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Chronic non-communicable diseases (NCDs) are the leading causes of work absence, 
disability, and mortality worldwide. Most of these diseases are associated with low-grade 
inflammation. Here, we hypothesize that stresses (defined as homeostatic disturbances) 
can induce low-grade inflammation by increasing the availability of water, sodium, and 
energy-rich substances to meet the increased metabolic demand induced by the stressor. 
One way of triggering low-grade inflammation is by increasing intestinal barrier permeability 
through activation of various components of the stress system. Although beneficial to meet 
the demands necessary during stress, increased intestinal barrier permeability also raises 
the possibility of the translocation of bacteria and their toxins across the intestinal lumen 
into the blood circulation. In combination with modern life-style factors, the increase in 
bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes 
a low-grade inflammatory state. We support this hypothesis with numerous studies finding 
associations with NCDs and markers of endotoxemia, suggesting that this process plays 
a pivotal and perhaps even a causal role in the development of low-grade inflammation 
and its related diseases.

Keywords: endotoxemia, endotoxin, inflammation, intestinal permeability, lipopolysaccharide, stress, tight 
junction

introduction

Inflammation is the response of the innate immune system triggered by stimuli like microbial pathogens 
and injury. Acute systemic inflammation such as in sepsis, trauma, burns, and surgery is characterized 
by a quick increase in plasma levels (up to 100-fold) of pro-inflammatory cytokines and acute phase 
proteins, while in low-grade inflammation, there is a sustained but only two to threefold increase 
in circulation pro-inflammatory mediators (1). Chronic low-grade inflammation is characteristic 
for many non-communicable diseases (NCDs) including diabetes type II, cardiovascular disorders, 
autoimmune diseases, chronic fatigue syndrome, depression, and neurodegenerative pathologies, 
but until now the exact mechanism behind the elevated levels of inflammatory mediators found in 
these conditions is not well understood (2–5).

Inflammation can be induced by the binding of pathogen-associated molecular patterns (PAMPs) 
to toll-like receptors (TLRs), which are expressed on different cells types including immune cells, 
adipocytes, and endothelial cells. The most extensively studied PAMP is lipopolysaccharide (LPS) 
or endotoxin (the terms LPS and endotoxin will be used interchangeably throughout the rest of 
the article), a major cell wall component of Gram-negative bacteria, which is normally present 
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in the human circulation in very low concentrations. It has 
been hypothesized that most of this circulating LPS is derived 
from the gut, since the gut-microbiota is the biggest source of 
Gram-negative bacteria-derived LPS. However, LPS found in the 
circulation could also be derived from Gram-negative bacteria 
residing in the oral cavity, respiratory, and genitourinary tracts, 
or can be food-derived (6–8). Under certain circumstances, there 
can be an increase of endotoxin translocation across the intestinal 
barrier, leading to mildly increased concentrations in the blood 
circulation. This process has been associated with several NCDs, 
like depression (9), chronic fatigue syndrome (10), chronic heart 
failure (11), type 2 diabetes (12), autism (13), non-alcoholic fatty 
liver disease (NAFLD) (14), and inflammatory bowel disease (IBD) 
(15), diseases that are all linked to chronic systemic low-grade 
inflammation, indicating that endotoxemia could be an important 
contributor in the development of these conditions.

Here, we hypothesize that stress-induction leads to a more 
permeable intestinal wall intended to facilitate an increase in the 
availability of water, sodium, and energy-rich substances necessary 
to meet the increased metabolic demand induced by the stressor. 
Modern life-style factors, such as long-term psychosocial stress 
and components of our “Western” diet constantly challenge the 
stress-axis and further compromise intestinal barrier function, 
resulting in endotoxemia, low-grade inflammation, and its related 
diseases. We support our hypothesis by describing literature sur-
rounding stress- and immune system-activation processes and 
their relation to gut barrier function and explain how life-style 
choices impact all these systems. In addition, we present a vast 
amount of literature describing associations with NCDs and 
markers of endotoxemia. Overall, we conclude that stress-induced 
disrupted barrier function in parallel with elevated circulating 
endotoxin levels may underlie disease onset and progression and 
should be considered much more than just a risk factor for chronic 
disease; it could be a cause.

Bacterial toxins activate the immune 
system via tLrs

Lipopolysaccharide, the major cell wall component of Gram-
negative bacteria, is characterized by its capacity to induce 
inflammation, fever, shock, and death (1). Additionally in recent 
years, other cell wall components of Gram-negative and -positive 
bacteria have been recognized to have endotoxic properties (16), 
but these will not be further addressed in the rest of the paper. 
Endotoxins are released from bacteria during infection or as a 
consequence of bacterial lysis. Although both whole bacteria 
and bacterial toxins can translocate transcellular or paracellular 
into the lymph, blood, and mesenteric lymph nodes, it is still not 
precisely clear if the presence of endotoxin in the blood circulation 
(endotoxemia) also presents whole bacteria translocation across 
the intestinal wall (17).

Inflammation can be induced by the binding of LPS to TLR4. 
The lipid-A moiety of LPS interacts with the LPS-sensing machin-
ery composed of TLR4, myeloid differential protein 2, CD14, and 
LPS-binding protein (LBP). LBP transports and delivers circulating 
aggregates of LPS to lipoproteins, resulting in hepatic clearance, or 
delivers LPS to CD14 (the membrane-bound or secreted, soluble 

form of this molecule), leading to TLR4 activation. TLR4 activation 
activates two transcription factors, activator protein (AP)-1 and 
nuclear factor κB (NF-κB) (18, 19), and stimulates the production 
of pro-inflammatory mediators such as prostaglandin 2 (PGE2) 
(20), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, 
interferon (IFN)-γ, and the acute phase protein, C-reactive protein 
(CRP) (19). Simultaneously, an uncontrolled pro-inflammatory 
reaction is prevented by the induction of TLR4, NF-κB, and AP-1 
signaling inhibitors, which are probably involved in creating 
endotoxin tolerance (21). LPS tolerance is defined as a reduced 
responsiveness to a LPS challenge following a first encounter of 
endotoxin (22). It has been suggested that the dose of LPS exposure 
is important for determining the switch between LPS tolerance and 
priming. For example, in macrophages, high LPS concentrations 
induced a robust pro-inflammatory response in parallel with the 
activation of inhibitory feedback mechanisms. Lower concentra-
tions of LPS, like those observed in NCDs, removed transcriptional 
suppressors on the promoters of pro-inflammatory genes and 
induced a mild but persistent expression of pro-inflammatory 
mediators (21, 23).

intestinal Barrier Function

the paracellular pathway is important for Water, 
Mineral, and nutrient Uptake
The intestinal barrier allows for the regulated uptake of water, 
minerals, and nutrients and protects the gut lumen from damage 
due to harmful substances. Components can cross the epithelial 
barrier by active transport and endocytosis (transcellular) or via 
the paracellular route. Because hydrophilic solutes are limited to 
cross lipid membranes of epithelial cells, the paracellular route is 
an important and major route for the transport of water, solutes, 
and minerals across the intestinal barrier (24, 25). Active glucose, 
sodium, and water uptake is mediated by the activity of sodium-
dependent glucose co-transporters (SGLTs) (26). The transcellular 
absorption of glucose and sodium and the resulting basolateral 
disposition of glucose and sodium by these transporters opens 
up the paracellular pathway structure and allows the passive flow 
of water and small nutrients by creating an osmotic gradient (27).

Intestinal permeability is a measure of the barrier function 
of the gut and relates to the paracellular space surrounding the 
brush border surface of the enterocytes and the junctional com-
plexes (28). The junctional complex, containing tight junctions, 
adherens junctions, and desmosomes is an important regulator of 
the paracellular pathway and allows the passage of water, solutes, 
and ions, but under normal conditions provides a barrier to larger 
molecules (28, 29). The claudin family of junctional transmem-
brane proteins has a substantial effect on paracellular permeability. 
While one group of sealing claudins makes the paracellular barrier 
less permeable, the other group of claudins is known to increase 
paracellular permeability by the formation of pores that increase 
permeability for small solutes (30, 31). The expression of claudin 
proteins varies between tissues, explaining the variances in per-
meability of tight junctions among tissues (27). The paracellular 
pathway can be divided into the pore and non-pore pathway. The 
pore pathway is mainly controlled by the expression of claudins, 
while the non-pore pathway is more sensitive to cytoskeletal 
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disruptions (30). Cytoskeletal rearrangements can be induced 
by phosphorylation of the regulatory myosin light chain 
(MLC), induced by MLC-kinase (MLCK). Phosphorylation 
of the MLC facilitates myosin binding to actin and therefore 
aids in cytoskeletal contractility. MLCK can be activated by 
cytokines such as TNF-α, causing increases in tight junction 
permeability by actomyosin contraction and reorganization 
of the tight junction (32, 33). In addition, SGLT1 activation 
and associated increases in tight junction permeability are 
also paralleled with phosphorylation of MLC, indicating that 
MLCK is an important mediator in tight junction and paracel-
lular permeability regulation (25, 34) (Figure 1).

Increased intestinal permeability has been associated with 
autoimmune diseases, such as type 1 diabetes (35), rheumatoid 
arthritis, multiple sclerosis (36), and diseases related to chronic 
inflammation, like IBD (36, 37), asthma (38), chronic fatigue 
syndrome, and depression (10, 39). It has been hypothesized 
that chronic intestinal hyper-permeability results in a pro-
inflammatory phenotype induced by the enhanced paracel-
lular translocation of microbial (and dietary) antigens across 
the gut barrier (40).

stress increases permeability of the 
intestinal Barrier

Stressful stimuli activate the sympathetic nervous system (SNS) 
and hypothalamic–pituitary–adrenal (HPA)-axis. Activation of 
both systems increases the availability of water, minerals, and 
energy-rich substances in order to meet with the body’s metabolic 

FiGUre 1 | MLC phosphorylation increases intestinal permeability. 
Activation of the SNS increases intestinal permeability by stimulating the 
activity of SGLT1 on epithelial cells. Activation of SGLT1 is paralleled by MLC 
phosphorylation by MLCK, inducing actomyosin contraction and 
reorganization of the tight junction. The resulting increase in paracellular 
permeability raises the possibility of translocation of bacteria and/or their 
toxins across the more permeable gut barrier. Pro-inflammatory cytokines 
produced by activated immune cells residing in the lamina propria further 
increase intestinal permeability by activating MLCK. JC, junctional complex.

demand (41, 42). The SNS responds instantly to physical and 
psychological stress by reallocating energy into different organs by 
neuronal regulation of heart rate, blood flow, release of catecho-
lamines (adrenalin and noradrenalin) from the adrenal medulla 
(43), and stimulation of the renin–angiotensin–aldosterone 
system (44), involved in retention of water and sodium from the 
kidneys. In addition to the kidneys, water and sodium reabsorp-
tion can also be achieved at the level of the intestine. The intestinal 
wall is innervated by adrenergic sympathetic nerve fibers that 
upon stimulation increase water and sodium absorption (45, 46), 
which is paralleled by increases in intestinal permeability. The 
SNS-induced increase in permeability is likely mediated by β2-
adrenergic receptors expressed on epithelial cells (47). Activation 
of the β2-adrenergic-receptors stimulated SGLT1-mediated glu-
cose absorption from the gut (48, 49) and the resulting basolateral 
disposition of glucose and sodium by these transporters opens 
up the paracellular pathway (27) (Figure  1). Not surprisingly, 
blockage of the SNS by means of thoracic epidural anesthesia 
resulted in the blockage of the endotoxin-induced increase in 
intestinal permeability in rats (50).

Activation of the HPA-axis leads to the release of glucocor-
ticoids that potentiate some of the actions of catecholamines. 
Essential to this response are the neurons in the paraventricular 
nucleus of the hypothalamus expressing corticotropin-releasing 
hormone (CRH) and other co-secretagogues, such as arginine 
vasopressin (AVP) and oxytocin, both involved in the regulation of 
water homeostasis. AVP and CRH trigger the immediate release of 
adrenocorticotropic hormone (ACTH) from the anterior pituitary, 
which in turn induces the release of glucocorticoids and to some 
extend mineralocorticoids from the adrenal cortex, stimulating 
gluconeogenesis and increasing sodium and water retention, 
respectively (51, 52). Intestinal permeability is regulated by several 
components of the HPA-axis.

In epithelial HT-29 monolayers, exposure to CRH resulted in 
an increased response to LPS as reflected by a decrease in transepi-
thelial resistance and a significant increase in the expression of the 
pore forming protein, claudin-2. Interestingly enough, these effects 
were mediated by an increase in TLR4 expression, an observation 
that could be repeated in mice treated with the water-avoid stressor 
(53). TLR4 activation resulted in the activation of the transcription 
factor NF-κB, which has specific binding sites in the claudin-2 gene 
promoter (54), indicating that in epithelial cells CRH affects both 
intestinal permeability and inflammatory pathways.

In rats, exposure to restricted stress or swimming stress 
increased intestinal permeability throughout the whole intestinal 
tract as measured by the fractional secretion of the urinary recovery 
of sucrose (reflecting gastric permeability), the lactulose–mannitol 
ratio (as a marker for small intestinal permeability), and sucralose 
(reflecting both small intestinal and colonic permeability) (55). 
Other experimental animal stress models such as thermal injury 
or early maternal deprivation induced the development of gastric 
ulcers, altered gastrointestinal motility and ion secretion, and 
increased intestinal permeability [reviewed by Caso et al. (56)]. 
SGLT1 expression was markedly increased in the rat jejunum and 
ileum after 8 weeks of restraint stress. These findings were paral-
leled with an increase in intestinal lymphocytic infiltration and 
adrenal gland weight gain (26). The up-regulation of the SGLT1 
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is probably necessary to meet with the increased water, sodium, 
and nutrient demand, induced by chronic stress (42).

The effect of acute stress on intestinal permeability was also 
investigated in humans (57). In healthy volunteers subjected to a 
public speech test, high cortisol-responders displayed increased 
intestinal permeability as measured by the lactulose–mannitol 
ratio. Exogenous CRH administration also increased intestinal 
permeability, yet the CRH-induced hyper-permeability could be 
suppressed by the mast cell stabilizer disodium cromoglycate. Mast 
cell stabilization before the public speech test also did not alter 
intestinal permeability, however, it should be noted that in this 
experiment, a control group was not included. Nevertheless, these 
results identify CRH as an important factor in the stress-induced 
alterations of the intestinal barrier function. These alterations 
seemed to be mediated by intestinal mast cells that upon activa-
tion secrete pro-inflammatory mediators like IFN-γ and TNF-α. 
A variety of pro-inflammatory cytokines increases epithelial and 
endothelial paracellular permeability by modulating the structure 
of the tight junction and by inducing cytoskeletal disruptions via 
activation of MLCK (32, 34, 58) (Figure 1). For example, IFN-
γ increased epithelial permeability of T84 monolayers to large 
molecules (10  kDa). Interestingly, the IFN-γ-induced increase 
in permeability also up-regulated the passage of FITC-labeled-
endotoxin by 10-fold (59).

neuroendocrine–immune interactions

The complex neuroendocrine–immune interactions are 
evidenced by the fact that emotional stressors influence the 
immune response and that pure immunological stimuli impact 
on cognitive performance (60). Inflammatory mediators activate 
the HPA-axis with the purpose to provoke disease behavior and 
redirect energy-rich nutrients toward the immune system (61). 
Cytokines have been shown to increase nutrient availability to meet 
with the inflammation-dependent increased metabolic demand. 
For example, the cytokine IL-1α increased whole body glucose 
metabolism on a central level (62) and cytokines like IL-6, TNF-α, 
IL-1, and IFN independently evoke a HPA-axis response (63–65). 
Immune mediators can communicate with the brain via several 
pathways. By stimulating afferent sensory nerve fibers, by entering 
the brain via the circumventricular organs or by binding to cerebral 
blood vessel endothelium, immune mediators effectively redirect 
energy-rich substrates toward the immune system (41, 42).

Besides inflammatory cytokines, prostaglandins synthesized 
via the cyclooxygenase system play a central role in inflammation 
and HPA-axis activation. Zimomra et al. (65) demonstrated that 
in rats the initial activation of the HPA-axis by LPS is mediated by 
prostaglandins, like PGE2, while inflammatory cytokines maintain 
corticosterone levels at later time-points. In this study, it was sug-
gested that prostaglandins stimulated corticosterone release in a 
direct manner, since the peak in circulating corticosterone levels 
was observed long before the peak in circulating ACTH. This idea 
was confirmed by a study in rodents, showing that PGE2 directly 
stimulated the release of glucocorticoids from the adrenal gland (66). 
In human adrenal cells expressing TLR2 and TLR4, LPS stimulation 
resulted in the release of cortisol. This effect was mediated by PGE2, 
since inhibition of cyclooxygenase-2 attenuated cortisol release (67).

As indicated, TLR4 activation stimulates the release of PGE2 
by immune cells, adipocytes, endothelial, epithelial, and prob-
ably also adrenal cells (68), inducing the peripheral release of 
glucocorticoids from the adrenal gland (66). PGE2 also activates 
glucocorticoid production through activation of the HPA-axis at 
the level of the hypothalamus and the pituitary (69). Macrophages, 
homing in blood vessels in the cranium, are directly activated by 
danger signals such as LPS. Activation of these special macrophages 
induces the production of PGE2 which directly stimulates the 
paraventricular nucleus of the hypothalamus, leading to higher 
production of glucocorticoids, which should probably protect 
against possible inflammation of the brain (69).

acute stress stimulates pro-inflammatory 
pathways by increasing intestinal 
permeability

Acute stress modulates the immune response and changes immune 
cell distribution. These neuroendocrine effects on the immune 
system are mediated by stress-hormones released from the 
adrenal gland, by direct innervation of sympathetic nerve fibers 
into lymphoid organs and by stress hormone receptors expressed 
on immune cells, like glucocorticoid receptors (GRs) and α- and 
β-adrenergic receptors (70–72). It has been suggested that by 
mobilizing immune cells, the stress response, also known as the 
“fight–flight reaction,” prepares the immune system for oncoming 
challenges (70).

In addition, acute stress increases circulating pro-inflam-
matory mediators (73–75). In subjects exposed to acute stress, 
NF-κB was up-regulated in peripheral blood mononuclear cells 
in parallel with elevated levels of circulating catecholamines and 
glucocorticoids (76). Until now, it is not completely understood 
what causes this pro-inflammatory response. Glucocorticoids 
mostly have an inhibitory effect on inflammatory pathways and 
catecholamines a rather modulating than activating influence 
on the immune system (71, 72, 77), however, it has been shown 
that activation of the β-adrenergic receptor by noradrenalin (but 
not adrenalin) increased NF-κB binding to DNA in monocytes 
in vitro (76). A recent study in rodents showed that acute stress-
induced neuro-inflammation could be prevented by a pre-stress 
treatment with antibiotics or an inhibitor of MLCK. In addition, 
these treatments prevented stress-induced hyper-permeability 
and endotoxemia, indicating that it is not the stress-factor itself 
producing a pro-inflammatory response of the immune system, 
but the fact that stress increases barrier permeability and the 
translocation of endotoxin. Pre-stress probiotic treatment with 
Lactobacillus farciminis had similar effects, which could be 
explained by its ability to enhance intestinal barrier function 
(78). In agreement with these results, it could be hypothesized 
that the (short-lasting) pro-inflammatory activity in humans 
observed during acute stress is initiated by a stress-induced 
increase in intestinal permeability, mediated by the SNS and 
components of the HPA-axis, and resulting in higher levels 
of translocating endotoxin interacting with TLRs on immune 
cells, adipocytes, and epithelial cells. A schematic overview of 
the complex neuroendocrine–immune interactions and their 
relation to gut barrier function are displayed in Figure 2.
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mediators, activate the SNS and HPA-axis. Activation of the HPA-axis 
stimulates neurons in the paraventricular nucleus of the hypothalamus to 
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pituitary, resulting in the secretion of corticosteroids from the adrenal cortex. 
CRH has been shown to affect intestinal permeability. SNS activation results 
in the release of catecholamines from the adrenal medulla. The intestinal wall 
is innervated by adrenergic sympathetic nerve fibers that upon stimulation 
increase water, sodium, and glucose absorption, paralleled by increased 
intestinal permeability. The resulting increase in translocation of endotoxin 
across the intestinal barrier can stimulate immune cells in the underlying 
lamina propria to secrete pro-inflammatory cytokines and prostaglandins like 
PGE2. Inflammatory mediators communicate with the brain by stimulating 
afferent sensory nerve fibers, by entering the brain via the circumventricular 
organs or by binding to cerebral blood vessel endothelium. Continuous 
stress-induced impairment of the intestinal barrier creates a vicious circle 
whereby inflammatory cytokines will persistently activate the SNS and 
HPA-axis resulting in barrier disruption, increased endotoxin translocation, 
and a pro-inflammatory state.
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Chronic stress dysregulates the Hpa-axis 
and Changes immune Function

Chronic psychological stress is known to dysregulate the 
immune system. These alterations are accompanied by low-
grade inflammation, delayed wound healing, and increased 
susceptibility to infectious diseases (79). Chronic stress leads 
to hypercortisolemia (77), long-term permeability of barriers, 
endotoxemia, and low-grade inflammation (our hypothesis and 
theory). Normally, the release of glucocorticoids puts a limit on 
the maximum activity of the immune system; however, chronic 

HPA-axis stimulation can result in glucocorticoid resistance 
at the level of the immune system, making it insensitive to 
its inhibitory and modulatory actions (2). This process is 
observed in several conditions (including conditions related 
to psychosocial stress), whereby immune cells from patients 
are less responsive to the inhibitory actions of glucocorticoids 
on cytokine release and cell proliferation after stimulation 
in  vitro (80–83). In addition, chronic stress induces a shift 
in the production of type 1 cytokines toward type 2 cytokine 
production. It can be deducted that by this mechanism, the part 
of the immune system involved in the clearance of extracellular 
bacteria and bacterial toxins (the type 2 response) is prevented 
from being suppressed and protection against ongoing micro-
bial infiltration (endotoxemia) is guaranteed, while the type 1 
response, involved in clearance of intracellular pathogens (like 
viruses) is inhibited (71, 84).

Life-style-related Factors induce 
endotoxemia

The fact that stress increases barrier permeability and thereby 
enhances the availability of water, sodium, and nutrients, 
makes sense from an evolutionary perspective. However, the 
question arises if the accompanied translocation of bacteria 
and their toxins should also be considered beneficial for the 
host. We speculate that when the composition of the microbiota 
is physiological, and barrier opening is short-lasting, acute 
stress will not produce low-grade inflammation. However, 
modern people suffer from new multi-factorial stressors, 
such as chronic psychosocial stress and the consumption 
of a “Western diet,” which constantly challenge the stress-
axis, alter microbiota composition, and thereby compromise 
intestinal barrier function. This next section discusses how 
modern life-style factors impact the gut–brain–immune-axis 
and promote endotoxemia, low-grade inflammation, and its 
related diseases.

Gut-Microbiota Modulate stress-axis and influence 
Gut Barrier Function
Large differences in the composition of the gut-microbiota and an 
overall reduction in microbial diversity are observed in Western 
populations when compared to traditional Hunter-gatherers or 
people from rural Africa (85, 86). These environment and diet-
induced changes in gut-microbiota have been connected to an 
increased susceptibility to chronic diseases, like IBD, obesity, and 
type 1 and type 2 diabetes (87). The gut-microbiota influences 
inflammatory (88) and metabolic processes (89) and has been 
shown to influence the development of the HPA-axis and immune 
system (90, 91). For example, exposure to LPS during developmen-
tal periods can exaggerate the HPA-axis and immune response to 
stress (92, 93), but also the absence of bacteria can induce these 
effects. Animals raised in germ-free environments showed an exag-
gerated HPA-axis response, which was normalized by colonization 
with fecal matter from specifically germ-free animals or by the 
administration of the Gram-positive Bifidobacterium infantis (94). 
Vice versa, exposure to social stress changed the composition of 
the gut-microbiota in mice (95, 96) and prenatal stress altered the 
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microbiome in rhesus monkeys by reducing the overall numbers of 
the Gram-positive Bifidobacteria and Lactobacilli (97), indicating 
that chronic stress affected the composition of the gut microbiome. 
Stress influences gut motility, secretions, and mucin production, 
thereby altering the habitat of resident bacteria, promoting changes 
in the composition of the gut microbiome (98), and allowing the 
growth of pathogenic bacteria (99).

Increasing evidence supports an important role for microbiota 
on the homeostasis of the intestinal barrier. Certain strains of the 
Gram-positive Lactobacilli decreased intestinal permeability in 
several animal and human disease models (78, 100). B. infantis 
reduced intestinal permeability (as assessed by 70-kDa fluorescein 
isothiocyanate–dextran transmucosal flux) and ameliorated symp-
toms in a neonatal necrotizing enterocolitis mouse model (101). 
Further evidence indicating the influence of the gut-microbiota 
on intestinal permeability was presented in detoxifying alcoholic-
dependent subjects: lower levels of Ruminococcaceae and higher 
abundance of Lachnospiraceae (Dorea) and Blautia were associ-
ated with increased intestinal permeability (102). In addition, 
higher levels of certain pathogenic bacteria can increase intestinal 
permeability by disrupting the epithelial barrier and triggering 
cell death and inflammation. These bacteria have the ability to 
bind and/or translocate through endothelial and microfold cells 
and have been shown to secrete toxins or other effector molecules 
via specialized secretion systems. Although the exact mechanisms 
are not well described, most pathogenic gut bacteria including 
Escherichia coli, Helicobacter pylori, Staphylococcus aureus, Cholera 
Pseudomonas fluorescens, Pseudomonas aeruginosa, Yersinia 
enterocolitica, Campylobacter jejuni, and Salmonella typhimurium 
alter paracellular permeability by disassembling tight junctions 
and generating cytoskeleton changes by increasing inflammation 
[reviewed by Barreau et al. (103)]. As an example, a strain of E. 
coli, normally present in the human gut, induced focal leaks in 
colonic epithelial monolayers and in rat distal colon by using 
α-hemolysin, allowing for its paracellular translocation across 
the epithelial layer (104).

High-Caloric and High-Fat diets induce inflammation 
and increase Circulating endotoxin Levels
Compared to healthy individuals, patients suffering from obesity 
have higher circulating endotoxin levels together with greater levels 
of circulating pro-inflammatory cytokines and insulin resistance 
(105). Food intake can produce post-prandial immune activation 
and elevate endotoxin levels when a meal is high in calories (106) 
or has a high fat content (6, 107–109).

Rodents fed a 4-week high-fat diet (72% fat) showed a con-
stant elevation in circulating endotoxin levels, while in control 
animals, endotoxin levels only increased during feeding hours. 
Furthermore, a high-fat diet produced fasting glycemia, insulin 
resistance, general weight gain, and weight gain of the liver and 
visceral and subcutaneous adipose tissue. In addition, adipose 
tissue F4/80-positive cells (indicating the infiltration of mac-
rophages), markers of inflammation, and liver triglyceride content 
were increased. Interestingly, almost similar effects were observed 
in mice subcutaneously infused with LPS (resulting in similar 
circulating LPS levels as observed in the high-fat fed mice). These 
effects were mediated by TLR4, since mice lacking CD14, which 

is important for the recognition of LPS to this receptor, showed a 
delayed response to a high-fat diet or LPS injections (107).

In healthy humans, a 910 calories high-fat and high-carbohy-
drate meal resulted in increased circulating endotoxin levels and 
elevated levels of LBP in parallel with higher inflammatory markers 
and increased protein expression of TLR2 and TLR4 in isolated 
leukocytes. A meal high in fruits and fiber did not induce these 
effects (108). Plasma endotoxin levels, pro-inflammatory markers, 
and leukocyte TLR4 expression increased after the intake of cream 
(300 calories), while the intake of 300 calories of glucose resulted 
only in a pro-inflammatory response and the intake of orange juice 
and water showed none of these effects (110). In healthy individu-
als, plasma endotoxin levels increased about 50% after the intake 
of a high-fat meal (900 calories) (6) and 4 weeks consumption of 
a Western-style diet raised plasma endotoxin activity levels by 
71% (111).

How exactly the intake of a high-caloric meal increases cir-
culating endotoxin levels is still unclear but has been explained 
by several mechanisms [reviewed by Kelly et al. (112)]. One of 
these suggested mechanisms is that the introduction of a high-fat 
diet modulates the expression of genes involved in the barrier 
function in epithelial cells, thereby directly compromising 
the integrity of the tight junction (113). Another explanation 
could be that a high-caloric/high-fat meal induces high levels 
of insulin and leptin, hormones that directly activate the SNS 
(114, 115). Moreover, insulin enhances SGLT1-mediated glucose 
absorption (116). Activation of the SGLT1 and the SNS leads 
to increased permeability of the gut barrier, which may induce 
the observed post-prandial endotoxemia (our hypothesis and 
theory).

Gliadin Compromises the integrity of tight  
Junctions
The intake of wheat and other cereal grains has been implicated 
in the development of inflammation-related diseases, by inducing 
inflammation and increasing intestinal permeability (40). Gliadin, 
a component of gluten, has been demonstrated to increase perme-
ability in human Caco-2 intestinal epithelial cells by reorganizing 
actin filaments and altering expression of junctional complex 
proteins (117). Several studies by the group of Fasano et al. showed 
that the binding of gliadin to the chemokine receptor CXCR3 
on epithelial IEC-6 and Caco-2 cells releases zonulin, a protein 
that directly compromises the integrity of the junctional complex 
(118, 119).

alcohol Consumption increases intestinal 
permeability
Alcohol consumption is an important risk factor for disease and 
is one of the major causes of chronic liver disease. Increased 
intestinal permeability has been observed during chronic alcohol 
consumption. In an animal model of chronic alcoholic liver 
disease, alcohol feeding for 8 weeks increased intestinal perme-
ability (120). In humans, alcohol-dependence induced changes 
in the gut-microbiota composition that were associated with 
increased intestinal permeability (102). Furthermore, increased 
intestinal permeability and higher circulating endotoxin levels 
were observed in patients with chronic alcohol abuse (121–123).
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exercise-induced Heat-stress increases intestinal 
permeability
Exercise increases body temperature, reduces intestinal blood flow 
(reallocated to the muscles and cardiac system), and increases 
intestinal permeability by activating the SNS and HPA-axis. 
Already in 1992, Oktedalen et  al. (124) showed that marathon 
runners displayed a significant increase in intestinal permeability. 
In addition, studies have indicated that strenuous exercise induced 
higher circulating endotoxin levels and activated the immune 
system (125–128). Further evidence of exercise- and heat-induced 
increased intestinal permeability, leading to gastrointestinal com-
plaints in people engaging in physical activity, has been recently 
reviewed (129).

endotoxemia is associated with diseases 
related to Chronic inflammation

Multiple human studies have emerged that find associations with 
NCDs and markers of endotoxemia. Even aging, associated with 
higher sympathetic nerve activity (130) and higher circulating 
inflammatory mediators like IL-6, has been linked to higher 
plasma concentrations of LPS and LBP (131). In further support 
of our theory, in this section, an overview is given of human stud-
ies finding changes in levels of endotoxin or endotoxin-related 
markers in NCDs (Table 1).

Metabolic syndrome
Metabolic syndrome is accompanied by an increased risk for 
NAFLD, obesity, type 2 diabetes, and cardiovascular diseases. 
All of these conditions are related to and even predicted by 
increased sympathetic nerve activity (154) and a dysregulated 
HPA-axis (155). Higher circulating endotoxin and LBP levels 
are associated with risk factors of the metabolic syndrome, like 
insulin resistance, obesity, dyslipidemia, and chronic inflam-
mation (132–135). Patients suffering from NAFLD exhibited 
significantly higher serum endotoxin levels in contrast to 
healthy controls (14). Farhardi et  al. (136) indicated that 
elevated plasma endotoxin levels in these patients were related 
to an impaired intestinal barrier function, because, only in the 
patient group, the intake of a permeability stressor (aspirin) 
increased the 0–24 h urinary excretion of sucralose (a marker 
of whole-gut permeability). Furthermore, augmented plasma 
LBP levels in concert with increased plasma levels of TNF-α 
were observed in obese NAFLD patients compared to healthy 
controls (137).

Elevated circulating levels of endotoxin and LBP were 
detected in type 2 diabetics (12, 133, 138–140). Compared 
to healthy controls, obese individuals and type 2 diabetics 
showed higher endotoxin levels after the intake of a high-fat 
meal. Increased endotoxin levels were observed in all chal-
lenged individuals, yet higher endotoxin levels were seen in 
individuals suffering from metabolic illnesses, suggesting an 
increased intestinal permeability in these patients (141). This 
was further indicated by a recent study showing that increased 
serum levels of endotoxin, IL-6, and TNF-α were found in type 
2 diabetic patients compared to healthy individuals. The level 

of endotoxin was positively related to zonulin, a marker for 
intestinal permeability (12).

A large cohort of patients with coronary artery disease identi-
fied increased serum LBP levels to be associated with total and 
cardiovascular mortality (144). Moreover, circulating LBP levels 
were associated with carotid intima media thickness (a marker 
of atherosclerosis), obesity, insulin resistance, and high-sensitive 
CRP (145).

Patients suffering from chronic heart failure with aggravated 
renal function displayed increased circulating endotoxin levels 
and an impairment of the intestinal barrier (11). Wiedermann 
et al. (146) showed that subjects with the highest levels of circu-
lating endotoxin (90th percentile) had a threefold increased risk 
of incident atherosclerosis. Higher serum endotoxin and pro-
inflammatory cytokine concentrations were seen in patients with 
edematous chronic heart disease compared to stable patients 
and healthy controls. Intriguingly, after short-term diuretic 
treatment, circulating endotoxin concentrations decreased in 
edematous patients (147). Diuretic treatment [like angiotensin-
converting enzyme (ACE) inhibitors] ameliorated intestinal 
inflammation, perhaps by impacting on intestinal permeability 
through interference with the renin–angiotensin–aldosterone 
system. Several components of this system (renin, ACE, and 
angiotensin II) have been shown to stimulate pro-inflammatory 
pathways (44, 156).

inflammatory Bowel disease
Ulcerative colitis and Crohn’s disease are intestinal inflammatory 
disorders, also known as IBD, which have been causally linked 
to chronic psychological stress (157), altered immune function, 
changes in the gut-microbiota, increased intestinal permeability, 
and endotoxemia (158). For example, increased plasma endotoxin 
and LBP levels were measured in both patient groups, but were 
more pronounced in patients with active disease compared to 
inactive disease and were associated with disease severity (148). 
In addition, detectable plasma endotoxin levels and higher plasma 
levels of LBP were more frequently observed in IBD patients 
compared to controls (15, 149) and were correlated with disease 
severity and circulating TNF-α levels (150).

psychiatric diseases
Over the last decade, the role of the gut–brain axis has emerged as 
an important mediator in the development of psychiatric and mood 
disorders (159). Moreover, higher endotoxin levels and intestinal 
barrier dysfunction are observed in several of these conditions. For 
example, Parkinson’s patients exhibited increased total intestinal 
permeability and a more intense staining for E. coli LPS and oxida-
tive stress markers in intestinal sigmoid mucosa samples. However, 
in these patients, endotoxin levels resembled control samples 
and serum LBP concentrations were lower compared to healthy 
individuals (151). Higher serum endotoxin levels are associated 
with severe autism, sporadic amyotrophic lateral sclerosis, and 
Alzheimer’s disease (13, 152). Furthermore, increased IgA and IgM 
responses against LPS of commensal bacteria were seen in chronic 
fatigue syndrome (10) and depression (9). Intriguingly, chronic 
oral infection of periodontitis was associated with Alzheimer’s 
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disease where higher antibody levels against oral pathogens were 
observed years before the onset of symptoms in people suffering 
from Alzheimer’s disease (153), suggesting there was an increased 
translocation of bacteria and/or bacterial toxins from the mouth 
into the bloodstream.

Conclusion

Chronic low-grade inflammation is an eminent feature of NCDs. 
In addition, many studies report increased circulating endotoxin 
levels and increased gut permeability in patients suffering from 
these conditions. As reviewed in this paper, stress-induced 
increases in intestinal permeability, in combination with modern 
life-style factors, raise the possibility of translocation of bacteria 
and/or their toxins across the more permeable gut barrier. The 

resulting, long lasting, endotoxemia should be considered much 
more than just a risk factor for chronic disease; it could be a cause. 
Notwithstanding the fact that the exact origin and sequence of 
events involved in development of NCDs remain to be unsolved, 
evidence indicates that a disrupted barrier function in parallel 
with elevated circulating endotoxin levels may underlie disease 
onset and progression. For this reason, therapies aimed at restoring 
intestinal barrier function, life-style changes, and stress manage-
ment should be considered important strategies in preventing and 
attenuating the pro-inflammatory state observed in NCDs.
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taBLe 1 | associations found between markers of endotoxemia and disease.

reference disease Marker(s) of endotoxemia effect

(132) Metabolic syndrome Serum LPS LPS levels correlated positively with 
symptoms of metabolic syndrome

(133) Obesity-related insulin resistance Serum LBP LBP levels increased
(134) Psoriasis/metabolic syndrome Serum LBP LBP levels only increased in psoriasis 

patients with metabolic syndrome
(135) Obesity Plasma LBP LBP levels increased
(136) NAFLD Plasma LPS LPS levels increased
(14) NAFLD Serum LPS LPS levels increased
(137) Obesity/NAFLD Plasma LBP LBP levels increased
(122) Liver disease Plasma LPS LPS levels increased
(12) Type 2 diabetes Serum LPS LPS levels increased
(138) Type 2 diabetes Plasma LPS LPS levels increased
(139) Type 2 diabetes Serum LPS LPS levels increased
(140) Diabetes Serum LPS LPS levels increased
(141) Type 2 diabetes, impaired glucose  

tolerance
Serum LPS LPS levels increased

(142) Cardiovascular diseases Serum LPS, serum IgA/IgG against  
oral bacteria

LPS levels increased, no differences 
in IgA/IgG levels

(143) Coronary artery disease Plasma LBP LBP levels increased
(144) Coronary artery disease Serum LBP LBP levels increased
(145) Arteriosclerosis Serum LBP LBP levels increased
(146) Arteriosclerosis Plasma LBP LBP levels increased
(11) Chronic heart failure (edematous) Plasma LPS LPS levels increased in edematous 

vs. non-edematous patients. No 
differences between all patients vs. 
controls

(147) Chronic heart disease (edematous) Plasma LPS LPS levels increased in edematous 
vs. non-edematous patients

(148) IBD Serum LPS, LBP, sCD14 LPS, LBP, sCD14 levels increased
(149) IBD Plasma LPS, LBP, sCD15, endoCAbs No differences in levels of LPS, 

sCD14, and endoCAbs. LBP levels 
increased

(150) IBD Plasma LPS, endoCAbs LPS and endoCAbs levels increased 
with disease severity

(151) Parkinson’s disease Serum LBP, E. coli LPS infiltration in  
intestinal tissue

LBP levels decreased, increased LPS 
infiltration in intestinal tissue

(13) Autism Serum LPS, sCD14 LPS levels increased, no differences 
in sCD14 levels

(152) Sporadic amyotrophic lateral sclerosis, 
Alzheimer’s disease

Plasma LPS LPS levels increased

(9) Depression Serum IgA/IgM against intestinal bacteria IgA/IgM levels increased
(10) Chronic fatigue syndrome Serum IgA/IgM against intestinal bacteria IgA/IgM levels increased
(153) Alzheimer’s disease Serum IgG against oral bacteria IgG levels increased
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