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Abstract

Decision-making ability in the frontal lobe (among other brain structures) relies on the assignment of value to states of the
animal and its environment. Then higher valued states can be pursued and lower (or negative) valued states avoided. The
same principle forms the basis for computational reinforcement learning controllers, which have been fruitfully applied
both as models of value estimation in the brain, and as artificial controllers in their own right. This work shows how state
desirability signals decoded from frontal lobe hemodynamics, as measured with near-infrared spectroscopy (NIRS), can be
applied as reinforcers to an adaptable artificial learning agent in order to guide its acquisition of skills. A set of experiments
carried out on an alert macaque demonstrate that both oxy- and deoxyhemoglobin concentrations in the frontal lobe show
differences in response to both primarily and secondarily desirable (versus undesirable) stimuli. This difference allows a NIRS
signal classifier to serve successfully as a reinforcer for an adaptive controller performing a virtual tool-retrieval task. The
agent’s adaptability allows its performance to exceed the limits of the NIRS classifier decoding accuracy. We also show that
decoding state desirabilities is more accurate when using relative concentrations of both oxyhemoglobin and
deoxyhemoglobin, rather than either species alone.
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Introduction

Motivation for the studies in this paper stems from the search

for novel approaches to brain-machine interface systems, but the

reward signals investigated have broader underpinnings in the

cognitive science of decision theory and value perception. Reward-

modulated neural activity is an important component of condi-

tioned behavior, motor planning, and plasticity, with ample

evidence of its influence on behavior and physiology. Signals

associated with reward conditions are observed in many decision

making and motor planning regions of the brain, interacting with

subsystems governing goal and action selection, trajectory

planning, and motivation. These reward signals also offer the

possibility of use as performance feedback to unsupervised

computational controllers [1]. Such a controller is much more

flexible in its ability to choose component actions that achieve

larger goals than one trained with a supervised learning algorithm.

Though this type of controller can reasonably be hypothesized to

exist in the primate brain, here we demonstrate its potential use in-

silico in a brain-machine interface paradigm. The objective of this

work is to find a desirability signal originating in the prefrontal

cortex that is recordable using near-infrared spectroscopy (NIRS),

a non-invasive method for measuring blood hemoglobin concen-

trations. We also wanted to establish the reliability of such a signal,

and prove that a reinforcement learning controller could use such

realistically noisy feedback to drive useful adaptation.

Prefrontal Cortex and Desirability Calculation
The prefrontal cortex has broad multimodal connections with

many cortical association areas, along with connections to limbic

cortex. It communicates with a number of important subcortical

structures, including amygdala (via uncinate fasciculus), hippo-

campal formation (via the cingulate and parahippocampal gyri),

and mediodorsal thalamus. These broad connections implicate the

prefrontal cortex in motivation and complex goal-directed

behavior, a hypothesis supported by lesion and functional studies

[2]. The prefrontal cortex exerts its influence by way of its layer V

projections to the basal ganglia (via the head of the caudate

nucleus) as well as transcortically. Anatomically, the prefrontal

cortex can be divided into dorsolateral (DLPFC), ventrolateral

(VLPFC), dorsomedial (DMPFC) and ventromedial (VMPFC)

areas. Rostral to the prefrontal cortex lies the fronto-polar cortex

(FPC). The dorsal areas are most relevant for this report, since

they are likely the only regions shallow enough to be probed with

the light from extracranial near-infrared sources, but it important

to recognize that there are significant connections between the

dorsal and ventral areas. The exact functional division of these

areas is only partly understood, but certain anatomical and

functional connectivity patterns have been observed. DLPFC has

the largest number of connections with sensory cortex, while the

largest share of DMPFC connections are with motor areas [3–2].

Orchestration of cognitive branching (the process of ordering

cognitive task sets for serial processing) by the fronto-polar cortex
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(FPC) relies in part on lateral prefrontal cortex reports of the

importance of pending tasks [4]. Calculation of importance, in

turn, depends on the lateral prefrontal regions’ access to

desirability measures for explicit stimuli or hypothesized goal

outcomes. The DLPFC may thus act as an ordering memory

buffer and workspace for incoming sensory information awaiting

access to the cognitive stream of the prefrontal cortex. Symbolic

value, or desirability, signals associated with input stimuli are likely

used to establish this order. These desirability signals provide a

means for prioritizing goals, predicting and avoiding poor

outcomes, and generating internal drive towards specific payoffs.

Such desirability signals have been reported in multiple prefrontal

cortex regions, particularly in lateral and orbitofrontal cortex. In a

study of different food and liquid rewards (as well as symbolic cue

stimuli for them) for a monkey performing a simple delayed

memory task, Watanabe [5] showed differences in the delay period

activity of DLPFC neurons that correlated with the identity of the

food (cabbage, potatoes, apples, raisins). In some neurons, these

differences were modulated by the spatial location of the reward

item (left vs. right). Thus, the prefrontal cortex may be monitoring

outcomes of spatial tasks. In a promising recent study, Luu et al.

have demonstrated that NIRS applied over the frontal lobe can be

used to detect drink choice preferences in humans with just a

single choice presentation [6].

The representation of reward has been studied more extensively

in the nigrostriatal, mesolimbic, and mesocortical dopamine

systems. Dopaminergic neurons in the ventral tegmental area

and substantia nigra (dorsolateral portion) of monkeys exhibit

phasic responses to primary rewards like food and water, as well as

to auditory or visual stimuli that are learned to be predictive of

reward (conditioned stimuli) [7–8]. Recruitment of responses to

conditioned stimuli are observed after only tens of presentations,

similar to the numbers needed to elicit behavioral change [9].

Midbrain dopaminergic neurons project to many areas of the

brain, including the nucleus accumbens, striatum, and prefrontal

cortex, suggesting that they broadcast reward prediction error (and

other reward-related signals) to many disparate networks influ-

encing cognition, motor responses, and learning. In the prefrontal

cortex of primates, adenylyl cyclase activating Gs-coupled D1

receptors predominate over Gi-coupled D2 receptors. This

suggests that in vivo, dopamine input provides a net activating

influence in frontal areas. Interestingly, dopamine receptors tend

to be found in layer V, implicating them in control of cortical

output. This organization may provide a way for information

related to reward to be preferentially transmitted to downstream

circuits, such as those subserving motor planning. Grossly, the

modulatory effect of dopamine has the effect of increasing firing,

thereby contributing to increased metabolic demand and likely

inducing increased local blood flow. This is in agreement with the

current study’s findings of increased blood flow and oxygenation

fraction in response to desirable stimuli.

The DLPFC is located around the principal sulcus in monkeys

and along the banks of the superior frontal sulcus in humans

(Brodmann Areas 9 and 46) and it is believed to be an important

mediator of polysensory working memory [10–11]. Synaptic

dysregulation in the DLPFC is observed in schizophrenia and in

mood disorders, two conditions in which value judgement is

impaired. DLPFC activation has often been linked with restraint

in choosing of short term rewards over delayed higher value

rewards [12], particularly when favoring the delayed rewards

requires instructed semantic knowledge [13]. A study of cocaine-

addicted subjects, in which DLPFC experienced increased glucose

metabolism when subjects were shown drug-related paraphernalia

[14], provides additional support for the relationship between

desirability and DLPFC activity. In a NIRS study of the prefrontal

cortex of humans designed to detect emotional valence, Leon-

Carrion et al. et al showed significantly increased cerebral blood

oxygenation in response to a movie clip depicting sexual stimuli

than to a non-sexual clip with similar complexity, both during the

presentation and after the offset [15]. Observations have been

made of single unit activity in DLPFC consistent with the

computation of outcome desirability [16–17] in tasks that require

these quantities to be maintained during a delay period. In human

lateral prefrontal cortex, activation in fMRI is seen to increase

with expected value of reward (either by increasing reward

probability or magnitude) [18]. Increasing risk activates the region

more if subjects were characterized as ‘‘risk seeking’’ rather than

‘‘risk averse’’ [19], indicating that hemodynamics here can be a

marker for the subjective desirability of the current state of affairs

as perceived by the individual.

The DLPFC receives abundant dopaminergic input from the

ventral tegmentum and the substantia nigra [20–21][22]. Under

the hypothesis that the primary function of DLPFC is a working

memory buffer input to the FPC cognitive stream, dopamine likely

provides a motivating signal that is applied to processing induces

increased access for reward-related stimuli. Besides the subcortical

sources of dopaminergic input, the DLPFC has access to reward-

related information via reciprocal connections with a number of

cortical areas known to play roles in motivation and expectation of

reward, including orbitofrontal cortex [23–24][25] and lateral

intraparietal area [26–27]. It also receives inputs from mediodorsal

thalamus, which is thought to contribute to reinforcement [28–

29][30]. In 2002, Kobayashi et al. recorded spike data from

DLPFC of monkeys during a spatially cued memory-guided

saccade task and revealed that the firing patterns of a significant

fraction of cells (.25%) contained information about reward

presence [31]. During cue (200ms) and delay (900–2100ms)

periods, neurons showed an increase in firing during rewarded

trials versus unrewarded trials. This activity was distinct from the

activity attributable to cue position, but an interesting interaction

between reward presence and spatial encoding was observed: In

rewarded trials neuronal information about spatial location (as

measured by entropy reduction) was approximately double that in

unrewarded trials, for those neurons sensitive to both reward

presence and cue location. This supports the hypothesis that

DLPFC activity contributes more information to spatial discrim-

ination for more rewarding stimuli.

In studying a task in which the relationships between visual cue

stimuli, motor responses, and reward conditions were varied,

Matsumoto et al. demonstrated that neurons in the monkey

medial and lateral prefrontal cortex have firing activity that can be

related to any combination of (cue, response, reward), with pure

responses to reward condition most prevalent (25% of recorded

cells) [32]. The recordings were made around the principle sulcus,

close to the area of interest in the present study as per Figure 1B.

Activity related to purely perceptual decision making has also

been observed in the dorsolateral prefrontal cortex using fMRI

and single unit recordings [33]. Neurons in DLPFC have been

observed to maintain spiking during the delay period between

instruction and execution of a movement, in a stimulus- or

location-selective manner [34–35][36–37]. The discriminations

studied in these experiments are not based on reward value, but

simply on the ability to differentiate between noisy stimuli. This

activity too was soon found to be modulated by the opportunity for

reward. Their firing rate during a memory period between cues

and saccades to targets is higher during trials with a large reward

than during trials with a small reward [38]. Notably, this

differential firing did not occur at reward cue presentation, but
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during the memory period when both reward and spatial cue

stimuli were absent. Though the contingencies for DLPFC

activation are complex, it appears likely that this region is engaged

in processesing reward value or desirability of stimulus represen-

tations in working memory.

Reinforcement Learning Overview
Reinforcement learning (RL) algorithms make use of three

elements: states, or information about the environment from

sensors, actions, or commands passed to actuators that interact with

the environment, and reinforcement signals, which drive adaptation of

the algorithm in its selection of appropriate actions. An RL

controller learns a policy of action selections as it practices

interacting with its environment. Traditional BMIs focus on

decoding neural signals without learning state-contingent policies.

They are therefore relatively inflexible when compared with BMIs

that make use of artificial intelligence or machine learning to select

actions that best accomplish the users’ objectives. We believe

prosthetic and other human-robot interactions have the potential

for much more intuitive use if adaptive algorithms are used as

controllers.

The task of an intelligent BMI controller can be separated into

two domains: 1) decoding the user’s instructions from the neural

interface and 2) policy learning, or the selection of the appropriate

computer/robot commands for the present task and situation. In

an RL controller, the computer agent would decode the user’s

satisfaction with its performance and attempt to learn a policy that

is most pleasing to the user, continually updating its behavior as

the environment and needs of the user change. The user and agent

would thus form a coadaptive system as each learned to work with

the other towards the shared goal of maximizing the user’s

satisfaction. The possibility of using prefrontal cortex signals as

reinforcement signals to drive policy learning is an attractive one,

but is tempered by biological and sensor noise, along with

difficulty in interpretation of prefrontal cortex activity. It is of

central importance to select control algorithms that are robust to

these sources of uncertainty in a potential reward signal.

Furthermore, the environmental information gathered by sensors

and available to the controller represents only a partial represen-

tation of the real external state. Finally, actions selected may not

always have the intended effect, since actuators are unreliable and

are subject to unpredictable contingencies in the environment.

Control algorithms handle these error sources with varying

tradeoffs between adaptability, training speed, and complexity.

For our tests of a controller’s performance when given feedback

with noise equal to our observed NIRS DLPFC decoding

inaccuracy, we chose the QSARSA learning algorithm.

QSARSA, an implementation of the temporal difference (TD l)

family of RL algorithms, was selected for the present work due its

good performance when faced with partially observable but non-

deterministic outcomes. Like other temporal difference methods,

QSARSA is a method of reward prediction for learning a policy to

be applied in a Markov decision process (MDP) [39]. Modeling

BMI control as an MDP seems appropriate, since interfaces would

be expected to be continually adapting over years of use, and

present states could be taken as independent of states encountered

in the distant past. QSARSA is an on-policy learner, meaning that it

learns the value of actions that are actually chosen, as compared to

off-policy learning, which makes value calculations based on

hypothetical choices, and then selects the best ones to execute. In

general, the current on-policy RL agents are more data efficient

than off-policy agents [40].

Watkins and Dayan (1992) proved that in an MDP with a finite

set of states and actions, learning agents of this class converge to

Figure 1. Experiment and Model Summary. A: The reward signal
is derived from the subject’s frontal lobe hemodynamics. The D[HbO]
and D[HbD] signals recorded at times around events are classified using
a support vector machine (SVM) in order to read out their prediction
about the subjective desirability of the event. Any classifier is subject to
some misclassification noise (green arrow with red imperfections, and
vice versa) so the RL agent that uses this signal as reward information
must be robust to occasional misclassifications. Gray inset: The error
rates achieved by the SVM classifier in this study were added to the
win/loss feedback to a model task in which the reinforcement learning
agent had to select actions to be taken by a rake tool in order to
achieve the goal of pulling a pellet off of the front side of a table,
without knocking it off the back side. The adaptation of the action
values for the most recently observed state (and thus the adaptation of
the agent’s control policy in subsequent visits to that state) is dictated
by the reward signal. The agent learns to select the action with the
highest expected return, given the current state (i.e. the locations of the
pellet and rake tool). B: Brain MRI of the rhesus macaque used in this
study. The T1-weighted MRI image (right panel) was registered to a
standard atlas (left panel) to locate the DLPFC region of cortex
(indicated by the crosshairs). Skull landmarks were then used to localize
and place probe guides during implantation. The lower right subpanel
shows a 3D reconstruction of the subject’s head with dots at the
locations of the NIRS probes used as sources (purple) and detectors
(red).
doi:10.1371/journal.pone.0069541.g001

Reinforcement Learning with Frontal Lobe NIRS

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e69541



the optimal policy, assuming that all actions are repeatedly

sampled from all states. This proof is only valid for single step

updating of action values (as opposed to the multi-step history

updates employed by the algorithm explored in this work, which

learns more quickly). Nonetheless, multi-step QSARSA’s conver-

gence to policies with excellent performance has been empirically

observed in many applications [40–41][42–43]. Furthermore,

QSARSA is often endowed with a little bit of ‘‘jitter’’ in its action

selection policy, in order to explore the possibility of policy

improvement, at the cost of stability and speed of convergence. By

managing the history length and jitter parameters of a QSARSA

agent, satisfactory levels of learning speed and performance can

often be achieved. In fact, QSARSA is often found to learn quite

rapidly, when compared with other artificial intelligence methods

[44]. QSARSA controllers are well-suited to applications in which

both sensor and actuator noise are present, there are hidden states

of the environment not observable by the controller, and the

sensor/action cycles are asynchronous [41]. These are conditions

likely to be in place in human prosthetic control applications.

Developing shared control of prosthetics between the users’ brains

and the computer controllers also requires direct feedback from

the user to the controller about satisfaction with device perfor-

mance. This feedback is also subject to noise, which motivates the

current study.

Study Objective: Using Desirability Signals in BMI
Systems

A BMI operating under the control of a reinforcement learning

(RL) agent requires defined rewards whose maximization is the

agent’s goal. In this work, we aimed to establish the feasibility of

decoding a desirability signal associated with conditioned stimuli

from the rhesus macaque DLPFC that could function as a

reinforcement signal input to a QSARSA controller. To acquire this

signal, we used NIRS, a non-invasive technique that probes

regional cerebral blood flow by measuring the reflectance, and

calculating absorbance, of infrared light. The absorbance wave-

forms were classified according to their association with high and

low desirability outcomes. The error rate in this classification was

then applied to the reward signal in a model QSARSA learning

application. In so doing, we aim to demonstrate that such an RL

controller can drive useful learning when provided with a

realistically noisy cerebrally-derived reinforcement signal. The

general approach used in this study for validating the signal, and

model used as a testbed for its use in an RL controller are

illustrated in Figure 1A. This work is part of a continuing

investigation into the use of reinforcement learning agents as

controllers in brain-machine interfaces, using multiple brain signal

sources [45–46][47].

Materials and Methods

Ethics Statement
This study was performed in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee of SUNY Downstate Medical Center (Imaging

Protocol Number: 11–102–42; Experimental Protocol Number:

06–465–10). Implantation surgery and MRI imaging were

performed under ketamine/isoflurane anesthesia, and every effort

was made to minimize suffering.

Overall care was managed by the DLAR (Division of

Laboratory Animal Resources) at SUNY Downstate Medical

Center. The subject was housed in a large individual enclosure

with other animals visible in the room, and looked after daily by

the senior DLAR staff, who also weighed the subject weekly and

updated daily feedings in order to maintain weight. The in-house

veterinary doctor checked the subject before the start of the study,

and performed blood tests and physical examinations as needed.

The subject was given weekly fruit or dry treats as a means of

enrichment and novelty. In collaboration with DLAR, we have

attempted to offer as humane treatment of our subject as possible,

and we believe that the standard of animal care and welfare in our

lab exceeds national guidelines.

Surgery and Instrumentation
A 3 year old male rhesus macaque monkey weighing : 5.3 kg

was used in this study. A series of T1-weighted MRI images

(coronal slices) of the head of the anesthetized animal were

acquired on a 3T Siemens scanner while it was mounted in a

stereotaxic frame in the sphinx position (which improves magnetic

field homogeneity throughout the brain volume [48]). Vitamin E

fiducial markers were affixed to the frame, and to the animal’s

head at nasion, inion, and at the mastoid processes. The image

with the best contrast homogeneity was selected and used to

calculate distances between the dorsolateral prefrontal cortex

(DLPFC) and various skull locations relative to the fiducial

markers. The image was registered onto a standard rhesus brain

(the MNI rhesus atlas, composite of 7 adult rhesus macaques [49])

via affine transformation (BioImage Suite software [50–51]). In

this standard space it could be visualized and navigated through in

relation to a standard atlas, which helped localize the anterior

extreme of the principal sulcus. The markers were replaced on the

stereotaxic frame during the surgery and guided the final choice

for fixation location of the PVC guides for the NIRS optodes (see

Figure 1B).

During this surgery the frontal portion of the skull was exposed,

cleaned, and dried. A series of fixation screws were implanted in

the bone, and a thin layer of translucent acrylic was applied in an

adaptation of a technique heretofore only attempted in rats [52].

The PVC NIRS guides were placed over the cortical region of

interest and allowed to adhere to the acrylic until it hardened.

Then pallicose bone cement was used to surround the guides and

secure them to the screws. During the procedure, two intracortical

microelectrode arrays were implanted in the cortex (in the hand

regions of both primary motor cortex and primary somatosensory

cortex, following a previously established procedure [53]), and a

depth electrode array was placed in the ventral posterior lateral

nucleus of the thalamus. The connectors for these, along with the

NIRS guides were integrated into a single external recording

apparatus by applying a top layer of opaque acrylic dental cement

to seal the implant to the surrounding hardware and skin margins.

On each day of recording, the PVC guides were cleaned and

the optical fiber probes (2 sources and 4 detectors) from the NIRS

instrument were placed into their assigned guides. The distances

between source probes and their associated detectors were

approximately 1cm. These distances correspond very roughly to

300mm–1cm tissue penetration depth, according to the
1
3
|(surface distance) rule as measured by Cui et al. [54].

The NIRS acquisition was done with a NIRScout system from

NIRx Medical Technologies (Glen Head, NY). This system is

capable of capturing data from 16 sources and 24 detectors, but

only a subset (2 sources and 4 detectors that fit the implanted

guides) were used in the present work. ‘‘Sham’’ test recordings

with no animal were made in the chamber with the video screen

updating to make sure that light from the screen or other ambient

sources did not affect the measurements. No changes in the

Reinforcement Learning with Frontal Lobe NIRS

PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e69541



recordings were observed on screen updates or with changes in the

chamber lighting.

Stationarity of the head was maintained with a fixed head post

attached to the parietal bone. The monkey was seated in a chair

facing a video screen on which the visual cues were presented.

NIRS data for wavelengths 760nm and 850nm was collected for

each source-detector pair at a frame rate of 6Hz. Time-

synchronized video was captured throughout a subset of the

experiments.

Experimental Protocol
Conditioning stimuli. The monkey was placed on con-

trolled water access for 16–24 hours before each day of

experiments. For each trial, after a 10s baseline (blank screen),

the monkey was presented with a visual display of a single white

disc ‘‘cursor’’ in the center of the screen and a colored disc

‘‘target’’ 10cm away (see Figure 2A). These serve as a cue for the

animal, indicating the nature and latency of an upcoming outcome

stimulus. The cursor moves in 16 steps towards the target (0.5s per

step; 8s total trial duration). The outcome of the trial was dictated

by the color of the target (blue ? reward; red ? penalty). A

custom-designed program written in Python was used to control

the visual cues and the delivery of liquid rewards, as well as to

generate serial data event signals that were logged by the NIRS

acquisition system. The animal was exposed to cue-outcome

pairings for ten 45 minutes sessions (: 30 rewards and : 30 penalties

each) in order to allow the animal to establish the association

between cues and outcome.

Next, a series of NIRS recordings was done while the animal

was repeatedly presented with these same pairings, with desirable

and undesirable outcomes intermixed. In 75% of the experimental

sessions, the blue target indicated that when the cursor reached the

target, a pomegranate juice reward (0.25mL) would be delivered

and the red target indicated that when the cursor reached the

target, a time-out period would be enforced. The time-out was a

15s duration in which the cursor and target disappeared and a

fixed red disc appeared in the middle of the screen before the start

of the next trial’s 10s baseline period. In the remaining 25% of the

experimental sessions the significance of the red and blue targets

was reversed (red = reward; blue = time-out). The outcomes have

intrinsic desirability (appetitive value of juice and delay in

obtaining more liquid for a thirsty animal). The cues come to

have secondary desirability through their repeated pairing with the

outcomes. The monkey was over-trained on both these stimulus

sequences (10 sessions of 30–50 presentations each), and then

NIRS recordings were made during 20 experimental sessions of

40 min duration, comprising approximately 60 trials each. Thus

the cursor and target form a conditioned stimulus, and the juice

reward or time-out penalty form an unconditioned stimulus.

Unexpected stimuli. In an earlier set of experiments

(n = 20), two different liquids (pomegranate juice and vinegar)

were delivered to the animal while it was seated in the chair

viewing a fixation cross. Without any predictive stimuli, 1mL of

either juice or vinegar was delivered through the sipper tube. The

tube was placed onto the tongue such that both liquids elicited

similar swallowing movements. Approximately 20 deliveries were

made during each 1 hour experiment. NIRS data was recorded

throughout these experiments and event times logged.

The animal’s preference for pomegranate juice was established

previously by simultaneously providing 200mL of both liquids for

free consumption in the home cage for five 20 minute sessions,

during which it consumed an average of 105mL of juice and 0mL

of vinegar (see Results).

Data Analysis
Preprocessing and relative hemoglobin

calculations. The hemodynamic signals evaluated in this work

are the concentration differences (relative to a baseline period) of

oxyhemoglobin (D[HbO]), deoxyhemoglobin (D [HbD]), and total

hemoglobin (D [HbTot]). The baseline periods are the intervals of

quiet resting (with no reward-relevant stimuli) immediately before

the onset of the first stimulus in the trial.

Each NIRS source-detector pair forms a channel, correspond-

ing to a distinct light path through the tissue. All channel data

were band-pass filtered in the range 0.01–1 Hz, in order to

remove artifacts due to drift, heart rate, and breathing. Any

channel with a signal-to-noise ratio (m=s)v0:05 for either

wavelength was considered to be too noisy and discarded.

For each trial, the NIRS data from the 10s prior to the cue

presentation was used as ‘‘baseline’’, and the reported hemoglobin

concentrations are relative to this baseline for each trial. This is

done in order to further normalize for long-term trends in

hemodynamics, and extract components of the signal that are truly

event-related. NIRS detector data acquired during the trial (i.e.

between cue onset and 15s after outcome offset) was then used to

calculate oxyhemoglobin and deoxyhemoglobin concentrations

relative to the baseline period. The relative concentrations are

computed from the detector data for the two wavelengths

according to:

D½HbD�meas~
e
l2
HbODm

l1
a {e

l1
HbODm

l2
a

e
l1
HbDe

l2
HbO{e

l2
HbDe

l1
HbO

, ð1aÞ

D½HbO�meas~
e
l1
HbDDm

l2
a {e

l2
HbDDm

l1
a

e
l1
HbDe

l2
HbO{e

l2
HbDe

l1
HbO

ð1bÞ

Where l1 and l2 are the wavelengths of light used (760nm and

850nm respectively), elHbD and elHbO are the extinction coefficients

for the two chromophores of interest (HbO and HbD) at

wavelength l, and Dmla is the observed change in absorption

coefficient at wavelength l [55]. We use the recorded absorbances

at each time point mla(t) normalized to their baseline means mla as

the change in absorption for that time point Dmla(t). Then,

reformatting equations 1a and 1b into a matrix equation, and

incorporating the known extinction coefficients for 760nm and

850nm light (e
l1
HbD~1548:52, e

l1
HbO~586, e

l2
HbD~691:32,

e
l2
HbO~1058; see http://omlc.ogi.edu/spectra/hemoglobin by S.

Prahl, also [56]) yields

D½HbO�(t)
D½HbD�(t)

� �
~ln(10)|

586 1548:52

1058 691:32

� �{1

|

ln(
m760a (t)

m760a

)

ln(
m850a (t)

m850a

)

2
664

3
775ð2Þ

which was the actual calculation made during preprocessing (see

Figure 2). This yields D [HbO(t)] and D [HbD(t)], the

concentration changes relative to baseline in oxy- and deoxyhe-

moglobin, respectively, for each channel, assuming a path length

of 1cm each.

D [HbO(t)] and D [HbD(t)] were then averaged across channels

for each time step from cue onset to 15s after outcome offset.

These average D [HbO(t)] and D [HbD(t)] time series for each

event were then analyzed in two ways: mean responses to multiple
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presentations of reward and penalty events, and single trial

classification of events as either rewarded or penalized. Mean

responses and standard error of the mean to rewarded vs.

penalized events were computed, and significance levels at each

time step were determined with Welch’s t-test.

Peri-stimulus statistics and analysis. In order to charac-

terize the first order statistics of the NIRS signals around desirable

and undesirable stimulus times, the trials were separated according

to their known outcome, and means and standard errors of the

means (SEM) were computed for each peri-event time step. This

analysis was carried out for cued trials and uncued trials. In order

Figure 2. Experimental protocol and NIRS data processing summary. (A) Visual stimuli: The cue target and cursor appear 8s before the
predetermined outcome (which is chosen randomly on each trial). Target locations vary around a circle of fixed radius 10cm. The cursor moves with a
fixed speed towards the target, and when it reaches the target, the outcome stimulus is delivered. A reward outcome is 0.5mL pomegranate juice
delivered through the sipper tube. A penalty outcome is a 15s period of waiting in which a colored disc matching the penalty cue was presented in
the center of the screen. A random interval (mean 20s) was then enforced before the start of the next trial. In a subset of experiments, the color
significance was reversed. (B) Data is analyzed from all pair-wise combinations of sources (red dots) and detectors (grey dots). Each source-detector
pair time series of 760 and 850nm readings that exceeds a signal/noise threshold is band-pass filtered and used to compute DHbO and DHbD time
series for that light path. These time series are then averaged across light paths. The path-means in the period around the reward stimulus and
penalty stimulus events are then analyzed further, either as peri-event means, or by classification of single event peri-event path mean waveforms.
doi:10.1371/journal.pone.0069541.g002
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to test for the effects of motion artifacts, video recordings of the

animalJs face were taken during a subset of cued experiments

(n = 4). The video was time-synchronized to the NIRS recording.

This video was analyzed manually in order to tag trials in which

the animal exhibited overt facial movements. Head movement was

prevented by the fixed head post restraint. All frames of video

around trial times were reviewed, and if the tongue or teeth were

visible or lip movement of : 1.5cm was observed at any time during

trial, the trial was tagged as a ‘‘movement’’ trial. These trials were

then set aside and averaged separately from the ‘‘non-movement’’

trials.

Single trial classification. Single trial NIRS data were

classified using a support vector machine (SVM) classifier. SVMs

are a generalization of the technique of linear decision boundary

search to situations in which the two classes of interest are not

linearly separable. By transforming the feature space, SVMs are

able to find discriminating hyperplanes that can separate examples

from classes that are in overlapping regions of the original space.

This proves to be the case for the peri-event D [HbO] and D
[HbD] signals recorded in this study, motivating the use of SVMs

for classification. SVMs attempt to find the maximum-margin

hyperplane that separates examples of the two classes in

transformed feature space. Stated concretely, SVMs search for

the hyperplane f (x)~xTbzb0~0 under the constraint.

min(EbE) subject to

yi(x
T
i bzb0)§(1{ji) for every example i

ji§0,
P

ji§constant M

 
ð3Þ

where xi is an example data vector and yi is its associated class

label in {21,1}. ji is a slack variable associated with each training

example that dictates how ‘‘fuzzy’’ the classifier margin is allowed

to be. The total proportional amount by which examples may be

on the wrong side of their margin is bounded by the constant M.

This minimization can be formulated as a convex optimization

problem, allowing the global optimum b and b0 to be obtained.

These define the hyperplane that creates the largest margin

between training examples of the two classes. The margin is the

distance from the hyperplane to the nearest example. Thus, not all

examples contribute to the definition of the optimal hyperplane,

allowing the SVM to be computed efficiently. SVMs are relatively

good at dealing with high dimensional data classification problems

as well [57].

The performance of the classifiers were evaluated with a jack-

knife cross validation scheme: For each of 100 rounds, a randomly

selected trial is set aside as a test example, the SVM is trained on

the remainder of the data, and the trained SVM is used to classify

the test example as a reward trial or penalty trial. The average

classification performance on all test examples is taken as a

measure of the SVMs ability to generalize to new trial data to

which it is naı̈ve. It was also a goal of this study to determine which

hemodynamic signals would provide the most information about

stimulus desirabilities, so separate SVM classifiers were trained

and tested using only D [HbO], only D [HbD], or D [HbO] and D
[HbD] together to form xi.

Reinforcement Learning Model Task
The model task consists of a 767 grid in a plane with a pellet

located at one of the grid vertices, and a rake tool that is

represented by a T shape in the plane. The rake can only move the

pellet forward and backward, not side-to-side, and does so only if

the pellet location intersects with one of the arms of the head

(which together span 3 grid squares). The state of the model

environment is represented completely by the pellet location on

the table, and the 1-D direction (in front/behind) and distance

from the pellet to the rake: s~(x,y,d). The actions available to the

agent were movements in the plane in each of four directions:

a [ A, A~fup,down,left,rightg.

The pellet location is initialized to the center of the grid on each

trial. If the rake pushes the pellet off the back of the grid, the

reward value for the trial is 20.2, and if the rake pulls the pellet of

the front of the grid, the reward value is 1. Achieving a reward

requires moving the rake to the side before moving it back, so that

it doesn’t push the pellet backwards, followed by a movement back

to the center and a pull to the front of the grid.

It should be noted here that finding the optimal control strategy

for this task requires the agent to evaluate sequences of actions

based on delayed rewards. Because the task-specific rewards are

only delivered at the end points of executed trajectories, when the

pellet falls off the table, the agent must maintain a memory trace of

it’s action selections. Since the finite-numbered states and rewards

in this task depend only on their immediate antecedents, they can

be said to form a finite Markov decision process.

QSARSA algorithm. QSARSA is an ‘‘on policy’’ method of

value estimation, meaning that the agent’s paths of exploration of

the value landscape are bound by the actions it actually chooses to

implement (the policy). This is not necessarily restrictive, and

under any policy that allows for every path to be visited infinitely

often (given infinite time), the value function estimate can be

shown to converge to the true value function. In our implemen-

tation, this requirement is satisfied by a policy of g-greedy action

selection, in which the highest value action amax [ A, where A is

the set of all possible actions, is selected with probability

p(amax)~g (usually large), and all other actions

faother [ A,aother=amaxg are selected with uniform probability.

p(aother)~
(1{g)

(nactions{1)
: ð4Þ

We’ll call this policy p. p is the complete description of the

actions to be chosen for all states based on their estimated values

(which we will store in matrix Q(s,a)) and the g-greedy action

selection rule. Thus p(s)~p(aDs,Q),a [ A. QSARSA attempts to

learn the best estimate of (state, action) values Q�(s,a) by updating

its running estimate Qp(s,a) as the agent follows policy p. It

accomplishes this by use of the temporal difference rule TD(l),

which iteratively updates Qp(s,a) with weighted contributions

from newly received rewards and prior value estimates. This

update procedure thus takes the form of the algorithm shown in

Figure 7.11, Section 7.5 of [58].

In order to deal with stochastic reward signals of the type

delivered by the NIRS classifier, the a parameter (learning rate;

see [58]) is annealed (decreased) according to the number of times

each particular (s,a) pair has been visited, so that realized rewards

contribute less and less to the running estimate, thus attenuating

unstable fluctuations based on an inconsistent reward signal (see

Discussion).

The model rake task has 1183 possible states, and 4 possible

actions. The QSARSA algorithm was run on this model task for

200,000 time steps, starting a new trial with each terminal state

(front edge or back edge) and using c~0:9 and l~0:2.

An experiment of this type was run on each of the reward

classification accuracies {0.55, 0.60, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,

0.95, 1.0}. For each experiment, a record of rewards (including

negative rewards, or penalties) was kept. The running average of
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the fraction of trial outcomes that were true positive rewards (and

notnegative penalties) was calculated as a summary of the agent’s

performance. The simulation and QSARSA algorithm were

implemented in MATLAB (Mathworks Inc., Natick, MA).

Results

Decoding Preferences from NIRS recordings
Unexpected liquid rewards and liquid penalties. When

given free access to juice and vinegar, the monkey immediately

began drinking the juice at each presentation, and consumed an

average of 160mL of juice over the interval. In contrast, after

testing the spout on the reservoir containing vinegar, the monkey

withdrew quickly, and never consumed any of the liquid. When

vinegar was directly applied in the mouth with a dropper, the

monkey attempted to prevent the application, and vocalized more

frequently than normally observed. The prefrontal hemodynamic

responses to unexpected delivery of pleasurable and aversive

liquids were then tested by head-posting the animal in an

experiment chair and positioning it with a sipper tube in its

mouth. Then juice or vinegar were delivered in 0.5mL boluses

onto the tongue without any other predictive stimuli at pseudo-

random (Poisson distributed with mean interval 60s, but with

minimum interval 40s) times. These were delivered in blocks of

,60 trials, with a single type of liquid in each block, in order to

minimize the possible mixing of taste stimuli. D [HbTot] and D
[HbO], but not D [HbD] were observed to rise significantly more

in the period immediately following juice delivery versus vinegar

(Figure 3). A : 5s decrease in oxyhemoglobin relative to pre-event

baseline was observed for both pleasant and unpleasant stimuli,

but was significantly more pronounced for the unpleasant

stimulus. Thus, in this biphasic oxyhemoglobin response, both

phases showed modulation by the desirability of the liquid

stimulus. The deoxyhemoglobin concentration changes around

the events were the same for both types of stimuli for the first 5s

after presentation, but the second phase, a slow return to baseline,

was prolonged for the undesirable stimuli relative to the desirable

ones. The total hemoglobin changes naturally show a combination

of these patterns, with an initial rise in mean following only

desirable stimuli. The decrease in total hemoglobin from : 2s–6s

brings the value to baseline for desirable stimuli, and down to a

deficit relative to baseline for undesirable stimuli.

The approximately 15s event-related perturbation and return to

baseline corresponds to that observed in prior NIRS studies of

cortical activation in response to motor imagery [59–60], motor

tasks [61–62][63], and working memory activation [64] in

humans. The more rapid switch between D [HbO] increase and

decrease than is observed in other studies is likely due to the brief

nature of the unconditioned stimuli used in this study.

Cued rewards and penalties. The study also attempted to

determine whether the separability in hemodynamic responses to

rewarding and aversive stimuli could be translated to conditioned

stimulus types, or whether it depended on the intrinsic appetitive

value of the stimuli. The observed post-event hemodynamic

changes agree with those observed in the un-cued trials (i.e. D
[HbO] is increased following desirable stimulus delivery, but not

undesirable stimulus delivery). A significant anticipatory rise in

both D [HbO] and D [HbD] immediately prior to desirable

stimulus delivery is also observed, further differentiating rewarded

and penalized trials. A decrease in D [HbO] relative to pre-trial

baseline was seen for approximately 3 to 5 seconds following the

cue presentation for both rewarded and penalized trials, indicating

the animals awareness of both types of cue. This decrease was

more pronounced for rewarded trials. There is also a slight

decrease in D [HbD] around the cue presentation, nearly identical

for both types of cue. These results are summarized in the left

panel of Figure 4.

Taken together, the cued and uncued trial results indicate an

increase in total blood flow in the prefrontal cortex in response to

primarily desirable stimuli, comprising an increase in both D
[HbO] and D [HbD]. A decrease in total blood flow is observed in

response to secondarily rewarding stimuli, mostly due to the

decrease in D [HbO]. Changes in response to undesirable stimuli

are much less pronounced, but include a small decrease in D
[HbO] following cue presentation and at the time of outcome

presentation.

A post-outcome rise in D [HbTot] contributed by both D
[HbO] and D [HbD] indicates an increase in regional cerebral

blood volume at this time, which would be expected to accompany

increased neural activity during this period under standard models

of neurovascular coupling [65]. The increase in measured D
[HbD] during this period is equivocal regarding cerebral

metabolic rate of oxygen, which is expected to more closely

parallel neural activation [66]. Nonetheless, the regional cerebral

blood volume increase in response to desirable outcomes likely

corresponds to the known positive modulation of prefrontal neural

firing in response to rewarding stimuli [38]. A smaller negative

perturbation in D [HbO] and D [HbTot] is observed during the

period between cue and outcome.

Color-reversed trials. In order to control for the possibility

that the differential activity observed around the visual cue

stimulus was based only on the color, experiments were run in

which the reward-predictive significance of the target colors was

switched (Red = Reward, Blue = Penalty). After retraining the

animal on these reversed cues for three days, NIRS recordings

were made. The same qualitative pattern was observed as in the

original color cue scheme: an anticipatory decrease in D [HbO]

for both trial types followed by an outcome-selective increase in

both D [HbO] and D [HbD] (see right panel of Figure 4). The

Figure 3. Hemodynamic responses to uncued rewards and
penalties. (A) Mean6SEM amount of liquids consumed when both
were presented ad libitum simultaneously for 20 minutes in the
animal’s home enclosure on 3 days. No vinegar was consumed on any
day. (B) Mean6SEM Peri-event changes in D[HbO], D[HbD], and
D[HbTot] relative to baseline for unexpected delivery of 0.5mL of
pleasant liquids (pomegranate juice or water) or unpleasant liquid
(vinegar). Events delivered at pseudo-random intervals (min 40s).
Asterisks indicate times at which the responses in pleasant and
unpleasant trials were significantly different (Welchs t-test, p,0.05).
(n = 121 rewards; n = 88 penalties).
doi:10.1371/journal.pone.0069541.g003
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amplitudes of the responses in the color-reversed experiments were

smaller than for the original color scheme, and there was less

significant differentiation between the trial types based on the cue

alone. This may be attributed to the residual effect of the original

color scheme creating some decreased certainty in the cue

significance. It may also be due to a long-term attenuation of

the response with repeated exposure, since the reversal exper-

iments were done after the first color scheme had been established.

Nonetheless, outcome discriminability does appear to be indepen-

dent of the color of visual stimuli.

Comparison of separated motion artifact trials. Though

little head motion was possible due to the head-restraining post, a

possible source of task-related artifact in the NIRS signals is the

movement of the facial and scalp muscles. No motion of the NIRS

probes was observed during lip and tongue movements, but in

order to rule out the possibility of the observed signal changes

being caused by these, video was captured during a subset of the

experiments. Trials in which overt facial or tongue movements

were observed (defined as visibility of the teeth or tongue at any

point during the trial, or movement of the lips .2cm) were

separated. These trials, and those in which no movement was

observed were analyzed separately, and the results shown in

Figure 5.

The similarity of the presumed hemodynamic changes in the

trials with and without facial movements indicates that these

movements are insufficient to explain the differences, and are

likely not contaminating the results of experiments with all trials

included, though they may be contributing to desirability-

independent noise. The results of the experiment in which both

rewarding and aversive stimuli were liquids (juice/vinegar) also

corroborates the conclusion that the difference in hemodynamic

response is not simply motion-related, since the motor responses

(swallowing, occasional licking) were seen to be nearly the same for

all liquids, due to the deep placement of the sipper tube in the

mouth.

Decoding preferences in single trials. In order to be useful

as a ‘‘reward’’ metric for an RL algorithm, the hemodynamic

signal must be resolvable at each event as signifying a relatively

high or low desirability. An important component of the proposed

system is therefore a classifier that is able to determine the state

desirability from the NIRS signals on a single trial. A support

vector machine (SVM) classifier was chosen for this purpose for its

non-linearity, insensitivity to local minima, and good performance

on high-dimensional problems (see Methods). All cued trials (both

color significances) were classified as either reward (high

desirability) or penalty (low desirability). Uncued trials were

classified as either reward vs. baseline, or penalty vs. baseline. A

separate classifier was trained for each experiment. All results

presented represent the classifier performance on ‘‘test’’ data,

which were not included in the training. The test data prediction

confusion matrices for all experiment types are shown in Figure 6.

It is possible that the classifier was over-fitting to statistical

regularities in the data set; for example if 90% of the examples in

the set were rewards, then a classifier that predicted ‘‘reward’’

100% of the time would show 90% performance. In order to

control for this effect, a cross-validation run was performed on the

dataset with all labels shuffled, thus destroying any relationship

between the NIRS waveform and the label. If the above (true

label) classifier was actually capturing a true relationship, then

performance on the shuffled data should drop to chance. Chance

level performance was observed on shuffled data (see Figure 6(B)),

indicating that the unshuffled data contained a real relationship

between NIRS waveform and desirability, and that the SVM was

able to capture it.

Classifier windows. In order to determine which compo-

nents of the peri-stimulus NIRS signal were most informative

about the stimulus desirability, SVM classifiers were trained and

tested using only D [HbO], only D [HbD], or both, each for

varying windows around the cue and outcome. All windows began

at the cue onset, and ended at a time relative to the outcome

delivery (see Figure 2(A)). Classifier performance was observed to

Figure 4. Hemodynamic responses to cued rewards and penalties. Mean6SEM Peri-event changes in D[HbO], D[HbD], and D[HbTot] relative
to baseline for cued delivery of 0.5mL of reward liquid (pomegranate juice) or enforcement of a penalty time-out period (10s of presentation of a
stationary red disc). Asterisks indicate times at which the rewarded and penalized trials were significantly different (Welch’s t-test, p,0.05). (A) NIRS
signals around cue and outcome presentation for blue cues predicting rewards and red cues predicting penalties (n = 658 rewards; n = 588 penalties).
(B) NIRS signals around cue and outcome presentation with the color significance reversed: blue cues predict penalties and red cues predict rewards
(n = 118 rewards; n = 95 penalties).
doi:10.1371/journal.pone.0069541.g004
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increase for increasing windows past the cue delivery up to 3

seconds, after which it plateaued (Figure 7). For all windows, a

trend was observed in which D [HbO] alone outperformed D
[HbD] alone, and the combination of both was better than either.

The improvement achieved by using both signals over using D
[HbD] alone was significant (p,0.05) at all time windows except

0.

RL Algorithm Applied to Virtual Task with a Noisy Reward
Signal

In order to test the efficacy of the NIRS state desirability signal

as a ‘‘reward’’ signal for a reinforcement learning agent, we

programmed a model task that contained sensor readings of a

simple environment, an end effector (tool) that interacted with the

environment, and reward signals (see Figure 1A, and Methods

section). It is important to distinguish here between the true

desirability of the trial outcome, and the single-trial reward signal. The

user may find an outcome truly desirable every time, but the

classifier may misclassify the associated hemodynamic signal as

undesirable on any given trial. The classified reward signal as

presented to the agent at each trial is a realization of a probability

distribution set up by the true desirability. In a realistic

implementation of an RL algorithm such as QSARSA that uses a

biological signal of state desirability as its reward, the decoder

noise (i.e. the error in signal classification, as demonstrated above)

will lead to unreliable reward information delivered to the agent.

The question then arises: with the approximately 70% accuracy in

determining true desirability, can a QSARSA agent still converge to

a reliable (state, action) value function, or will it become unstable

when faced with misclassified reward or penalty events?

The average performace of the QSARSA agent during the period

following convergence is quite good, as seen in Figure 8. The agent

comes to prefer actions that result in the truly desired outcome

(pellet reaching the front of the table), in spite of the often incorrect

information about its reward value. The success rate is significantly

higher than the reward accuracy rate for all accuracy levels. This

illustrates the ability of the agent to learn the structure of the task

and find a good solution even when the reward signal is unreliable.

It achieves this by aggregating a weighted average of the reward

signal over time, assigning credit for new rewards based on the

number of times each (state, action) pair has been visited

previously. This reduces the influence of later rewards, avoiding

large fluctuations on receipt of rewards or penalties for each

individual outcome. The value function was seen to converge after

100–1000 training trials, with shorter convergence times for higher

accuracy reward signals.

Discussion

The results presented in this paper have established the

availability of reward-related information in hemodynamic signals

recorded from the frontal lobe of alert primates using NIRS. The

modeling results also demonstrate the feasibility of using these

signals on an asynchronous trial-by-trial basis to direct the

adaptation of a BMI system that employs an RL algorithm as its

controller. The advantages of such a system over those previously

described are two-fold: First, NIRS signals can be recorded from

the cortex non-invasively, obviating the need for surgical implants

that carry inherent risks and susceptibility to interface deteriora-

tion. Second, the RL framework offers a degree of adaptability

that fully supervised training algorithms do not, allowing for

ongoing improvement in performance, and incorporation of novel

information about the enviroment, system properties, and users’

desires.

Peri-event Signals
Deviations from baseline D [HbO] and D [HbD] were observed

for both primarily desirable and secondarily desirable (i.e.

predictive) stimuli. Increases relative to baseline for both signals,

and therefore for D [HbTot], were observed around desirable

outcomes, but not for unpleasant outcomes. The primary

difference is an early (0.5–2s post-stimulus) influx of some

additional volume of oxygen-rich blood for the desirable stimuli

that is absent for unpleasant stimuli (Figure 3). A decrease in the

[HbD]/[HbO] ratio (as occurs with the influx of oxygenated

blood) is consistent with increased input synaptic potentials to the

region [67]. We believe the influx may be also be partly

Figure 5. Comparison between trials with and without significant facial movements. Conventions as in Figure 4. (A) Peri-event NIRS
signals for trials in which no movement was identified on video. (n = 62 rewards; n = 69 penalties) (B) Peri-event NIRS signals for trials in which overt
facial movements were observed; see Materials and Methods (n = 35 rewards; n = 24 penalties).
doi:10.1371/journal.pone.0069541.g005
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attributable to the direct action of dopamine on cerebral

microvessels as discussed below in the section ‘‘Implications of

hemodyamic signal decoding in studies of reward’’.

The negative perturbation in D [HbO] and D [HbTot] between

cue and outcome may reflect a decrease in neural activity relative

to baseline, which may reflect a diminished need for vigilance once

the outcome is determined. This interpretation is speculative, but

the measured concentrations in this period do differ significantly

between the reward and penalty conditions. This difference, like

the more robust difference in the post-outcome period, confirm

the ability of NIRS to detect hemodynamics related to stimulus

desirability. The more pronounced change in response to

rewarding stimuli than to penalty stimuli corresponds to an

encoding of ‘‘value’’ based on the definitions of Roesch et al [68].

This quantity is consistent with ‘‘desirability’’ when dealing with

passive tasks as used in this study.

Even though there is variation in the peri-event hemodynamics,

their form proved sufficiently stereotypical so that a single-trial

classifier was able to use them to predict the unknown desirability

of the trials stimuli (see Classification discussion below). This

reinforces the validity of their interpretation as markers for

reward-related neural activity, and provides for their application in

BMI systems. These findings correspond to previously-observed

hemodynamic responses observed in the human frontal lobe with

fMRI: Tobler et al. found that the DLPFC contains partially

overlapping regions with significant activation correlations with

reward magnitudes, reward probabilities, and their product:

reward expected value [18].

Neurons encoding various aspects of reward are apparent in

DLPFC [5–31]. Wallis and Miller showed that 66% of neurons

recorded in macaque DLPFC coded parametrically for reward

magnitude during the second delay epoch of a two-epoch memory

reward preference task [69]. This is compared to only 31% of

neurons in OFC, a region more traditionally believed to encode

reward magnitudes for decision-making. It should be emphasized

that these signals are only one type out of many modalities of

information that DLPFC and OFC neurons are observed to

encode simultaneously. In the Wallis 2003 study, many of these

same neurons also encoded visual stimulus location and identity,

and selected eye movement direction. Nonetheless, their firing

certainly does modulate with reward magnitude [38], and in other

studies, DLPFC neurons have been shown to modulate with

reward type [5].

In the present study, hemodynamic changes were shown to have

repeatable time courses around the outcome stimulus presentation

times. Most importantly, they were shown to differentiate between

desirable and undesirable stimuli. Though these signals have been

observed with other methods, this is the first demonstration of

their detectability with NIRS in an awake, alert non-human

primate. The hemodynamic desirability signals thus defined

provide a set of physiological contextual states in which future

studies of neural activity may be interpreted. The separation of

neural ensemble activity in one region according to the

concomitant hemodynamic state in the same or other regions

may provide new insight into the means by which decision-related

information modulates neural computation.

NIRS artifacts. A significant issue with the application of

NIRS to the study of brain function is the possibility of

contamination of the signals with artifacts due to motion [70].

These arise because loss of good contact with the scalp may allow

either ambient light or light from the sources that has not passed

through tissue to enter the detectors. A number of adaptive

filtering algorithms have been proposed to correct for such that use

either the NIRS data itself [70–71] or data from accelerometers

affixed to the NIRS probes [72].

In the current study, the head fixation and cranially affixed

probe guides are believed to be sufficient to minimize the effects of

motion artifact, but a separate analysis was carried out as a further

verification. The rationale for the analysis is that if the differences

observed between desirable and undesirable stimuli were created

by drinking-related motion artifacts in the NIRS signal then if the

trials with facial motion detectable on video are analyzed

separately from those with no apparent motion, the difference

should disappear for the trials with no motion (and perhaps be

more pronounced for those trials with motion). In fact, the

opposite pattern was found: trials without motion still showed

robust differences, while those with significant facial movements

showed decreased separation, likely due to increased noise in the

data. This supports the conclusion that while facial movements

may degrade the data quality in these experiments, they are not

the source of the separability between desirable and undesirable

trials.

This conclusion is further supported by the opposite direction of

the post-outcome changes in D [HbO] and D [HbD]. If the

changes were systematically related to the loss of contact between

the optical probes and the tissue, it would be expected that they

would be in the same direction for both wavelengths of light used,

and thus would affect the two computed concentration changes in

the same way. Furthermore, the difference between pleasant and

unpleasant liquid stimuli (Figure 3) argues against the presumed

hemodynamic changes being motion artifact, since the facial

movements were similar (swallowing, licking) in response to both

types of stimuli.

Other artifacts in NIRS studies may arise due to the serial

autocorrelations intrinsic to biological systems, such as heart rate,

respiratory rhythm, or slow oscillations in blood pressure (Meyer

Figure 6. Single trial classification performance on NIRS
signals. (A) Confusion matrix for test set prediction performance of
SVM classifier using both D[HbO] and D[HbD] on cued trials with a
single color scheme. Results are totals across 15 experimental sessions.
Data used is from the cue onset to 15s-post outcome. Each box
contains the percentage of test set trials in the ‘‘Actual class’’ that were
assigned the label in the ‘‘Predicted Class’’ by the SVM (as labeled in
panel C). Absolute numbers of trials are in parentheses. Thus, the
successful classifications are on the diagonal. All other panels use the
same conventions. (B) Confusion matrix for the same data as in panel A,
but with the class labels shuffed. (C) Confusion matrix for classification
of unexpected liquid rewards (juice) versus idle baseline (sham events).
Totals are across 6 sessions. (D) Confusion matrix for unexpected
penalties (vinegar) versus idle baseline (sham events). Totals are across
4 sessions.
doi:10.1371/journal.pone.0069541.g006
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waves [73]). In the present analysis, the preprocessing included

band-pass filtering between 0.01 and 1 Hz, a range that is

expected minimize the signal power due to heart rate (70–

250 BPM = 1.16–4.16Hz). The event-related study design is also

expected to normalize out variation due to mean respiratory rate

(3766 breaths/min [74]) or cyclical BP changes, since events

occur at random phases of these cycles.

Classification of Single Trial State Desirabilities
The SVM classifier correctly predicted the desirable or

undesirable nature of the outcomes associated with NIRS

waveforms with : 70% accuracy when using post-outcome data

of w3s. The success of the SVM classifier when using the

concentration changes D [HbO] and D [HbD] in predicting the

single trial significance in trials to which the classifier is naı̈ve

means that the classifier is able to capture a true relationship

between hemodynamics and stimulus desirability. The SVM

classifier performed, on average, equally well when using a linear

kernel and when using an optimal-width radial basis function

kernel (data not shown), which suggests that complex transforma-

tions of feature space do not improve accuracy. Thus, the simpler

quicker method of SVM classification in linear space is preferred.

Such a classifier can be trained rapidly (and thus retrained, should

performance levels change over time), making its use in an online

BMI application a realistic possibility. By classifying single event

outcomes as desirable or undesirable, this system could serve as an

online monitor of subjects’ satisfaction with the performance of a

neural prosthesis. This type of application is illustrated by the

QSARSA agent learning to perform the model rake task, discussed

below.

Though the SVM classifier correctly classified the majority of

cued trials when given access to all data throughout the trial, when

it was restricted to using only pre-outcome data it made more

errors (50–60% accuracy). This is above chance level, suggesting

that some information about conditioned stimuli was available in

the NIRS signal but is not very robust. This may be partly

attributed to the task design, in which the animal had access to

outcome-predicting information throughout the pre-outcome

interval and it therefore required minimal recruitment of working

memory during this phase. Working memory tasks are known to

particularly engage lateral prefrontal activity during delay periods

in which subjects must maintain working representations of task

choices and possible outcomes [38]. It would be reasonable to

expect such task to show better delay-period discriminability than

was observed in the current experiments. As assessed in this study,

however, the most robust classification requires access to outcome-

related data, approaching its peak performance when using at least

3 seconds of post-outcome hemodynamic signals.

Limitations. One limitation to these results comes from the

event-related decoding method. The event times are known to the

classifier a priori. Thus, this method does not provide a continuous

stream of information about state desirability, which would serve

as an even better reinforcer for series of related actions or their

constituents. This is not prohibitive for use in a BMI, however,

since updates to the agent need not be applied at every time step;

QSARSA works with asynchronous updating. When the agent

requires updating (due to performace dropping below a certain

level, for example), events could be generated and evaluated as

described. The agent would then adapt its value estimates and

maintain them until another update is required.

Figure 7. Classifier performace for different data windows and types. Mean6SEM classifier success rate (equal to the mean of the diagonal
elements in the confusion matrices) across 20 experiments inluding both color conditions (n = 776 rewards; n = 683 penalties) for varying sizes of peri-
event window, when using different components of the NIRS hemodynamic signal. All windows began at cue onset. Thus, the 0 window duration
post event corresponds to the use of 8 seconds of data between cue onset and the outcome event. All other windows include post-outcome data.
doi:10.1371/journal.pone.0069541.g007

Figure 8. Performance of the QSARSA learner when faced with
noisy reward signals. Each bar represents the results for a set of trials
with feedback accuracy to the agent as indicated along the horizontal
axis. Bar heights represent mean fractions of true reward outcomes (i.e.
trial successes) out of 20,000 trials after convergence. Error bars are
standard deviations. With increasing reward signal accuracies, the rates
of reward improve and the inter-trial variance decreases.
doi:10.1371/journal.pone.0069541.g008
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An issue that is possibly more restrictive is the non-specific

nature of the reward signals obtained in this work. These signals

represent the subject’s overall satisfaction with the outcomes of

actions, and do not differentiate between successes or failures due

to the correct execution of motor commands and those due to

environmental conditions. Thus, an action that is performed

correctly, but results in a penalty because of environmental factors

outside the subject’s control would result in negative reinforce-

ment. This is not necessarily bad, as adaptation to environmental

contingencies is one of the purposes of RL, but by adopting

terminal definitions of success and failure, the method does not

provide for improvement of motor behavior when it does not have

extrinsically rewarding consequences. In human subjects, it is

expected that proper execution of a movement would be desirable

even in the absence of an immediate external reward. This would

allow for specificity in adaptation based on the subject’s own goals

during training. However, the inverse situation may be more

problematic. That is, if an external reward is achieved in spite of

inaccurate motor controller output (due to pure luck), and the

subject finds it satisfactory, the controller output would be

reinforced. This system would be best trained when the subjects

are performing tasks with explicit goals, whose fullfilment roughly

parallels the accuracy of the motor output. Once trained, however,

the adaptation rate could be diminished or eliminated until a new

round of training is required.

Implications of hemodyamic signal decoding in studies of

reward. Another finding of this study comes from the results of

classification based on the separate D [HbO] and D [HbD] signals

when compared with classification results using both chromo-

phores together (Figure 7). Neither signal alone yielded test data

prediction performance as good as the two yielded in combination.

This finding is particularly interesting for its implications for the

interpretation of fMRI data, which is based on the concentration

changes of D [HbD] alone [75]. The high spin state of iron

conjugated by the heme molecule (S = 2) makes HbD paramag-

netic [76]. HbO, with spin state S = 0, is diamagnetic. The fMRI

signal is only sensitive to paramagnetic species. The HbD signal

therefore gives an incomplete picture of cerebral hemodynamics.

For example, if D [HbD] is seen to increase, this may have been

the result of decreased inflow of oxygenated arterial blood

(presumably related to a regional decrease in metabolic demand

due to neural activity), or the result of increased oxygen demand

leaving a smaller fraction of the blood hemoglobin in the

oxygenated state (presumably due to an increase in regional

neural activity). Though models of cerebral blood flow help,

sampling HbD alone cannot completely distinguish these states,

whereas sampling HbD and HbO together can. The present

classification results exploit this. Note that when the SVM classifier

is given D [HbO] and D [HbD], the value of total hemoglobin D
[HbTot] (the additive product of the two) is available implicitly in

feature space. By informing the classifier of both the D [HbO] and

D [HbD] signals, the decoded desirabilities may therefore have a

higher correspondence with the underlying neural metabolic

dynamics, and thus a higher accuracy.

There is an interesting line of evidence that dopamine acts

directly on cerebral microvasculature via D1 and D5 receptors

[77–78][79]. This relatively recent finding may also contribute to

the tighter correspondence with presumed desirability representa-

tion of the complete hemoglobin concentration signal versus the

single species signals alone. It has been the basis for a call for

reevaluation of the fMRI results of reward-related experiments

[79]. The present results corroborate these claims, indicating that

there is significant information about a cognitive variable

(desirability) captured by the synergy of both components of

hemoglobin dynamics, above and beyond that available in the

HbD signal alone. This more complete picture of the regional

hemodynamics likely corresponds more closely to the true neural

activity (and thus the perceptual judgements), particulary when it

involves dopamine as reward-related neural activity usually does.

Dopamine binding receptors located in cerebral microvessels

(and, to a lesser degree, capillaries), could possibly be inducing an

anticipatory perfusion increase to support an expected increase in

neural activity by ensembles concerned with processing particu-

larly salient information. Dopaminergic terminals are observed

opposed to cortical parenchymal mirovessel (penetrating arteriole)

smooth muscle cells and pericytes. Positive hemodynamic changes

in frontal cortex, striatum, and thalamus are induced by dopamine

releasing drugs and dopamine reuptake blockers as well as by D1/

D5 receptor agonists. These positive changes are NO-independent

and are mediated through activation of D1/D5 receptors, which

have been observed in capillaries as well [79]. The influence of

dopamine on the cortical microvascular bed creates a nonlinear

effect superimposed on the tissue-oxygen-demand regulation of

CBF that is not accounted for by standard impulse response

models of neurovascular coupling. This direct vascular effect of

dopamine may affect the interpretation of studies of reward

processing based on D [HbD] alone.

Model Control Task Discussion
The computational model rake task is meant to be an

illustration of the type of task that a reinforcement learning BMI

might be called upon to perform. The agent had to acquire

knowledge of the correct sequence of actions to perform based

only on updates about its environment, rather than any explicit

specification of the purpose or proper execution of the task. The

agent only had access to three pieces of information. The first was

the pellet location on the table. The second was the direction and

distance from the rake tool to the pellet. Such ‘‘difference vectors’’

between the end-effector (usually the hand) and a target for

reaching are well known to be encoded by neural activity in the

posterior parietal cortex [80–81]. These neural representations

can even remap to use a different end-effector interaction point to

compute difference vectors when using a tool [81] like the rake in

the present model. The third piece of information the RL agent

has access to is the reward signal, which is used to reinforce or

inhibit its choices among actions. It is this reward signal

component that the current simulations were designed to test. In

particular, we wanted to determine whether the agent could still

converge on a successful action sequence when faced with

uncertain reward signals. Since the SVM classifier is only able to

provide : 70–80% feedback accuracy on cued trials (Figure 6A), we

wanted to test the QSARSA algorithm’s robustness to such degraded

reward signals.

In the simulations, the pellet reaching the front of the table

resulted in the largest reward signal most often, and so the agent

came to prefer trajectories that had this result. The expected value

of the reward signal is thus seen to converge on the true

desirability, and the controller exploited this property, yielding a

high rate of truly rewarding outcomes: over 0.9 (see Figure 8) when

using a reward signal accuracy 0.75 as per Figure 6A. The

QSARSA agent is able to overcome the unreliability of a realistically

noisy classifier.

The QSARSA algorithm’s successful performance of the model

task depended on its ability to make use of delayed rewards, a

significant number of which were erroneous. The learning from

delayed rewards is a product of the incremental updates to values

according to the TD(l) rule. The ability to deal with uncertain

rewards is based on the annealing of the a parameter with

Reinforcement Learning with Frontal Lobe NIRS

PLOS ONE | www.plosone.org 13 July 2013 | Volume 8 | Issue 7 | e69541



repeated exposure to (state, action) pairs (see Methods; [58]). This

creates a reward-sampling effect, in which recently accumulated

rewards influence the value estimation less than prior rewards.

Over time, this procedure behaves with increasing momentum,

responding less to individual events than to the overall trends. The

result is that the algorithm converges on a solution that yields the

most reward return on average. It is also notable that a simple

modification of the reward landscape to include small penalties at

every time step encouraged faster solutions (data not shown). This

highlights the fact that useful behavioral modification of an RL

agent is easily promoted by simple changes to the reinforcement

signal.

As formulated here, the model task had 1183 possible 3-

dimensional states, and 4 possible actions. This is a fairly large

space over which the RL algorithm was able to search for solutions

successfully. It seems reasonable to expect similar algorithms to

deal well with the similarly large numbers of states and action

possibilities that would be encountered in real applications, such as

robotic limb control or computer interface operation.

Continuous state learning by such algorithms is possible too, by

using function approximation to generalize value functions across

regions of (state, action) space that have not been explicitly tested.

This represents a merging of unsupervised learning (RL) with

supervised learning (function fitting), and can be quite powerful,

though often difficult to implement (see [58]).
Desirability signals and reinforcement learning

BMIs. Reinforcement Learning attempts to determine the

optimal actions that should be taken by an agent that operates

in an environment with defined rewards. These algorithms are

semi-supervised, requiring no explicit information about the

correct output to perform effectively. Generally, RL systems

include a specification of rewards in the environment, the policy

followed by the agent, and a value function maintained by the

agent. The policy is a function that maps states onto actions. The

goal of the RL algorithm is to find the optimal policy for the agent

to employ as it reads states and chooses actions in its environment.

The results presented in this paper provide for the reinforce-

ment component for this kind of system. It should be emphasized

that they are part of a larger concept, and do not provide all the

requirements for a practical BMI. The method described allows

for evaluative feedback from the user to the controller about

actions that the controller has taken. A complete BMI will require

a means for interpreting the user’s intentions. That is, the system

needs a way for the user to specify the timing of actions (i.e. initiate

or restrain movements), as well as a practical way of defining

specific intentional states. Due to the vast space of possible actions

and higher-order goals, it will likely be necessary to provide some

information about intended movements to the agent as states. For

example, the agent would treat the state space in which the user is

trying to tie their shoes differently from the state space in which

the user is trying to catch a ball. Then within this set of restricted

state spaces the adaptive RL algorithm may be able to refine the

movements by choosing actions that maximize the user’s

satisfaction. To this end, a particularly useful set of state spaces

would be based on decoded cortical neuronal ensemble firing

patterns (similar to more traditional BMIs), and the set of actions

can be based on the capabilities of a prosthetic device. This way a

user could specify situation-specific goals (each state space would

define its own set), and then provide feedback to the controller as it

attempts to reach them. The results of the present study show that

a hemodynamic signal of frontal lobe estimates of state desirability

may serve as useful reinforcers for such an agent. This would form

a complete system that uses CNS signals to learn and adapt a

useful mapping from neural commands to prosthetic outputs.

Conclusions
This study demonstrates a system by which hemodynamic

signals of stimulus desirabilities recorded from the prefrontal

cortex with NIRS may be used as reinforcers for the behavior of

an adaptive BMI controller. Such a system would allow the BMI

to modify its behavior over time, always pursuing mappings from

inputs (neural data and artificial environmental sensor readings) to

outputs (computer or prosthetic) that are as satisfactory to the user

as possible. The classification and simulation results described

illustrate the feasibility of the conceptual framework, and highlight

the need for continued investigation into improved neural

decoding for full online conscious control. They also bring into

view a particular case in which the complete hemodynamic signal

is capable of providing more information about a neural

computation than either of its constituents alone. This has

implications for future hemodynamic studies of reward and

dopamine-related neural phenomena.
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