanced diagnostic
capability of MMLBScore compared to any of the single tumor biomarkers used in this study. (K) A heatmap showing expression levels of the
three biomarkers compared to MMLBScore for each cohort

ACKNOWLEDGMENT
This study was partially supported by National Sci-
ence Foundation (NSF) under grant #DMR-1808251.
The authors also acknowledge the partial support from
NIAMS/NIH under grant #1R01AR069541, NIBIB/NIH
under grant #1R21EB022374, the Wisconsin Head & Neck
Cancer SPORE Grant (P50-DE026787), The Falk Medi-
cal Research Trust – Catalyst Awards Program, Office of
the Vice Chancellor for Research and Graduate Educa-
tion State Economic Engagement andDevelopment (OVC-
GRE SEED) Program, and ChungnamNational University
Sejong Hospital Research Fund 2021.

AUTHOR CONTRIBUTIONS

Seungpyo Hong, Jiyoon Bu, and Tae Hee Lee designed
the concept. Tae Hee Lee and Sung Hee Hyun conducted
experiments. Jiyoon Bu and Tae Hee Lee performed
the statistical analysis. Piper A. Rawding, Michael J.
Poellmann, Rachel S. Hong, and Woo-Jin Jeong reviewed
the analysis. Jiyoon Bu, Seungpyo Hong, Piper A.
Rawding, and Rachel S. Hong wrote the manuscript.
Tae Hee Lee, Piper A. Rawding, Woo-Jin Jeong,
Michael J. Poellmann, and Sung Hee Hyun revised the
manuscript.



LETTER TO EDITOR 5 of 6

F IGURE 4 MMLB analysis for determining the pathological features of a tumor, estimating the survival outcomes, and detecting KRAS
mutation: (A) A heatmap representing MMLBCancer for each patient, along with their TNM stage, tumor biomarker expressions, and serum
antigen expressions. (B) MMLBCancer for each patient depending on their T stage. (C-E) ROC curves demonstrating the diagnostic capability
of MMLBCancer (black), CTCs (red), exosomes (blue), and cfDNA (green) for differentiating advanced T stage patients. (F) A heatmap of
AUC-ROC values demonstrating the capability of MMLBCancer for differentiating patients depending on the pathological features of the
tumor, including its size (T stage), the existence of nodal metastasis (N stage), the prevalence of distant metastasis (M stage), and LVI status.
(G-N) Kaplan–Meier survival analysis for (G-J) DFS and (K-N) OS between the patients with high (dark) and low (bright) MMLBCancer, CTC
counts, exosome NA level, and cfDNA expressions. The median value for each biomarker (or score) was determined as a threshold for
dividing the high versus low groups. (O) A heatmap of HR values demonstrating the prognostic capability of MMLBCancer was compared with
the individual tumor biomarkers and serum antigens. (P-U) The clinical capability of MMLB analysis to determine the tissue KRASmutation.
(P) A k-means clustering of patients based on CTC counts, miR-100 expression in exosomes, and the KRASMAF in cfDNA. The size of the
sphere is proportional to the fraction of KRASmutant allele found in tissue. (Q) The KRASMAF in tissue for each cluster. (R-U) 2D
scatterplots representing a correlation with the tissue KRASMAF for MMLBKRAS and the single tumor biomarkers
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