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Combining semi‑quantitative risk 
assessment, composite indicator 
and fuzzy logic for evaluation 
of hazardous chemical accidents
Huyen Thi Thu Do1*, Tram Thi Bich Ly1 & Tho Tien Do2

In this study, a combination of semi-quantitative risk assessment, composite indicator and fuzzy 
logic has been developed to identify industrial establishments and processes that represent potential 
environmental accidents associated with hazardous chemicals. The proposed method takes into 
consideration the root causes of risk probability of hazardous chemical accidents (HCAs), such as 
unsafe onsite storing and usage, inadequate operation training, poor safety management and 
analysis, equipment failure, and factors affected by the potential consequences of the accidents, 
including human health, water resources, and building and construction. These issues have been 
aggregated in a system of criteria and sub-criteria, demonstrated by a list of non-overlapping 
and exhaustive categorical terms. Semi-quantitative risk assessment is then applied to develop a 
framework for screening industrial establishments that exhibit potential HCAs. Fuzzy set theory 
with triangular fuzzy number deals with the uncertainty associated with the data input and reduces 
the influence of subjectivity and vagueness to the final results. The proposed method was tested 
among 77 industrial establishments located within the industrial zones of Ho Chi Minh City, Vietnam. 
Eighteen establishments were categorized as high HCA risk, 36 establishments were categorized as 
medium HCA risk, and 23 ones were of low HCA risk. The results are compatible with the practical 
chemical safety situation of the establishments and are consistent with expert evaluation.

Hazardous chemical accidents (HCAs) can occur at any location in the production, use, storage, disposal or 
transportation cycle of the chemical. Toxic chemicals released due to HCAs can result in human injury or death, 
fire and explosion, destruction of buildings and constructions, and may lead to further consequences, including 
contamination of land and water bodies and deterioration of the ecological environment. It is important that 
countries are fully prepared and have emergency plans in place to deal with any accident scenario. In order to 
prepare for HCAs, hazard sources must be identified and risk prioritized that can help adapt and focus prepared-
ness efforts on the locations of greatest concern. In light of this, a comprehensive understanding of state-of-art 
and practices in HCA risk assessment is crucial for risk preparedness, emergency planning and relevant decision 
making.

Hazardous chemical accidents and the situation in developing countries and in Vietnam.  Envi-
ronmental accidents associated with hazardous chemicals have recently attracted the attention of scholars and 
government officials. A large number of statistical studies are available that analyze the situations, causes, evo-
lutions, and characteristics of HCAs in different fields and geographical regions worldwide. A study by the 
Organization for Economic Co-operation and Development1 revealed that the release of hazardous substances 
accounted for a majority of HCAs that occurred within the OECD member countries from 1974–2013. Oggero 
et al.2 analyzed accidents that occurred during the transport of hazardous substances by road and rail from the 
beginning of the twentieth century to July 2004 and realized an upward trend in the frequency of accidents over 
time. HCAs are the most common type of accidents, accounting for 78% of the cases worldwide, followed by 
fires (28%), explosions (14%), and gas clouds (6%). Cunha et al.3 studied 119 hazardous and noxious substances 
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spill incidents that occurred in seawater worldwide from 1974 to 2011 and estimated 847,774 tons of 187 chemi-
cal substances spilled at sea. Most occurrences involve in flammable liquid substance (21%), toxic substances 
(16%), oxidizing substances (13%), corrosive substances (12%) and non-dangerous goods (10%). Darbra et al.4 
studied 225 domino accidents in process/storage plants and during the transportation of hazardous materials. 
Their analysis showed that the most frequent sequences were explosion followed by fire (27.6%), fire followed 
by explosion (27.5%), and fire followed by fire (17.8%). Seay et al.5 recognized a discrepancy in the trend of 
accidents occuring in bio-energy sector in USA and Europe during 1997–2014. He concluded that opposite 
behaviors regarding investment in bio-energy sector lead to the decrease in the trend of accidents in USA and 
the contemporary increase in the trend of European ones. Dakkoune et al.6 showed that the release, leakage, and 
runaway of hazardous chemicals were the critical scenario for 169 events in French chemical industries between 
1974 and 2014. Zhao et al.7 identified the trends, chemicals and accident types, causes, and safety management 
of HCAs in China between 2006 and 2017 and recognized that the primary types of accidents were leakage and 
explosion of compressed or liquefied gases, and the major reasons for these accidents were operation violation 
and insufficient production safety training. Whereas another study for the same period (2006–2018)8 found that 
the hazardous material environment and mechanical equipment and organization influence and unsafe supervi-
sion are among the main factors causing HCAs in China. Jang et al.9 collected data from 2115 cases of chemical 
accidents that occurred in South Korea over 20 years to establish chemical accident classification codes and a 
chemical accident reporting system. A more recent study by Jung et al.10 showed that over 76% of industrial 
HCAs in South Korea from January 2008 to June 2018 were resulted from human factors and 72% of them were 
fire and explosion accidents. Though, a statistical analysis of 85 major accidents in the petrochemical industry 
recorded in the Major Accident Reporting System (MARS) in the period of 1985–2002 showed that the events 
leading to an accidental outcome had their origins in the organization and management of the system rather 
than the technical and human failures11. These studies provide a comprehensive understanding of evolution 
rules of HCAs and support developing accurate and effective predictive preventions and responses.

Vietnam is a typical example of a developing country with an annual economic growth rate greater than 5%, 
since 2005. Rapid development over the last 15 years has led to many environmental consequences, including 
HCAs. The occurrences of HCAs have been increasing in recent years, with some being considered as major 
accidents. On 28 Aug 2019, a fire at a light bulb warehouse in  Ha Noi sparked public concern about the mercury 
release. On 6 Apr 2016, toxic chemical waste released during cleaning sewage pipe of Formosa steel plant led to 
massive marine life destruction in central Vietnam. On 18 Sep 2014, a chemical fire at a Japanese printing ink 
company in Binh Duong province resulted in the release of thousands ton of toxic chemicals to the atmosphere 
and water. On 17 Apr 2014, a massive fire at a chemical storage in Ho Chi Minh City caused many injuries and 
a release of 500 tons of toxic chemicals to the nearby river. Although, there are no relevant studies or official 
documents available in the literature to provide statistical data or reliable information regarding the current 
situation of HCAs in Vietnam.

On the other hand, studies on HCAs in Vietnam are still limited, fragmented, and lack a holistic approach12. 
The identification of establishments associated with hazardous chemical risk is currently based on a traditional 
approach that is claimed ineffective in chemical risk management. As stipulated in the Decree No. 26/2011/
ND-CP and further updated by the Decree No. 113/2017/ND-CP, the assessment of chemical hazards is relied 
on the quantity and characteristics of chemicals in use and onsite storage. This approach does not consider the 
practical constraints of the chemical management as well as the potential consequences of the HCAs, whereas 
they are the root-causes of HCAs in industry considering the low compliance of the establishments to the chemi-
cal safety regulations and the lack of an adequate and effective system of enforcement in Ho Chi Minh City. 
Thus it sometimes results in the failures of risk management and the implementation of action plan for chemical 
accident prevention and response, leading to an increasing number of major HCAs in the City. For the reason, a 
screening method that provides a comprehensive assessment of all underlying factors influencing the HCA risks 
shall, as required by the City authority, support the identification and statistical analysis of industrial establish-
ments with high risk of HCAs for the purpose of chemical risk management, planning and policy development.

Risk assessment, process risk assessment and hazard screening for hazardous chemical acci‑
dents.  Risk Assessment (RA), which was established as a scientific field 30–40 years ago13 is a process that 
evaluates the likelihood and consequence of an adverse outcome due to pressures or changes in environmental 
conditions resulting from human activities. In RA, risk is a function of two parameters, that is the frequency of 
occurrence of the undesired event and its consequences14. Risk assessment is increasingly a core approach used 
at all levels of policy and regulation. In industry, the incorporation of risk assessment into the stages of process 
design and operation is an example of the increasing relevance and value of safety decisions in light of inherent 
uncertainty arising from unexpected aspects of the development.

Process risk assessment, as one of the essential steps of risk management, involves the identification of poten-
tial hazards and analysis of any associated risks within the plant. Process risk assessment is fundamental to the 
safe design and operation of any process plant or other facilities. The major development of process safety and 
risk management are related to methods and models or the combination of both, in addition to guidelines, pro-
cedures and policies15. A large number of publications available in the literature provide comprehensive coverage 
of generally accepted methods and models for process risk assessment16–19. Broadly, the models and methods 
are categorized into three groups including: qualitative analysis [Failure Modes and Effects Analysis (FMEA)], 
What-if Checklist, Hazard and Operability Study (HAZOP); semi-quantitative analysis [Layer of Protection 
Analysis (LOPA), Quantified FMEA, Dow Fire and Explosion Index (F&EI), Dow Chemical Exposure Index 
(CEI)]; and quantitative analysis (Even tree, Fault tree analysis). FMEA examine every failure mode of all items 
and elements within a selected part of a system, and determine consequences for each failure mode to support an 
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adequate decision of the response to this failure17. HAZOP, as advisory system using rule-based approach, reviews 
the design of a process to identify and evaluates problems that may represent risks to personnel or equipment18. 
LOPA is a scenario-based approach that assist in judging between alternatives of independent protection layers 
for risk mitigation. As a simplified risk assessment of a scenario of one cause—one consequence pair, LOPA is 
more efficient than qualitative assessment in supporting consistent decisions on the adequacy of existing or pro-
posed layers of protection against an accident scenario. However it is less appropriate to analyze complex human 
behavior or equipment failure to understand the risk of a scenario, in comparison to quantitative assessment20. 
The indicator-based approaches, noteworthy among them are F&EI and CEI, are semi-quantitative risk evalua-
tion methods that have been widely used for hazard identification in process industry. F&EI translates material 
characteristics and process data to various hazard and exposure factors and calculates the relative ranking of a 
potential fire and explosion risk associated with the process21. CEI relies on factors that can influence the effects 
of potential chemical releases to identify and rank the relative acute health hazards22. These factors comprise of 
(1) a measure of acute toxicity, (2) the quantity of volatile material available for release, (3) the distance to areas 
of concern, (4) the molecular weight of the material being evaluated, and (5) various process parameters that can 
affect the conditions of a release such as temperature, pressure, reactivity, and so forth. Fault tree analysis (FTA) 
and event tree analysis (ETA) are both logical models that use logic flows to understand the failure of a process 
or to determine the consequences of a process failure respectively. Extended versions of some techniques includ-
ing HAZOP, LOPA, amongst others, were discussed thoroughly by Khan15. In order to deal with uncertainties, 
fuzzy logic was extensively applied in process safety and risk assessment. A large number of studies presented 
the integration of fuzzy logic into HAZOP23–25, LOPA26–28, FMEA29–32, and both FTA and ETA33–37. Albeit a long 
history of development and implementation, these methods and models face some common challenges in their 
application associated with intensive technical information requirement, considerable expertise and experi-
ence requirement, time-consuming preparation and processing. These tools concentrate to assist the industries 
in making informed decision regarding process risk management and control rather than provide supportive 
information for the development and implementation of industrial safety policies of the government authorities.

In process risk assessment, chemical hazard is of greatest concern. In order to support the chemical hazard 
identification, a variety of technical protocols can be found in the open literature that essentially rely on chemical 
properties and toxicity data to identify whether a chemical has been considered hazardous. The most common 
approach is indicator-based in which a numerical score is assigned to a chemical substance and/or a process 
facility to represent the potential hazards associated with the chemical production, storage, handling and disposal. 
They are generally classified into three main groups: list, framework, and expert system analysis38. GreenScreen 
list translator and its advanced framework version, GreenScreen assessment39 identify and classify chemicals of 
concern by applying scoring systems which use toxicological data or specified hazard lists as the basis for the 
assessment. GreenWERCS is a list-based screening tool developed by Walmart that generates a “green score” 
for a product with the chemical data achieved from thirty authoritative lists of chemical hazards40. The result is 
used to recommend a product to Walmart and assists the corporation with chemical compliances. Hazardous 
Facilities Screening Procedure (HFSP)41 evaluates hazardous substances in terms of three major effect groups: 
fire and explosion, human health, and environment. For each effect group, an Effects Ratio (R) is obtained by 
dividing the quantity of a substance or group of substances (Q) by the Adjusted Threshold (T). By using the 
Effects Ratio, it is possible to assess the cumulative potential effects of multiple substances held on the same site 
and support making decision on the selection of an appropriate site for a proposed hazardous facility. Critical 
Task Exposure Screening (CTES)42 calculates the inhalation risk score by relating the exposure estimate to the 
corresponding occupational exposure limit or occupational exposure band. EPA’s Risk-Screening Environmen-
tal Indicators (RSEI)43 is a screening-level model that offers relative comparison of industrial chemical releases 
from pounds-based, hazard-based, and risk related perspectives. The tool generates an Indicator Element as a 
combination of facility, chemical, release pathway and exposure pathway that is claimed useful for measuring 
general changes, setting priorities for further risk analysis, and supporting the strategic planning. Peng44 devel-
oped a method for evaluating risks and impacts of accidental pollution cases related to water bodies in chemical 
industrial parks, taking into account three factors: environmental risk sources, magnitude of the impact, and 
target receptors. It seems obvious that many chemical hazard screening tools are being used in the marketplace 
to assist the certification of “greener’ chemical ingredients in consumer products or to serve as an analytical 
basis for risk-related decision support, however they should not be generalized to fit all situations because their 
evaluations are context‐specific45. In addition, the quantity and properties of chemicals are fundamental for most 
aforementioned hazard screening tools.

A review of the process risk assessment and chemical hazard screening techniques reveals the following facts:

•	 The application of process risk assessment and hazard screening methods and tools are generally sophisticated 
and time-consuming to prepare, requiring detailed data that are not always available;

•	 The results of the assessment processes are indeed context-specific that limited in scope and geographic area;
•	 The target group of process risk assessment methods and models is likely the industrial companies rather 

than managing authorities, thus they would be unsuccessful in providing supportive information for the 
development and implementation of government industrial safety policies and planning;

•	 Most of the proposed approaches on chemical hazard screening focus on the potential hazards associated 
with the use and storage of chemicals, and are applied to a specific chemical (single element) or group of 
chemicals (multiple elements);

•	 Certain tools and methods estimate and evaluate risks in many criteria but these unlikely to sufficiently cover 
risk factors inherent in the practical management and operation of the facilities;
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•	 Fuzzy logic has proven its effectiveness in handling the data uncertainty and vagueness commonly faced in 
process safety and risk assessment.

For these aforementioned reasons, the present study focuses on developing a screening process to identify 
industrial establishments of high potential environmental risk associated with HCAs. Based on a combination of 
semi-quantitative risk assessment, composite indicator and fuzzy logic, the proposed approach can be concur-
rently accomplished for multiple industrial establishments and take into account the inherent risk factors of a 
practical chemical management situation of establishments. Thus, it is expected to facilitate the policy formula-
tion and management of chemical safety, and chemical incident prevention and response.

Methods
The method for identifying industrial establishments of potential HCAs is developed from the combination of 
semi-quantitative risk assessment, composite indicator and fuzzy logic. Theory of semi-quantitative risk assess-
ment is used to identify industrial establishments of high HCA risk. The components of HCA risk including 
probability of occurrence and severity of the accident impacts are described and determined by using the com-
posite indicator approach. Fuzzy set theory with triangular fuzzy number deals with the uncertainty associated 
with the data input and reduces the influence of subjectivity and vagueness to the final results. Each method 
has been widely applied in engineering. However, as a combination, they offer a new and efficient approach in 
HCA risk evaluation.

Identification of hazardous chemical accident risk.  This method defines the risk of a HCA based on 
the probability of a hazard occurring and the magnitude of the consequences, as follows:

where, Ri is the risk of HCAs of industrial facility i, Pi is the probability of occurrence of the HCAs in industrial 
facility i, Ci is the severity of the consequences of the accident.

Unlike a typical semi-quantitative approach of RA that the indexes of probability or the likelihood of occur-
rence are mostly based on statistical analysis and the consequences of the accidents are based on expert estimates 
or complex mathematical models, in this study, the probability of occurrence of the HCA ( Pi ) and magnitude 
of the consequence ( Ci ) are achieved through a predefined scoring system based on the composite indicator 
approach, as presented in Fig. 1.

Evaluation of hazardous chemical accident risk probability.  The probability of a HCA risk is determined by the 
current situation of the activities at risk, the compliance with the law and regulations on hazardous chemical 
management, and the HCA risk prevention and response capability of the establishments. Aforementioned fac-
tors are aggregated in a set of 3 criteria and 10 sub-criteria, that are chosen to provide insight into the establish-
ment situations in the context of HCA risk reduction and in line with the regulations (Table 1). Each criterion 
focuses on different aspects of HCA risk probability being explored and comprehends the same adequacy in the 
attribute to be measured. The criterion is weighted in favor of Safety on hazardous chemicals use and storage 
axis by a ratio of 3:4:3, with the score for each sub-criterion carrying equal weight of 10% within their axis. Since 
chemical safety are multi-faceted and multi-objective, whereas individual opinion vary, equal weighting is cer-
tainly an explicit weighting scheme to make the choice of weights less subjective and avoid bias.

The performance of the establishments are assessed qualitatively using this set of criteria and then converted 
to quantitative judgment by a proper scale (Table 4). The probability factor is determined using the following 
equation:

 where, Pi is the factor for probability of HCA occurrence of the establishment i, wj is the weighting of probability 
sub-criteria j, pij is the quantitative judgment for the performance of establishment i against sub-criteria j.

Estimation of magnitude of hazardous chemical accident consequences.  The HCA consequences are evaluated 
in terms of three major effect groups: human health, protective water bodies, buildings and properties. As pre-
sented in Fig. 2, the factor of magnitude of HCA consequences is decomposed into two criteria: the hazard 
source level and the sensitivity of potential receptors.

Factor for the magnitude of the HCA consequences ( Ci ) is a production of the hazard source factor and the 
total impact severity of various receptors as using the following equation:

where, Hsource is the Hazard source factor, Ireceptor_k is the Factor on impact severity to the receptor k that takes 
into account underlying characteristics of the potential receptors (people, natural resources, plants, or animals).

In the HCAs, hazard source factor ( Hsource) refers to the source of potential harm, which considers the 
quantity and hazard of the chemicals being handled or used at the site. The hazard source factor is estimated, 
as follows:

(1)Ri = Pi × Ci ,

(2)Pi =

m∑

j=1

wj × pij , ∀i = 1, n,

(3)Ci = Hsource ×
∑

Ireceptor_k ,
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where, Nchem is the hazard level of the risks, determined by the quantity of the hazardous chemicals onsite storage 
as stipulated in Appendix IV an Appendix VII of Decree No. 26/2011/ND-CP, Rchem is the significant level of the 
hazardous chemicals, determined by the volumetric ratio between the maximum hazardous chemicals being 

(4)Hsource = Nchem × Rchem,

Figure 1.   Process for estimation of hazardous chemical accident risk combining semi-quantitative risk 
assessment and composite indicator.

Table 1.   Structure and weighting of the criteria for determining the probability of occurrence ( wj).

Probability of occurence of HCAs

A. Compliance with the guidelines and regulations on HCAs preven-
tion and response (30%)

A.1 Compliance with the compulsory chemical safety formalities (10%)

A.2 Compliance with the compulsory hazardous waste management 
formalities (10%)

A.3 Development of chemical prevention and response plan (10%)

B. Safety on hazardous chemicals use and storage (40%)

B.1 Activities inherent risks of HCAs (10%)

B.2 Chemcial pipelines (10%)

B.3 Design and operation of the chemical storage(s) (10%)

B.4 Design and operation of the hazardous waste storage(s) (10%)

C. Capability of HCAs prevention and response (30%)

C.1 Chemical safety organization struture (10%)

C.2 Training on chemical safety (10%)

C.3 Equipment for the HCAs prevention and response (10%)
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stored at the site at a time and the threshold limit for the determination of hazardous chemical as identified in 
the list of hazardous chemical enclosed to the Decree No. 26/2011/ND-CP.

The factor of severity of impact to receptor k ( Ireceptor_k ) considers three types of receptor, that is human 
health ( Ireceptor_1 ), protective water bodies ( Ireceptor_2 ), and buildings and properties ( Ireceptor_3 ). As presented in 
Fig. 2, these factors are dependent on the relative distance from the source of the accident to the receptors and 
the sensitive of the receptors, and being identified as follows:

where, Dreceptor_k is the factor on the distance between the accident source to the receptor k, Sreceptor_k is the factor 
on the sensitivity of the receptor k.

Qualitative assessment of HCA risk factors.  A qualitative scale of five levels (very high, high, medium, low, very 
low) is applied for the assessment of risk probability and severity of its potential impacts. In order for this type 
of labelling to be unambiguous and applicable, two specific guidelines with detailed instructions were developed 
for the evaluation of factors determining HCA probability and severity of its consequences. Based on a compre-
hensive analysis of regulatory and technical documents, these guidelines were created that contain descriptive 
definition of all factors and constituent criteria together with detailed explanation for the determination of the 
corresponding categorical terms. The guidelines can facilitate the process of data collection and limit the amount 
of information required for the assessment.

Table 2 below illustrates a part of the guideline for qualitative assessment of HCA probability factor. In 
evaluating the sub-criterion “Compliance with the compulsory chemical safety formalities”, the study refers to 
11 requirements on chemical safety certifications or licenses as stipulated in the legislative decision No. 46/2016/
QD-UBND. The assessment of very high, high, medium, low and very low compliance rely on the number of 
formality requirements being certified as compliant by the establishments. Although all requirements are com-
pulsory, it is occasionally observed during the survey that the establishments, particularly Vietnamese small and 
medium scale enterprises, fail to comply with several formalities, for instances: certificate of qualification for 
production of and trading in chemicals on the list of those subject to conditional production and trading; permit 

(5)Ireceptor_k =
√

Dreceptor_k × Sreceptor_k ,

Figure 2.   Structure of the factor determining the severity of the HCA consequences ( Ci).
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for production of and trading in chemicals on the list of those restricted from production and trading; certificate 
of origin for hazardous chemicals; certificate of approved fire safety design; approval of environmental impact 
assessment; hazardous material transportation driver permit, and so forth. An inadequate legal awareness of the 
establishments and a lack of necessary resources to enforce the chemical legislation effectively are amongst the 
most important causes of the non-compliance. In view of this fact, the performance of establishments against 
this criterion are categorized into five levels as details in Table 2.

The sub-criterion “Activities inherent risks of HCAs” otherwise considers the characteristics of the manufac-
turing processes and activities present the potential HCA hazards. Based on a guideline of Vietnam Environment 
Administration46, a list of 47 industrial activities/operations involved in various HCA hazards have been created. 
The criterion also considers the types and quantity of hazardous chemicals being handled and stored at a time. 
In doing so, the study applies two levels of chemical hazards as stipulated in the Appendix IV and Appendix VII 
of Decree No. 26/2011/ND-CP. Evaluation against this criterion effectively integrates both the establishment’s 
activities/operations and the levels of chemical hazards as presented in Table 2. It is expected that such integra-
tion will support a rigorous evaluation of the inherent risks of HCAs.

In order to evaluate the professional qualification on the chemical safety of the establishments, the study 
refers to the Chemical Law, Article No. 30, Clause No. 2b. This law stipulates organizations and individuals using 
chemicals for production must have persons in charge of chemical safety. As shown in Table 2, the establishments 
are classified into five levels against sub-criterion “Chemical safety organization structure” that are consistent 
with the observations during the site survey.

Table 3 represents a part of the guideline of HCA consequence evaluation as an illustration for the qualita-
tive assessment against the severity criterion regarding human health. Given that the severity of a HCA impact 

Table 2.   Example of qualitative assessment for factors defining HCA hazard probability.

Criteria Categorical terms

Sub-criteria Description Very high High Medium Low Very low

A.1 Compliance with 
the compulsory chemi-
cal safety formalities

This criterion appraises 
the proper compliance 
with the state regulation 
regarding chemi-
cal safety (including 
11 requirements as 
stipulated in Decision 
No. 46/2016/QD-UBND 
dated Nov 15th, 2016 of 
the People’s Committee 
of Ho Chi Minh City, 
Vietnam)

Establishments meet 
from 1 to 2 legislative 
requirements on chemi-
cal safety

Establishments meet 
from 3 to 4 legislative 
requirements on chemi-
cal safety

Establishments meet 
from 5 to 7 legislative 
requirements on chemi-
cal safety

Establishments meet 
from 8 to 9 legislative 
requirements on chemi-
cal safety

Establishments meet 
from 10 to 11 legislative 
requirements on chemi-
cal safety

B.1 Activities inherent 
risks of HCAs

This criterion considers 
the chemical activities/
operations involved in 
HCA hazards and the 
size of chemical handled 
and stored on-site at 
a time as stipulated in 
Decree No. 26/2011/
ND-CP

Establishments having 
activities/operations 
in the List of high 
HCA hazards and 
being subjected to 
implementation of 
Chemical Prevention 
and Response Plan

Establishments having 
activities/operations in 
the List of high HCA 
hazards and being 
subjected to implemen-
tation of Chemical Pre-
vention and Response 
Measure

Establishments 
having no activities/
operations in the List 
of high HCA hazards 
and being subjected 
to implementation of 
Chemical Prevention 
and Response Plan

Establishments having 
no activities/opera-
tions in the List of high 
HCA hazards and being 
subjected to implemen-
tation of Chemical Pre-
vention and Response 
Measure

Other establishments

C.1 Chemical safety 
organization structure

This criterion considers 
the status of chemical 
safety management 
chemical safety at the 
facility

No staff of chemical 
safety or HSE manage-
ment is appointed in 
place

To the position of 
chemical safety and 
HSE management only 
one concurrent staff is 
appointed

To the position of 
chemical safety and 
HSE management only 
one specialized staff is 
appointed

To the position of 
chemical safety and 
HSE management only 
one specialized staff 
who received extended 
chemical safety and 
other HSE training is 
appointed

A dedicated department 
is established that com-
prises of staffs special-
ized in and well-trained 
on chemical safety and 
HSE management

Table 3.   Example of qualitative assessment for factors defining the severity of HCA consequences regarding 
human health.

Categorical terms

Human health ( Ireceptor_1)

Relative distance between the accident source to the 
receptor Dreceptor_1 Sensitivity of the receptor Sreceptor_1

Very high < 100 m Special urban and grade 1 urban centre

High 100–500 m Grade 2, 3, 4 urban centre and suburb of special urban 
and grade 1 urban

Medium 500–1000 m Industrial park, grade 1 urban centre, and suburb of grade 
2, 3, 4 urbans

Low 1000–2000 m Rural areas

Very low > 2000 m Other areas
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to human health is dependent on the relative distance from the potential accident source to the receptors and 
the sensitive of the receptors as identified in Eq. (5), the qualitative assessment against human health sensitivity 
comprises of five levels attributing to the patterns of population concentration as detailed in Table 3. This clas-
sification is in line with the regions of receptors of air pollution sources as stipulated in the National Technical 
Regulation on Industrial Emission of Inorganic Substances and Dusts QCVN 19:2009/BTNMT. Referring to the 
guidance of the Ministry of Health in Decision No. 3733/2002/BYT, the safety distance between the pollution 
sources and the residential areas are, dependent on the industrial sectors and production capacity of the pol-
lution sources, 2000 m, 1000 m, 500 m and 100 m as the minimum. In the guideline, the relative distance from 
the potential accident source to the receptors include five values corresponding to five levels of the qualitative 
assessment (very high, high, medium, low and very low), respectively.

Incorporating fuzzy logic to the calculation procedure of HCA risk.  In order to deal with the uncertainty of 
qualitative assessment against HCA risk probability and severity factors, the present study applies fuzzy logic to 
convert qualitative data into quantitative form that can be used as input parameters in the proposed equations. 
Triangular fuzzy numbers were chosen owning to their ease of application and computation. Various scales have 
been introduced to convert qualitative assessments to triangular fuzzy numbers47–49. The scale presented by 
Chan et al.48 was applied in the study as shown in Table 4.

The standard interval-based arithmetic of fuzzy numbers as described by Gani50 is fundamental for the cal-
culation of the probability factor, consequence magnitude factor and HCA risk as in the Eqs. (1) to (5). The total 
HCA risk factor ( Ri ) resulted from the calculation process are in form of triangular fuzzy numbers, presented 
as (i1, i2, i3), in which i1, i2, i3 respectively denote the lower bound value (LBV), most occurring value (MOV) 
and upper bound value (UBV) of the risk factor. In order to facilitate the risk assessment and decision making, 
the total HCA risk factor will be defuzzified and converted to script number. The centroid point defuzzification 
method51 was applied as given in the following equations:

Categorization of establishments for risk of hazardous chemical accidents.  The final results of the defuzzification 
represent the ratings of HCA risks that can offer a screening-level, risk-related perspective for relative compari-
sons for HCA risks of various industrial establishments. It is worth mentioning that since the R̃i values do not 
provide absolute measures of risk, they can only be interpreted as relative measures to be compared with other 
such values. The classification of establishments regarding HCA risks are defined by R̃i , as in Table 5 below.

This equal interval classification scheme divides the range of risk values into three equal-sized subranges. This 
method was chosen owning up to the expected distribution of the data. As verified in the case study, the normal 
distribution of risk value results can be represented accurately by equal interval classification.

(6)x̃i =
1

3
(i1 + 2i2 + i3),

(7)ỹi =
i1 + 4i2 + i3

3(i1 + 2i2 + i3)
,

(8)R̃i =

√
(x̃i)

2
+

(
ỹi
)2
.

Table 4.   Fuzzy scale for the qualitative assessment.

Rating Score

Very high (3; 5; 5)

High (1; 3; 5)

Medium (1
3
 ; 1; 1)

Low (1
5
;1
3
 ; 1)

Very low (1
5
;1
5
;1
3
)

Table 5.   Classification of establishments for risk of hazardous chemical accidents.

Range Description
[
R̃min, R̃min +

1
/
3(R̃max − R̃min)

]
Low risk

[
R̃min +

1
/
3(R̃max − R̃min), R̃min +

2
/
3(R̃max − R̃min)

]
Medium risk

[
R̃min +

2
/
3(R̃max − R̃min), R̃max

]
High risk
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Hazardous chemical accident risk screening for industrial establishments in Ho Chi Minh City, 
Vietnam.  The proposed approach is applied to a large number of industrial establishments in Ho Chi Minh 
City, Vietnam to determine the risk of HCAs. Initially, a list of 1123 establishments derived from Ho Chi Minh 
City Export Processing Zone and Industrial Park Authority (HEPZA) was used in the preliminary screening step 
to figure out a list of statistically reliable and representative establishments for the survey data collection. In this 
step, the selection is straightforwardly based on the sectorial category and company size in terms of hazardous 
chemicals of onsite-storage or hazardous wastes for disposal. Firstly, the list was shortened to 232 establishments 
targeting to nine sectors including chemical production; pesticide; food processing; metallurgy; electronics; fuel 
transportation and storage; textile; tanning; and hazardous waste treatment. Then a throughout site survey was 
conducted by the study team and HEPZA that approached and collected information of 171 establishments, 
accounting for 15.23% of the total number of industrial establishments located inside the industrial zones (IZ) 
in Ho Chi Minh City. The remaining 61 establishments were not able to collect information since they refused to 
receive the survey team nor to provide information or they no longer operate.

During the site survey, data was collected through the questionnaire, site investigation, and other related mate-
rials including environmental impact assessment reports, fire prevention and fighting plan, chemical accident 
prevention and response plan provided by those establishments. Based on the information collected during the 
site survey, 94 establishments were excluded from the list as their company sizes in terms of hazardous chemicals 
of onsite-storage was relatively small, lower than that regulated in Appendix IV and Appendix VII of Decree No. 
26/2011/ND-CP. Moreover, the HCA risks in them were insignificant because the hazardous chemical usage and 
storage was unlikely observed during the site survey.

The remaining 77 establishments were selected for the proposed screening process. To support the estima-
tion of HCA risk, a HCA risk database was compiled, which fully covered the criteria of HCA risk probability 
of occurrence and severity of consequence, including but not limited to data relating to the manufacturing 
process, that is the usage, storage and disposal of hazardous chemicals and wastes, and the current practices on 
HCAs prevention and response. Since many of the proposed criteria are qualitative, evaluation of establishments 
against such criteria are defined regarding their real-life performance and the underlying chemical activity 
characterization. This is facilitated by the guidelines for evaluating HCA risk probability and impact severity 
developed by the study group.

Table 6.   Categorization of establishments for HCA risks in the case study.

Range of relative risk factor ( ̃Ri) Risk level Number of establishments

2.20 < R̃i High risk 18

1.42 < R̃i ≤ 2.20 Medium risk 36

1.42 ≤ R̃i Low risk 23

Table 7.   Results HCA risk calculation for high risk group.

No Anno- tation Location
Nationality of 
establishment Sectorial category Probability (Pi) Consequence ( Ci) Risk (Ri) Risk rating (R̃i)

1 H11 Tan Thuan IZ Japanese Alcoholic products (0.84;2.07;2.80) (0.4;1.0;1.5) (0.32;2.13;4.18) 2.97

2 H10 Tan Binh IZ Vietnamese Cold storage warehouse (0.67;2.00;3.00) (0.4;0.8;1.8) (0.24;1.59;5.33) 2.95

3 H18 Tan Phu Trung IZ Vietnamese Pesticide (0.91;1.40;1.80) (0.49;1.32;2.02) (0.44;1.84;3.64) 2.92

4 H4 Le Minh Xuan IZ Vietnamese Pesticide (0.67;2.00;3.00) (0.42;1.03;1.40) (0.28;2.07;4.21) 2.92

5 H17 Tan Tao IZ Vietnamese Textile dyeing (0.97;2.05;2.07) (0.42;1.14;1.64) (0.41;2.33;3.39) 2.87

6 H16 Tan Tao IZ Vietnamese Textile dyeing (0.77;1.87;2.13) (0.43;1.22;1.64) (0.34;2.27;3.50) 2.84

7 H1 Le Minh Xuan IZ Vietnamese Pesticide (0.67;2.00;3.00) (0.41;0.99;1.32) (0.27;1.99;3.95) 2.78

8 H3 Le Minh Xuan IZ Vietnamese Pesticide (0.65;1.93;3.00) (0.41;0.99;1.32) (0.27;1.92;3.95) 2.73

9 H12 Tan Thuan IZ Japanese
Fruits and vegetable 
processing and cold storage 
warehouse

(0.77;1.87;2.60) (0.4;1.0;1.5) (0.30;1.92;3.88) 2.72

10 H6 Hiep Phuoc IZ Vietnamese Textile dyeing (0.93;2.40;3.40) (0.36;0.71;1.19) (0.33;1.72;4.05) 2.65

11 H2 Le Minh Xuan IZ Vietnamese Pesticide (0.65;1.93;2.60) (0.41;1.03;1.32) (0.27;2.00;3.43) 2.61

12 H8 Hiep Phuoc IZ Vietnamese Tanning (0.64;1.84;2.87) (0.36;0.81;1.57) (0.23;1.49;4.50) 2.61

13 H9 Hiep Phuoc IZ Vietnamese Tanning (0.63;1.77;2.87) (0.36;0.81;1.57) (0.22;1.44;4.50) 2.57

14 H7 Hiep Phuoc IZ Vietnamese Pesticide and fertilizer (0.61;1.29;1.60) (0.52;1.41;2.24) (0.32;1.82;3.58) 2.56

15 H5 Le Minh Xuan IZ Vietnamese Pesticide (0.59;1.73;2.60) (0.41;0.991.32) (0.24;1.72;3.43) 2.42

16 H14 Tan Thuan IZ Thailand Cosmetic production (0.57;1.65;2.33) (0.39;1.03;1.49) (0.22;1.70;3.48) 2.42

17 H15 Tan Thuan IZ Thailand Cosmetic production (0.57;1.65;2.33) (0.39;1.03;1.49) (0.22;1.70;3.48) 2.42

18 H13 Tan Thuan IZ Japanese Footwear (0.51;1.47;2.00) (0.5;1.2;1.5) (0.26;1.71;2.99) 2.28



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18544  | https://doi.org/10.1038/s41598-020-75583-8

www.nature.com/scientificreports/

The application of the proposed methodology resulted in a list of 18 establishments being categorized as high 
HCA risk with R̃i above 2.20. Thirty six establishments were categorized as medium HCA risk with R̃i ranging 
between 1.42 and 2.20, and 23 establishments of low HCA risk with R̃i below 1.42, as shown in Table 6.

Eighteen establishments of high HCA risk are of greatest concerns. The results of HCA risk probability factors, 
consequence factors, and total risk factors of these establishments are presented in Table 7 and Fig. 3.

From the results obtained, it is recognized that:

•	 Eighteen establishments are categorized as high HCA risk, accounting for 23.4 percent of the number of 
establishments under consideration;

•	 Vietnamese enterprises account for a majority of the high HCA risk establishments (correspondent to 83.3 
percent);

•	 Tanning, pesticide and fertilizer production, food production and cold storage are sectors of highest concerns;
•	 These establishments are mostly located in the proximity of the city centre, particularly those located in the 

high sensitive areas such as Tan Thuan industrial zone adjacent to Phu My Hung, an upper-class urban area 
(H6, H11, H13–H15); and Le Minh Xuan industrial zone (H1–H5), an old-fashioned and chemical-intensive 
industrial area of the City;

•	 They share common characteristics of high HCA risk probability due to their poor chemical management 
practices, which are consistent with the observation during the site survey, such as improper storage, handling 
and disposal of chemicals and hazardous wastes; low compliance with chemical safety and hazardous waste 
management regulations; inadequate training on emergency response, fire prevention and safety manage-
ment; inefficient occupational health and safety management system; lack of safety procedures; and insuf-
ficient preventive maintenance. This is particularly noteworthy for the small-scale enterprises operating in 
the tanning and pesticide industries;

•	 The magnitude of HCA consequences appears to be dependent on the hazard sources rather than the severity 
of HCA impacts, as most establishments are located close to populated areas and water bodies. The factors 
of impact severity are almost invariable for establishments in the same industrial zone. However, for those 
using and storing hazardous chemicals in large quantities, particularly foreign investment enterprises, HCA 
consequence factors are particularly higher than others.

•	 Several enterprises encountered HCAs during their operation, for instances a NH3 release accident at H10 
in 2017, a fire and hazardous chemical release at H3 in 2014.

The proposed method, in comparison to other index-based hazard screening approaches, would be more 
generalized and integrated in view of the underlying concepts of criteria. It offers the inclusion of diverse HCA 
hazards in one risk value while the most well-established approaches, F&EI and CEI, fire and explosion hazards 

Figure 3.   Site map of the industrial establishments presenting high risk of hazardous chemical accidents 
[processed and extracted from Google Earth Pro 7.3.2.5776 (64-bit), https​://www.googl​e.com/earth​/downl​oad/
gep/agree​.html (2019)].

https://www.google.com/earth/download/gep/agree.html
https://www.google.com/earth/download/gep/agree.html
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and toxic chemical hazards are assessed separately by two distinct tools. Relatively little information may be 
required that make the proposed method being less analytically demanding but still estimates magnitude and 
probability of effects with reasonable confidence.

Ethical approval.  This study was appraised and approved four times by the specific scientific committees 
of Vietnam National University of Ho Chi Minh City (VNU-HCM) and Ho Chi Minh City Department of Sci-
ences and Technology (HCMC-DOST) during 2016 to 2018, in which technical and (part of) ethical concerns 
of the study was considered. Since there is not any regulations/requirements regarding ethical approval for such 
study in Vietnam, all procedures performed in studies involving human participants were in accordance with 
the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later 
amendments or comparable ethical standards.

Informed consent.  Informed consent was obtained from all individual participants included in the study.

Conclusion and findings
In this study, a screening method has been developed to support the identification of industrial establishments 
of high potential HCAs. The method is proposed as a new and improved approach for chemical risk assessment 
as it successfully combines three different methods: semi-quantitative risk assessment, composite indicator and 
fuzzy logic. Such a combination allows a simple and efficient risk analysis and facilitates handling data uncertainty 
and inconsistency, which usually challenge traditional risk analysis. It is also novel in the mathematical models 
that make use of complex qualitative indicators to determine the risk probability and consequence parameters. 
Although it comprehensively considers all risk factors including root causes of risk probability and potential 
receptors of the accident consequences. Facing challenges of sophisticated application and detailed data require-
ment of the process risk assessment and chemical hazard screening, the proposed method is expected to be 
comprehensive, yet simple enough for users without a technical background.

The proposed method was tested among 77 industrial enterprises located within the industrial zones of Ho 
Chi Minh City, Vietnam. It was found that eighteen establishments were categorized as high HCA risk with Ri 
ranging above 2.20. Thirty-six establishments were categorized as medium HCA risk with Ri ranging between 
1.42 and 2.20, and twenty-three ones were of low HCA risk with Ri below 1.42. The results of the implementation 
of the proposed method suggest that this approach is beneficial for both industrial practitioners and the relevant 
authorities. It will enable establishments to recognize their HCA hazards, help to raise their awareness on chemi-
cal safety and thus promote a safer production, proactive chemical management and emergency preparedness. 
The outcomes of the case study also contribute to a better understanding and efficient management of industrial 
HCA risks of the relevant government authorities. A number of immediate measures have been introduced for 
a short-term plan, for examples developing agency coordination policies to promote efficient management of 
HCA risks, creating an appropriate chemical safety inspection program to ensure compliance; reinforcing the 
authority’s enforcement capability against chemical safety infringements, targeting to establishments of high 
risk group, and so forth. It is expected that the application of the proposed method to a larger scale will provide 
implication for industrial land-use planning and environmental policy oriented to sustainable development of 
Ho Chi Minh City in the long term.

The testing results also illustrated the capability of a large-scale application to realize potential HCAs, however 
some limitations should be noted. Although semi-quantitative approach facilitates the implementation and allows 
flexibility of the risk assessment process, qualitative assessment is predominant in the judgment of the risk factors 
that could be claimed for low credibility and researcher’s personal biases. Still it is worth mentioning that the 
criteria for determining HCA risk probability and severity factors are developed on the basis of legal and techni-
cal specifications which are more or less quantitative. In addition, the probability estimation is merely a weight 
sum approach with fixed weight calculation. This approach is considered straightforward but sufficient for the 
determination of HCA risk probability to the extent that the chemical management system is currently ineffective 
and lack of attention across the local authority. From this perspective, a possible extension of the study can be 
foreseen, aimed at improving the qualitative assessment and the weight sum approach for probability calculation.

Last but not least, practical challenges faced during the site survey can affect the results of the case study. Sixty-
one establishments, accounting for up to 26.3 percent of the total number of establishments initially selected, 
were not available for the data collection due to a number of reasons, including their concerns of the sensitive 
information disclosure, temporary production downtimes, and unapproachable condition of the establishments. 
Information provided by establishments were, on the other hand, sometimes insufficient and inconsistent to the 
real-life performance that demanded significant time and effort for data processing. An integration of sensitiv-
ity and uncertainty analysis into the proposed method can be another potential direction of further studies in 
order to improve the reliability of the assessment results. However, it is notable that the final screening results 
obtained are contemporarily compatible with the practical chemical safety situation of the establishments and 
consistent to the expert evaluation.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to confi-
dentiality agreement with research participants but are available from the corresponding author on reasonable 
request.
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