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Abstract

The use of single‐cell RNA sequencing (scRNA‐seq) in microglial research is

increasing rapidly. The basic workflow of this approach consists of isolating

single cells, followed by sequencing. scRNA‐seq is capable of examining mi-

croglial heterogeneity on a cellular level. However, the results gained from

applying this technique suffer from discrepancies due to differences between

applied methods characteristics such as the number of cells sequenced and the

depth of sequencing. This review aims to shed more light on the recent de-

velopments that happened in this field and how they are related to the

methods used. To do that, we track the progress and limitations of various

scRNA‐seq methods currently available. The review then summarizes the

current knowledge gained using scRNA‐seq in the field of microglia, including

novel subpopulations associated with function and development under

homeostasis as well during several pathological conditions such as Alzheimer,

lipopolysaccharide response, and HIV in relation to the methods employed.

Our review points out that despite major developments found using this

technique, current scRNA‐seq methods suffer from high cost, low yields, and

nonstandardization of generated data. Additional development of scRNA‐seq
methods will raise our awareness of microglia's heterogeneity and plasticity

under healthy and pathological conditions.
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1 | INTRODUCTION

1.1 | Role of single‐cell RNA sequencing
(scRNA‐seq) deciphering the role of
microglia

scRNA‐seq have shed more light on microglial interac-
tions on the level of individual cells.1 The workflow for
this approach compromises the isolation of single cells,
followed by sequencing (Figure 1).2 This simple yet in-
novative technology has revolutionized the field of mi-
croglial neuroimmunology. Applying scRNA‐seq has
unraveled several unique cell types in the brain,
encompassing adaptive, innate immune cells as well as
neurons.3 It was also used to reveal unique subpopula-
tions such as proliferative‐region‐associated microglia

(PAM), among others, that could be involved in disease
prognosis.4‐8 The main objectives of this technique are to
investigate cellular distribution in the brain9 as well as to
track cellular development.10,11 The future of this meth-
od is promising, with more innovation expected to re-
duce the cost and reveal complex gene regulatory
interactions.12 In this review, we summarize some of the
advancements in microglial immunology made through
scRNA‐seq. The review is divided into three sections.
Section 1.1 will briefly summarize the main building
blocks of the scRNA‐seq (i.e., single‐cell isolation and
computational and analysis). Section 1.2 will cover some
of the critical findings that were achieved by scRNA‐seq,
highlighting opportunities for further research. Finally,
in Section 1.3, we will discuss alternative approaches for
scRNA‐seq.

FIGURE 1 Experimental and
computational workflow for single‐cell RNA
sequencing. Different techniques could be
used for isolating single cells. This stage
includes isolating single cells and unique
barcoding of transcriptomes
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1.1.1 | Single‐cell isolation techniques

Various methods could be used to achieve a single cell
suspension. Manual picking continues to be utilized to
isolate single cells for RNA sequencing. This method has
been used to explore microglial presence in the cortex
area of the embryo.9,10 Typically, this technique is per-
formed after collagenase and papain digestion of the
central nervous system (CNS). Single cells are then ran-
domly picked into individual tubes. The main advantages
of this method are accuracy and a low number of
doublets. However, it is time and power‐consuming.
Fluorescence‐activated cell sorting (FACS) augmented
with single‐cell RNA‐seq has been extensively used in
microglial studies. Using this combined approach,
researchers were able to identify novel microglial sub-
populations5,8 and studied the effect of pathogens.13,14

Following tissue homogenization, the cells of interest are
selected and sorted using FACS into 384‐well plates.14

The main disadvantage of this method is that it is framed
by already known assumptions about cell clustering.
Automatic cell capture and isolation started with Flui-
digm integrated fluidic circuit. C1 system vigilantly iso-
lates single cells into separate reaction chambers.
Fluidigm C1 workflow could be employed in a broad
range of applications, including whole transcriptome
analysis, targeted gene expression profiling, and gene
regulation.15 However, the maximal capacity of the sys-
tem is limited. Newer versions of this system can analyze
up to 800 cells/run, which is still lower than other ap-
proaches described in Table 1 and Figure 2. Droplets
based techniques have been used to explore the neu-
roimmune response to pathogens13 as well as neuroin-
flammation16 on a cellular level. Typically, droplet‐based
techniques use a microfluidic device, where each cell is
lysed and barcoded separately followed by sequencing
(e.g., using Illumina HiSeq‐4000 sequencer). These
techniques include Dropseq,17 10x,18 SeqWell,19 and
inDrop.20 Dropseq was employed to investigate the effect
of lipopolysaccharide (LPS) in microglia, revealing two
distinctive subpopulations that are different in their
major histocompatibility and complement profiles.13

SeqWell was utilized to examine the effect of HIV on the
cerebrospinal fluid (CSF),7 detecting several subpopula-
tions of microglia.7 Also, 10x in conjunction with FACS
was applied to investigate microglial heterogeneity in the
aging brain, and revealed nine different novel sub-
populations. It is important to note that these droplets
techniques differ considerably in their capacity. For ex-
ample, Drop‐seq can process over 10,000 cells. However,
it suffers from low cell capturing efficiency with a cost of
$0.2 per cell.21 Conversely, 10x can achieve higher call
capturing efficiency but with a higher cost of $1.2 per T
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cell22 (Table 1 and Figure 2). Split‐pool ligation‐based
transcriptome sequencing (SPLiT‐seq) has excellent po-
tential to further explain immune interactions with the
CNS (Figure 3). This approach produces one of the
highest yields in scRNA‐seq.23 The cost for library pre-
paration using this technique is also one of the lowest

($0.01/cell) (Table 1). Using this technique Rosenberg
et al.23 produced 150,000 single‐nucleus transcriptomes
from young mice CNS clustered into various and distinct
populations in both the brain and the spinal cord. The
reason behind the above‐mentioned high yield is that
instead of using physical partitioning systems, the

FIGURE 2 Comparison of different attributes of single‐cell RNA sequencing techniques. (A) The maximum number of cells
processed by each cell isolating technique. SPLiT‐seq can process up till tens of thousands of cells per run, whereas Fluidigm can process
only 800 cells per run. Using fluorescence‐activated cell sorting (FACS) implies having a presumption on the subpopulation. Dropseq,
inDrop and 10x are all drop‐based systems, however, the number of cells acquired by 10x is larger than the two other methods. This is also
reflected in the price of opertaion

FIGURE 3 Workflow of SPLiT‐seq single‐cell approach. After disassociating the cells, they pass through four stages of distribution and
pooling using a unique well identifier in 96‐well plates. In the first stage, reverse transcription with well‐specific primers takes place.
Second, the ligation of the unique well barcode is performed. Third, ligation of a different unique molecular identifier per well is done.
Finally, ligation of sequencing barcodes is completed
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workflow treats cells as individual compartments. Split‐
seq utilizes the mathematical principle of combination to
generate a large number of unique barcodes (Figure 3).
This method is based on using multiple stages of
spreading the cells in well plates and pooling them again.
In the first stage, cells are spread among various wells of
a 96‐well plate, where each cell is tagged with a primer
specific to its respective well, and reverse transcription is
performed and the cells are pooled together. Second, a
redistribution step takes place, where a well distinctive
barcode is appended to each cDNA. In the third step, a
unique molecular identifier is ligated in a new 96‐well
plate. This step is repeated once more into another
96‐well plate. A user might opt for a 384‐well plate to
increase the yield further. One of the downsides of this
technique is the probability of failing to identify genes
with low expression.23 However, the authors did not
focus on the immune cells in the brain and did not
produce a complete analysis of reported microglia.

1.1.2 | Data analysis workflow

Microglial scRNA‐seq data analysis normally utilizes the
following workflow: (a) Quality control, (b) Data nor-
malization and scaling, (c) dimension reduction and vi-
sualization, and (d) interactome analysis. Quality control
(QC) is designed to choose the datasets which are valid
for further interpretation.23,24 One of QC's parameters is
the number of the aligned reads per cell, where cells with
an exceptionally low or high number of reads are omit-
ted. In the context of neuroimmunology, it is critical to
consider the biological variation between cell types in-
vestigated (e.g., microglia vs. T cells, activated vs. naive,

migrant vs. resident) as this might influence the final
data accuracy. Large numbers of mitochondrial tran-
scription are commonly used as indicators of cell stress,
and therefore, cells with elevated mitochondrial gene
expression are often not included in the analysis. After
performing the quality control check, the normalization
phase takes place, which is important to eliminate batch
effects. Due to the scarcity of data and the possibility of
inability to capture the messenger RNA (mRNA), scaling
of sequencing data is performed to equalize the expres-
sion levels of selected host genes in all cells. The third
step is size reduction and visualization. PCA is com-
monly used to estimate cell relativity based on differ-
ential gene expression.21 PCA can reduce the dimensions
of the data to a limited number of components, where
each component represents a trend in the variation of
gene expressions among the cells. This technique allows
the user to cluster the cells according to variation among
the cells. However, in the case of large data, PCA suffer
from overcrowding issues in the case of scRNA‐seq.
To tackle this problem other techniques such as the
t‐distributed stochastic neighbor embedding (t‐SNE) and
Uniform Manifold Approximation and Projection
(UMAP).22 t‐SNE is efficient in the representation of
microglial heterogeneous subpopulations as clusters.
However, t‐SNE is not able to deduce intercluster re-
lationships. This technique is also time‐consuming.
UMAP22 is a newly published technology aimed at pre-
serving local and global data structures with a short
runtime (Figure 4).25,26 One of the critical revelations
that scRNA‐seq can uncover about microglia cells status
is their trajectory in health and disease. Trajectory in-
ference is predominantly used to investigate cellular
progression through dynamic processes. The main

FIGURE 4 Comparison between the t‐distributed stochastic neighbor embedding (t‐SNE) and Uniform Manifold Approximation and
Projection (UMAP) dimensional reduction techniques. The PBMC3K data set was used to compare the abilities of t‐SNE and UMAP.
The PBMC (peripheral blood mononuclear cells) data set was produced utilizing a 10x workflow that employed PBMC isolated from a
healthy donor and sequenced using NextSeq 500. It should be noted that t‐SNE and UMAP produce similar results in smaller datasets.
However, the similarity is decreased in larger datasets
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hypothesis behind this technique is that cells during a
certain pathological or developmental process are tran-
sitioning from one state to another. The input to this
analysis is the PCA, along with the gene list of the top
differentially expressed genes. Normally, the data di-
mensions are first reduced further. The result is then
used to build a pseudo‐time graph. This time‐series graph
assumes that cells that cluster together, based on their
genes expression are in the same state and that the cells
that cluster nearest to them are their trajectory. On the
basis of this information, the graph can take several
shapes such as linear, tree, and circular. Several R
packages could be used to build time‐series graphs such
as Moncole,27 Slingshot,28 and TSCAN.29 One of the
main limitations of this process is the need for prior
knowledge about the expression of the genes, to increase
the biological relevance of the data. One way to improve
this limitation is to build time‐series graphs using in-
tegrated scRNA‐seq samples isolated from the same
subject at different time points as this does not require
prior knowledge of the biological status of the samples.
The final step of the analysis would be to investigate the
interactome. One way to achieve this is to implement
GOAE (Gene Ontology Autoencoder) or GONN (Gene
Ontology Neural Network), where genetic interaction
networks are created using neural networks.30 These two
methods can be combined with GO further to understand
the biological meaning behind the formed networks.

1.1.3 | Out of the box pipelines

Multiple box outlines can be used to analyze data gen-
erated by single‐cell RNA‐seq.31 scPipe summarizes data
quality in a report that could be saved in HTML format.31

It also produces the count matrix used in downstream
analysis, including normalization, visualization, and
statistical testing.31 Different R packages such as Scater
and Seurat32 could be used to analyze scRNA‐seq data.
Seurat allows users to investigate microglial hetero-
geneity generated using the 10x approach utilizing spe-
cific functions that take three inputs: Expression matrix,
barcodes, and genes (features). The output is a PCA in
the form of a t‐SNE plot.33 The user can also use custo-
mized markers to identify different microglial clusters
based on their expression. One of the interesting ques-
tions that face the field of scRNA‐seq is identifying cel-
lular types from the resulting t‐SNE clusters. The general
assumption that if a certain cellular maker (e.g., AQP4, a
known marker of astrocytes) is highly expressed in a
certain cluster, it is assumed that this cluster represents
that specific cell type (e.g., astrocytes). This assumption,
although logic, neglects the effect of up and

downregulation in pathological conditions. One of the
downsides of using Seurat is the extensive computer
power needed to analyze large datasets. Moana is a
hierarchical machine‐learning framework that can clas-
sify data from different datasets.34 For example, this
framework could be used with larger datasets to con-
struct tissue‐specific cell type atlases. With the produc-
tion of large amounts of scRNA‐seq data, the integration
of different cell groups arising from different studies is an
important task. Seurat 3.0 allows data integration.33 It is
worth noting that the Seurat R library contains methods
for merging datasets to a common context and transfer-
ring information from the query data set context. An-
other alternative is scQuery, which is a web server
integration tool.35 The webserver takes in the RPKM
matrix as an input, and the output is the t‐SNE plot.

The field of bioinformatics techniques for the analysis
of scRNA‐seq data is quickly evolving. We would like to
refer the reader to more focused reviews such as.21,24,36,37

The analysis of the available scRNA‐seq methods shows
that the right choice of the method depends on several
factors, including resources available, the required
number of cells, and the availability of bioinformatics
expertise (Figure 5).

The following section of the review will focus on the
unresolved questions of the microglia role in the immune
system. Then we will focus on the efforts that have been
made to investigate these issues using single‐cell RNA
sequencing and will emphasize the unanswered ques-
tions regarding the role of the peripheral immune cells in
the CNS. Finally, we will discuss the results obtained by
various research groups studying these cells using
scRNA‐seq and will explore available alternatives
techniques.

1.2 | Microglial findings based on
scRNA‐seq and open questions

1.2.1 | Investigation of microglia
location and development within the
embryonic brain using scRNA‐seq
approaches

The phenotypic and functional characterization of
microglia remains challenging.38 Cell lineage, sub-
populations, and frequency of microglia are still a matter
for debate39 Microglia develop from erythro‐myeloid
progenitor cells located in the yolk sac in a similar
fashion to tissue‐resident macrophages. Embryonic
microglia develop through the interactions of various
transcription factors including RUNX, CEBP, and IRF,
then under the influence of IL34 and CSF1R, microglia
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can reach maturation.40 In the past, microglia were
classified into the phenotypes M1 (proinflammatory) and
M2 (anti‐inflammatory). However, both M1 and M2 have
variable molecular signatures and may include various
subpopulations.41 For example, transforming growth
factor‐b (TGFb) seems to be critical for microglia func-
tion.42 Paradoxically, deleting TGFb seemed to result in
directing microglia into an inflammatory macrophage
phenotype.43 Moreover, it was found that a microglial
signature gene “Sall1” maintained microglial identity in
vivo.43 A recently found microglial subpopulation is
called disease‐associated microglia (DAM) phenotype in
neurodegenerative disease, chronic neuroinflammatory
states, and, in addition, aging.44 However, whether
these various clusters of microglial cells constitute
distinct subpopulations is still not clear. If microglia
subpopulations can be clustered based on their TGFb
receptor expression is also an exciting question.

Single‐cell sequencing can answer critical questions
about microglia origin during human embryonic
development.45–47 It could also reveal whether microglial
distribution differs in frequency between brain
compartments4 and is exceptionally suitable to resolve
the open question of investigating microglia subpopula-
tions' heterogeneity. Microglia development was found to
be unsynchronized in different brain regions.9 Healthy
humans' embryonic cerebral cortex region was

investigated using manual picking RNA single‐seq.9 The
results identified 4000 single cells from various brain
regions during mid‐gestation in embryos.9 There was a
significant difference in microglia numbers and shapes
between different brain regions. For example, the me-
dulla had a large number of microglia that presented an
amoeboid phenotype. Conversely, the IG regions had a
lower number of microglia, and they appeared to have a
ramified form. The study also revealed three microglial
CD68 + subclusters (Table 2).9 However, no functional
difference or specific makers were shown to differentiate
between them. A similar study used manual picking to
examine microglia development in the prefrontal cortex
(PFC) in embryos.10 This study demonstrated that mi-
croglia progenitors develop from the peripheral meso-
dermal tissue. They also showed that microglia appeared
early in PFC and were residents during the PFC devel-
opment. The early appearance and stable population of
microglia in the developing PFC, especially in the inter-
mediate zone, support a model in which microglia reg-
ulates neuronal apoptosis, neurogenesis, and synaptic
pruning in development (Table 2).9 It was also possible to
reveal that microglia migrate from the outside ven-
tricular zone during the 8 weeks to the subventricular
zone and the intermediate zone during the 12 and
16 weeks, respectively. Finally, microglia infiltrate the
ventricular zone and the cortical plate around the 19th

FIGURE 5 How to choose the best scRNA‐seq to suit your project needs. The main issue that defines which workflow to choose is the
required number of cells. A higher than 1000 cells requirement can be achieved using Droplets methods or through Split‐seq. If the
laboratory have access to bioinformatics expertise, it may be better to build a custom bioinformatics workflow using Seurat
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and 23rd weeks, respectively. Another study employed
FACS followed by Smart‐seq2 to investigate microglia
development during three main stages: (i) Embryonic (ii)
postnatal, and (iii) adult mice. Remarkably, the authors
found that microglia heterogeneity is inversely propor-
tional to age, with older mice having less heterogeneous
microglia populations. The reason behind that is unclear.
Would that mean that humans lose microglia hetero-
geneity as they age? Would these subpopulations play a
role in defending against neuroinflammation? One of
these populations that could be lost to age is PAM and is
mainly found in mice developing white matter. However,
if this subpopulation exists in humans is still unknown.
There is a resemblance between PAM and DAM. Would
that mean that microglia reprogramming takes place
based on the environment, or do both populations exist
side by side in older humans? Finding out the difference
between these populations could prove critical in fighting
neuroinflammation diseases where DAM's role is not
sufficient.4

1.2.2 | scRNA‐seq reveals more about
microglia role in aging

The role of microglia in aging was investigated using
scRNA‐seq in several reports.48 One report examined the
difference in microglial phenotype using a time point
approach, including during development and in old mice.
The study also investigated the change in the microglia
population in the case of brain injury (Table 2). After
purifying the microglia using FACS, cells were sequenced
utilizing Illumina NextSeq 500 sequencers with a depth of
500,000 reads. The authors were able to identify various
distinct transcriptionally different microglial populations.
One of these populations selectively expressed the che-
mokine CCL4.48 The numbers of this unique population
followed a positive trajectory, where it increased during
aging and injury. It seems that this population can have a
pathogenic effect as it expressed several proinflammatory
chemokines, including CCL3, 7, 9, and 12. Besides, this
population was capable of producing proinflammatory
cytokines such as IL1b as well as TNF‐α, suggesting an
ability to recruit other proinflammatory immune cells. In
another report, Artegiani et al.49 investigated the micro-
glial phenotype in the hippocampal dentate gyrus during
aging through sorting cells using FACS and then applying
a variation of Cel‐seq2. Their data revealed that in that
particular area known for its function in pattern recogni-
tion, learning, and memory, a population that is marked
by upregulated expression of Csf1r, Cx3cr1 as well as
Tyrobp exists. This study suggests that in the aging dentate
gyrus, microglia could have an M2‐like phenotype.

However, the authors did not present any behavioral
studies that pinpoint this population's role in pattern re-
cognition and learning. It will be interesting to perform a
functional analysis to investigate how these subpopula-
tions affect memory processing during aging. Another
important aspect that is still poorly understood is the
difference in population frequency among different brain
regions during aging. These questions can be readily an-
swered using scRNA‐seq.

1.2.3 | scRNA‐seq reveals more about
microglia role in Alzheimer's disease (AD)

Microglial heterogeneity in AD was recently investigated.8

In that report, the authors employed scRNA‐seq using
FACS, followed by MARS‐seq in Tg‐AD mice. This study
identified a unique microglial subpopulation and called it
“disease‐associated microglia” (DAM). What is special
about DAM is their capability of taking up Aβ particles.
The authors proposed that DAM function through two
phases: (i) Initiation of activation and (ii) activation of the
TREM2 pathway. First, to start the activation process,
MafB, which plays a regulatory function in lineage spe-
cificity, is downregulated along with other microglial
checkpoints. Second, a TREM2‐dependent pathway is ac-
tivated where phagocytic, and lipid metabolism activity is
enhanced. The reason behind the inability of this unique
microglia subpopulation to stop AD progression is still
unknown. Interestingly, further analysis also identified
DAM in amyotrophic lateral sclerosis (ALS) models
(Table 2).8 Another study that also employed scRNA‐
sequencing to study microglia in AD was performed by
Tay et al.5 This study utilized FACS, followed by CEL‐Seq2
on Fluidigm chips to sequence the transcriptome of
1536 single cells. Their findings pointed toward a
neurodegeneration‐associated transcriptome similar to
DAM (Table 2).5 However, there was variation in several
genes, including FOS, Jund, KLf7, and Sgk1. KLF7 be-
longs to a family of regulators of transcription called,
Kruppel‐like factors. FOS and Jund is a component in the
AP‐1 pathway, also known to regulate the transcription of
genes. Sgk1 is also a Serine/threonine‐protein kinase that
is known to play a role in cell proliferation. These ob-
servations indicate that there could be a difference be-
tween DAM and the microglial population identified by
Tay et al.5 It is not yet clear why these populations are
different if they are fighting the same disease. Other un-
resolved questions about the nature of DAM include their
point of appearance with respect to disease progression.
Also, their origin is also not known. These reports indicate
that there are various unsolved questions regarding
microglia in AD.50
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1.2.4 | LPS effect on microglia

scRNA‐seq revealed a unique microglial phenotype that
appears under LPS injection.13 LPS is a known endotoxin
that induces an acute response in the body.51 Thus it is
safe to assume that there will be a shift of microglia
transcriptomic profile into proinflammation in response
to LPS injection. However, the exact phenotype of this
population was not yet known.13 Using FACS, followed
by Dropseq, allowed the authors to discover that proin-
flammatory genes such as IL1b, Tnf, and Ccl2 were up-
regulated in LPS mice compared to steady‐state.
Conversely, Mef2C, which is known to regulate the mi-
croglial inflammatory response, was downregulated,
along with CD206 (Mrc1), which supports a neuropro-
tective phenotype.52,53 Intriguingly, the main difference
between this LPS specific microglia and DAM is the
downregulation of phagocytosis genes (Tyrobp and
Trem2). It has been widely thought that phagocytosis is
correlated with anti‐inflammatory response.54 However,
it has been shown that phagocytosis of myelin increased
proinflammatory signals. Thus, further research is still
needed to clarify this point.

1.2.5 | Investigating microglia
heterogenity in CSF during HIV

Farhadian et al.7 studied the subpopulations controlling the
immune response associated with HIV infection (Table 2).
Here, the authors used scRNA‐seq employing SeqWell to
phenotype the immune cells in the CSF from blood samples
of HIV‐infected individuals with virus‐induced suppression.
The results revealed that 5% of the cells investigated re-
semble DAM and exhibit ist gene expression characteristics.
As expected, the DAM have a high expression of TREM2
and APOE, AXL, and TREM2. Compared with other mye-
loid subsets identified, this subpopulation expressed higher
levels of CTSB, APOC1, and MSR1 (CD204), which are also
known to play a major role in neurodegeneration diseases.7

DAM activation during HIV infection is likely to be caused
by the ability of HIV to cause neurodegeneration. How
DAM help fight HIV is an intriguing question that still
needed to be answered.

1.2.6 | Can scRNA‐seq lighten up the
road to better understand the interaction
between peripheral cell‐mediated
immunity and microglia?

Exploiting the scRNA‐seq ability to understand the in-
teraction between adaptive immunity cells and microglia

is almost nonexistent. Immune cells' ability to access the
brain without requiring local trauma was previously
demonstrated.55,56 T lymphocytes were shown to be
present in normal human cerebrospinal fluid.57 How-
ever, the interaction between these migrating cells and
the CNS, including (i) their point of entry, functional
analysis for (ii) supporting neurogenesis, and (iii) mem-
ory formation is far from complete. Surprisingly, the lo-
cation of peripheral adaptive immune cells to the brain is
still controversial. Three locations have been proposed (i)
the arteries of the choroid plexus, (ii) the perivascular
space meningeal blood vessels, and (iii) postcapillary
venules.58 A simple scRNAseq experiment in the ex-
perimental autoimmune encephalomyelitis (EAE) mice
might solve this dilemma. During brain development, the
peripheral immune system performs a vital role in neu-
rogenesis, gliogenesis, and synapse formation.59 It was
indicated that B1a cells were abundant in the neonatal
mouse brain.59 Depletion of B1a cells during brain de-
velopment resulted in reducing oligodendrocyte‐
precursor cells (OPCs) numbers.55 By neutralizing the
soluble receptor Fcα/μR secreted by B1a cells, OPC
proliferation was inhibited, and the proportion of mye-
linated axons in neonatal mouse brains was reduced.55 It
would be crucial to investigate the difference in B1a
distribution between the different brain regions using
scRNA‐seq in connection to microglial distribution.
scRNA‐seq can also detect the change of the trajectory of
the B1a population during healthy aging. It could also
uncover new B‐cell subpopulations that could be inter-
acting with microglia during neurogenesis development.
Moreover, there is evidence that adaptive immune cells
could be implicated in learning and memory.60,61 Mice
deficient in Rag1 and Rag2 (which are responsible for the
diversity of T and B cells) display impairment in various
cognitive tests and suffer from distorted neurogenesis.61

T lymphocytes were also shown to be essential for the
maintenance of hippocampal neurogenesis.62 Ad-
ditionally, it was reported that CNS‐specific T cells could
influence cell regeneration and plasticity in the hippo-
campus. Activated Th2‐like cells infiltrate the meninges
during learning tasks and produce anti‐inflammatory,
neuroprotective cytokines (e.g., IL‐4 and IL‐10), and
hence enhance cognitive functions. Severe combined
immunodeficiency (SCID) mice manifest cognitive defi-
cits and behavioral abnormalities. Interestingly, impaired
cognition in SCID could be treatable by T cell restora-
tion.63 An important question arises about the interac-
tion between microglia and adaptive immune cells under
homeostasis. Can specific microglia subpopulations
contribute to the selective infiltration of specific immune
cells to the brain under homeostasis? Single‐cell analysis
can reveal more about the relationship between

834 | KUBICK ET AL.



microglia and the controversial adaptive immune cells'
role under neuroinflammation. The depletion of Tregs
increases the speed of decline of cognitive abilities in
APPPS1 mice. Besides, IL‐2 treatment, which is known to
increase Treg proliferation, selectively increased the
numbers of plaque‐associated microglia and improved
cognitive functions in APPPS1 mice. It is unknown if this
interaction was direct through the upregulation of IL2R
receptors on the microglial surface or through another
indirect mechanism. Adoptive transfer of Tregs in 3xTg‐
AD improves the prognosis of Alzheimer's in 3xTg‐AD
mice. This was mirrored in improvement in cognitive
abilities and reduction of the Aβ amyloid. Paradoxically
depleting Treg in another model of Alzheimer known as
5xFAD lead to converse results, manifested by improving
cognitive abilities. Why is there a difference in Treg
function between the two Alzheimer models? Treg can
have various subpopulations such as RORγt Treg and
IL17+ FOXP3+ Tregs that can differ considerably from
classic Treg. Could the difference in the effect lie in the
heterogeneity of Tregs infiltrating the brain between the
two models? Could it be that microglia are influencing
one group positively, whereas negatively affecting the
others? Further scRNA‐seq can enhance our under-
standings of these intriguing questions? Proinflammatory
CD4+ T cells such as Th1 and Th17 were shown to re-
lease proinflammatory cytokines that can increase in-
flammation during AD. However, little is known about
direct interactions between Th17 and resident microglia.
Even more, increased numbers of CD8+ T cells was re-
ported in the brain AD patients. However, how do CD8+
T cells contribute to AD is not fully understood, and if
CD8 infiltration to the brain during AD is affected by
microglia is also not known. scRNA‐seq might be able to
answer many of these intriguing questions. One attempt
to employ scRNA‐seq to study EAE mouth models was
described by Gaublomme et al.64 The authors applied a
scRNA‐seq approach using Fluidigm C1 with 976 Th17
cells1 to study immune cells function during EAE. The
results predicted that Th17 cells have a spectrum of
subpopulations, with two extremes, the first having a
regulatory function, while the other extreme sub-
population can induce pathological effects.60 The study
revealed new regulators associated with these opposing
states such as Gpr65, Plzp, Toso, and Cd5l.64

1.2.7 | Limitations of scRNA‐seq
experiments

Irrespective of their high innovation, single‐cell sequen-
cing techniques still suffer significant flaws. For instance,
it is challenging to pinpoint a sequence depth that is

appropriate for any given experiment. Overall, most
scRNA‐seq techniques only produce a few thousands of
genes compared to multiple thousands of genes provided
by microarray experiments. Another flaw is the need for
standardization of the identified clusters. For example,
different microglia scRNA‐seq studies identified several
distinct subclusters,7,5,8 which may have the same ex-
pression patterns. Computational approaches that could
compare and build interstudies correlations to identify
the same subpopulations across the same type of cells are
urgently needed. However, the variation in the number
of cells between experiments could constitute a challenge
to building such correlations.

1.3 | Available alternatives

There are several alternatives for scRNA‐seq. These al-
ternatives could also be used to investigate microglial
interactions using the single‐cell approach. These meth-
ods include single‐cell nuclei isolation, single‐cell mass
spectrometry (scMass‐spec), single‐cell DNA sequencing,
and single‐cell ATAC‐seq (scATAC‐seq).

1.3.1 | Single‐cell nuclei isolation

Single‐cell nuclei isolation is generally compatible with both
frozen tissue and droplet techniques. Hence, it is suitable for
processing brain‐bank‐derived tissues. Isolating single nuclei
is based on targeting nuclear mRNA. Investigating the dif-
ference in transcriptomic profile between cellular and nu-
clear mRNA revealed a high degree of similarity between the
two entities. Also, there is high concurrency between bulk
mRNA genes enriched in the nucleus and that of single
nuclei RNA. This technique allowed researchers to sequence
more than 15,000 nuclei in an investigation that targeted the
spinal cord in mice and particularly in the lumbar area. The
research revealed the existence of microglia in that region.
Interestingly, the research did not investigate further mi-
croglial subpopulations. Furthermore, the nature of the mi-
croglia found, its phenotype, and resemblance with DAM or
LPSmicroglia have not been investigated. Further research is
required to address these captivating inquiries.

1.3.2 | Single‐cell Mass spec

A powerful alternative to scRNA‐seq is the sc‐Mass spec.
This technique allows exploring microglial heterogeneity on
the protein level. In conjunction with FACS, this method
was used to identify novel populations across multiple neu-
rodegenerative diseases models, including Alzheimer's, EAE,
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and normal aging. This approach uses combinations of pal-
ladium isotopes to barcode unique cells. This technique's
results were impressive, showing that there is a high degree
of heterogeneity of immune cells even under homeostasis.65

This study was also able to separate microglia from border
associated macrophages through the expression of CD38 and
MHC2. Importantly the authors showed that microglia ex-
perience a change of its transcriptomic profile according to
the pathological environment it is experiencing. Para-
doxically, this approach could not detect DAMs but detected
a distinct microglia subpopulation with upregulated levels of
CD14. The reason behind the inability of this method to
detect DAMs is still not clear. Interestingly they identified
the same microglial subpopulation in aging mice but not in
EAE, as EAEmicroglia has upregulation of MHC2 as well as
Sca‐1. Another major difference between the two disease
models that the entire microglial population became re-
activated during EAE in contrast with AD, where only a
subset of microglia showed a reactivation phenotype. This
interesting research opens the door to other questions, such
as why is there is a difference between different disease
models? Could that be because of microglia plasticity? Is
there a difference in the protein‐based description of het-
erogeneity and that of a transcriptome based? Can scRNA‐
seq and sc‐Mass spec be done jointly or mapped together
using the same mouse models?

1.3.3 | Single‐cell DNA sequencing

Single‐cell DNA sequencing is a promising single‐cell
approach that could help to understand the role of mi-
croglia in cancer. It has been shown that in glioma,
cancer cells enslave microglia to promote cancer growth
rather than fight it. Why certain cancer cells have this
ability while other cancer cells perhaps in the same tu-
mor lack it? Is it because of the heterogeneity of muta-
tions between cancer cells or the heterogeneity of
microglia fighting them? One way to tackle this question
is to use single‐cell DNA. Similar to scRNA‐seq, this
approach is based on barcoding genomic DNA from cells
using droplets techniques.66 The barcodes are then em-
ployed to differentiate between different sampled cells.
This method was shown to be successful in investigating
heterogeneity within acute myeloid leukemia tumor
populations.66 However, applying single‐cell DNA se-
quencing in microglia biology is still in its infancy.

1.3.4 | Single‐cell ATAC‐seq

scATAC‐seq is an integrated platform that consists of
two main parts: (i) ATAC‐seq, and (ii) microfluidics

platform.67 The ATAC‐seq is an assay that allows trans-
posases to access open chromatin and then sequencing it.
Transposes attaches to DNA in regions of open chro-
matin. The more open the chromatin, the more trans-
posase will attach and cut the DNA. One downfall of this
technique is the contamination of mitochondrial DNA. It
is important to use computational methods to discard
mitochondrial DNA contamination that could reach up
to 34% of the total sequenced DNA. The integration of
ATAC‐seq with a programmable microfluidics platform
(Fluidigm) allows performing ATAC‐seq using individual
cells. The main goal of scATAC‐seq is to determine if
there is a change in chromatin accessibility between
various cells or at different time points during disease
progression.

1.3.5 | CITE‐seq versus REAP‐seq

Integrating transcriptome and proteome profiles may
reveal hidden aspects of microglial interactions. Cur-
rently, two techniques, namely, CITE‐seq (cellular in-
dexing of transcriptomes and epitopes by sequencing),
and REAP‐seq (RNA expression and protein sequencing
assay) are capable of determining protein and tran-
scriptome levels in single cells. In68 the authors showed
that using CITE‐seq improved defining the degree of
heterogeneity among natural killer cells. Moreover,
REAP‐seq69 helped the researchers discover a new CD8
T‐cell population that is CD34, CD38, CD123, CD117,
CD13, CD33, and HLA‐DR positive. However, how it
differs from conventional CD8 cells is not yet known.
The two mentioned techniques employ a similar ap-
proach, where proteins are detected by using antibodies
conjugated to a DNA sequence. These antibodies‐derived
tags are encapsulated in droplets together with unique
cells and microbeads as in the case of conventional
droplets‐based scRNA‐seq. However, the two methods
differ in how the DNA barcode is conjugated to the an-
tibody. Antibodies used in CITE‐seq are conjugated to
streptavidin without being covalently bound to biotiny-
lated DNA barcodes. REAP‐seq, on the other side, de-
pends on covalent bonds between the antibody and
aminated DNA barcode. However, both techniques
have yet to be applied in the field of microglial
neuroimmunology.

2 | CONCLUSIONS

scRNA‐seq has revolutionized our appreciation of
microglial heterogeneity; however, further progress is
required. The most striking findings revealed using
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scRNA‐seq is that microglia in the CNS form a spectrum,
with distinctive subpopulations lying on the extreme. For
example, the DAM has an upregulated phagocytic ac-
tivity, and on the contrary, LPS‐specific microglia have
an attenuated phagocytic response.

Nevertheless, further experiments are needed to validate
the difference between these various subpopulations. The
instruments and methods employed to perform cell isolation,
barcoding, and sequencing need to be cost‐effective
(Table 1). SPLiT‐seq can produce billions of cells profiles in
a single experiment.23 However, sequencing these profiles
would cost more than one million dollars. Hence, a reduc-
tion in the cost of sequencing will help further push the
limits of scRNA‐seq. The other obstacle facing scRNA‐seq is
integrating the data produced. Applying R libraries such as
Seurat is intuitive and easy to handle; however, for larger
datasets, the resources needed to analyze could be unavail-
able, especially for smaller labs without cloud services access.
Advancement in handling large datasets on the sequencing
level costs and the computational resources cost will amplify
our knowledge of microglia heterogeneity and their inter-
action with other cell types. Captivating developments could
include integrating more than one sequencing method to
simultaneously measure several parameters (e.g., genome,
transcriptome, methylome. It could also highlight the change
of microglia population‐based on investigating microglia
markers evolution and the effect of drugs51,66,70). An inter-
esting topic also is the detection of different isoforms and
alternative splicing cases of microglial markers.71 The effect
of drugs on the Interaction between microglia and CD4+
T cells infiltrating the brain during neurodegenerative dis-
eases is another one.72 These developments could support
scRNA‐seq becoming a plausible alternative to classical cel-
lular clustering methods.
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