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Abstract

Background: Experimental studies have demonstrated that both the extracellular vasculature or microenvironment
and intracellular molecular network (e.g., epidermal growth factor receptor (EGFR) signaling pathway) are important
for brain tumor growth. Additionally, some drugs have been developed to inhibit EGFR signaling pathways.
However, how angiogenesis affects the response of tumor cells to drug treatment has rarely been mechanistically
studied. Therefore, a multiscale model is required to investigate such complex biological systems that contain
interactions and feedback among multiple levels.

Results: In this study, we developed a single cell-based multiscale spatiotemporal model to simulate vascular
tumor growth and the drug response based on the vascular endothelial growth factor receptor (VEGFR) signaling
pathway, the EGFR signaling pathway and the cell cycle as well as several microenvironmental factors that
determine cell fate switches in a temporal and spatial context.

By incorporating the EGFRI treatment effect, the model showed an interesting phenomenon in which the survival
rate of tumor cells decreased in the early stage but rebounded in a later stage, revealing the emergence of drug
resistance. Moreover, we revealed the critical role of angiogenesis in acquired drug resistance, since inhibiting
blood vessel growth using a VEGFR inhibitor prevented the recovery of the survival rate of tumor cells in the later
stage.

We further investigated the optimal timing of combining VEGFR inhibition with EGFR inhibition and predicted that
the drug combination targeting both the EGFR pathway and VEGFR pathway has a synergistic effect. The
experimental data validated the prediction of drug synergy, confirming the effectiveness of our model. In addition,
the combination of EGFR and VEGFR genes showed clinical relevance in glioma patients.
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Conclusions: The developed multiscale model revealed angiogenesis-induced drug resistance mechanisms of brain
tumors to EGFRI treatment and predicted a synergistic drug combination targeting both EGFR and VEGFR pathways
with optimal combination timing. This study explored the mechanistic and functional mechanisms of the
angiogenesis underlying tumor growth and drug resistance, which advances our understanding of novel
mechanisms of drug resistance and provides implications for designing more effective cancer therapies.
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Background

Brain tumors, such as glioblastoma (GBM), are one of
the most malignant cancers with poor prognostic sur-
vival rates. Many targeted therapies have been designed
to treat brain tumors, but the clinical effectiveness of
these therapies is limited due to the emergence of drug
resistance during cancer therapeutics. The mechanisms
underlying cancer drug resistance have still not been
fully understood, which restricted the rational design of
robust and effective therapeutics. Therefore, it is urgent
to uncover the mechanisms of drug resistance for the
success of more effective therapeutics of brain tumors.

Much experimental data have demonstrated that vari-
ous factors are involved in the initiation and progression
and drug response of brain tumors, ranging from genetic
mutations, signaling pathways, to the extracellular
microenvironment and surrounding tissue. Previous
studies of drug resistance mechanisms have focused on
the intracellular molecular scales, for instance, genetic/
epigenetic mechanisms [1, 2], posttranslational modifica-
tions of proteins and the reactivation of signaling path-
ways [3]. Recently, experimental studies have indicated
that angiogenesis plays important roles in influencing
the effect of drug treatment [4, 5]. However, how angio-
genesis affects the response of tumor cells to drug treat-
ment has rarely been mechanistically studied.

Brain tumors are complex biological systems that con-
tain interactions and feedback among multiple levels, in-
cluding molecular networks, cellular interactions,
microenvironmental factors and tissue vasculature.
Moreover, the interactions among these scales are tem-
porally evolving and spatially heterogeneous. Therefore,
a multiscale dynamic spatiotemporal model is required
to investigate the role of angiogenesis in tumor growth
and the drug response.

In recent decades, a variety of mathematical or com-
putational models have been developed to simulate
tumor growth and the drug response, including ordinary
differential equations (ODEs) models [6-8], stochastic
processes [9-12] or stochastic differential equations
[13], partial differential equations [14], agent-based
models [15-17] or cellular automata models [18, 19],
and hybrid models [20, 21]. These models have been de-
veloped to describe cell population dynamics or to

simulate microenvironment interactions and advanced
our understanding of tumor progression and drug resist-
ance. However, these models fall short on integrating the
effect of targeted drug therapies, particularly of a vascu-
larized tumor that includes interactions between tumor
cells and angiogenesis as well as the related signaling
pathways. To investigate the role of angiogenesis in the
response of tumor cells to the EGFR-tyrosine kinase in-
hibitor (TKI) treatment used in clinical trials, it is neces-
sary to integrate the drug treatment effects of an EGFR
inhibitor targeting tumor cells and a VEGFR inhibitor
targeting endothelial cells into a multiscale model of
vascular tumor.

In this study, we extended our previous
two-dimensional (2-D) multiscale agent-based model
[22] to a more realistic three-dimensional (3-D) space
and incorporated VEGEFR inhibitor treatment based on
its action mechanisms on VEGFR signaling pathways.
Our model reconstructed an evolving profile of vascular
tumor growth and demonstrated the dynamic interplay
between various types of tumor cells (e.g., migrating,
proliferating, apoptosis and quiescent cells) and the
growth of blood vessels. With the incorporation of EGFRI
treatment, the model revealed angiogenesis-induced drug
resistance. Interestingly, the survival rate of tumor cells
decreased in the early stage but rebounded in a later stage.
Moreover, inhibiting blood vessel growth using a VEGFR
inhibitor prevented the recovery of the survival rate of
tumor cells in the later stage, demonstrating the critical
role of angiogenesis in acquired drug resistance. We fur-
ther investigated the optimal timing of combining VEGFR
inhibition with EGFR inhibition and predicted that the
drug combination targeting both the EGFR pathway and
VEGER pathway has a synergistic effect. The experimental
data were collected to validate the prediction of drug syn-
ergy to confirm the effectiveness of our model. In
addition, the clinical data were also analyzed to assess the
prognostic value of the combination of EGFR and VEGR
genes, showing their clinical relevance in glioma patients.

Results

We first demonstrated the clinical relevance of
angiogenesis-regulating VEGFR pathways and the re-
lated genes in glioma patients using clinical data. We
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then mechanistically modeled vascular tumor growth to
understand the dynamic mechanisms of angiogenesis in
cancer progression and the drug response. We next in-
vestigated the role of angiogenesis in drug resistance.
Moreover, we examined combination therapy using an
EGEFR inhibitor and a VEGFR inhibitor targeting both
tumor cells and endothelial cells. Furthermore, we used
experimental data to validate the model predictions of
drug synergy.

Angiogenesis-related genes are associated with the
survival of glioma patients

The VEGER signaling pathway regulates endothelial cell
survival, proliferation and migration during angiogenesis
through the PIBK/AKT, PKC/ERK, and FAK/p38 path-
ways [23, 24] (Fig. 1a). We examined whether VEGF and
VEGER genes, as well as other genes in VEGER signaling
pathways, were correlated with the survival of glioma
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patients. We downloaded and analyzed the clinical sur-
vival data and RNA-seq data of glioma patients from
TCGA database (https://cancergenome.nih.gov/). The
COX PH model was used to compute the risk score
based on the expression of VEGF and VEGEFR genes
(Fig. 1b) or the expression of all collected genes in
VEGEFR signaling pathways (Fig. 1c). Kaplan—Meier
(K-M) curves (Fig. 1b, ¢) demonstrated that the survival
rates of high- and low-risk patients were significantly
different, assessed using the log-rank test. These results
indicated that the genes in the VEGEFR signaling pathway
were significantly associated with the disease progression
of GBM patients.

Modeling vascular tumor growth and the drug response

To understand the dynamic mechanisms of angiogenesis
in cancer progression and the drug response, we sought to
mechanistically model vascular tumor growth in a more
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Fig. 1 VEGFR signaling pathways in angiogenesis and the clinical associations of angiogenesis-related genes with the survival rates of glioma patients.
a VEGFR signaling pathways in regulating endothelial cell survival, proliferation and angiogenesis. TAFs, such as VEGF, can bind to their receptor,
VEGFR, and stimulate signaling pathways, including the PI3K and ERK pathways, which regulate endothelial cell survival, proliferation and migration
during angiogenesis [23, 24]. VEGFR inhibitors (VEGFRI), such as Sorafenib and Sunitinib, can inhibit the VEGFR signaling pathway by blocking VEGF-
VEGFR binding. b Prognostic significance of VEGF and VEGFR genes. Shown are survival rates of glioma patients in low- and high-risk groups predicted
by the gene expression of VEGF and VEGFR. ¢ Prognostic significance of genes in VEGFR signaling pathways. Shown are survival rates of glioma
patients in low- and high-risk groups predicted by the expression levels of the genes in the VEGFR signaling pathway
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realistic situation. We developed a single cell-based multi-
scale spatiotemporal model to simulate vascular tumor
growth and the drug response based on the VEGFR sig-
naling pathway, the EGFR signaling pathway and the cell
cycle as well as several microenvironmental factors that
determine cell fate switches in a temporal and spatial con-
text (Fig. 2; see details in Methods section and Additional
file 1: Text S1). A novel algorithm was designed to simu-
late VEGEFR inhibitor effects on blood vessel growth and
was integrated into a multiscale model of brain tumors
based on the VEGER signaling pathway and the EGER sig-
naling pathway (Egs. (1-6)).

Figure 3 shows vascular tumor growth profiles with and
without EGFRI treatment in a 3-D space (see also Add-
itional file 1: Figure S1). Tumor cells were denoted in dif-
ferent colors according to their phenotypes: active (blue),
proliferative (pink), quiescent (cyan) and apoptotic (black).
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The red lines at the bottom of the figures represent the
blood vessels with several initialized tip endothelial cells.
In the absence of EGFRI treatment (Fig. 3a), the tumor
cells grow increasingly and generally develop into an olive
shape with increasing surrounding microvasculature.
Under EGFRI treatment (Fig. 3b), the tumor volume was
much smaller than that without EGFRI treatment, show-
ing an effect of EGFRI on repressing tumor growth at the
early stage.

Figure 4a presents the evolution of the number of
various types of tumor cells and endothelial cells. The
numbers of most cells changed with varying rates,
showing the nonlinearity of tumor growth and the
heterogeneous evolutionary dynamics of various
tumor cells. Endothelial cells increased stably over
time. Monitoring the entire process of vascular tumor
growth, we found that after 110h, some apoptotic
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Fig. 2 Flowchart of the computational modeling. Our model encapsulates four biological scales: molecular, cellular, microenvironmental and tissue
scales. At the molecular scale, the EGFR signaling pathway, cell cycle and VEGFR signaling pathway were considered; at the cellular scale, tumor cells
switch their phenotypes and endothelial cells migrate, proliferate or die; at the microenvironment scale, growth factors, nutrients (glucose and oxygen)
and chemical inhibitors diffuse and exchange; at the tissue scale, new blood vessels grow and branch to form a microvasculature network. Intracellular
signaling pathways were described using ODEs, and microenvironmental factors were described with PDEs. Cellular phenotype switching was
simulated using a rule-based algorithm that is determined by both signaling pathways and microenvironmental factors. The treatment effects of EGFR
inhibitors and VEGFR inhibitors were integrated into the model based on their mechanisms of action
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EGFRI treatment

Fig. 3 Vascular tumor pattern at 60 h. a Vascular tumor growth pattern without EGFRI treatment. b Vascular tumor growth pattern under

tumor cells appeared, and the proportion of apoptosis
increased with time until approximately 260 h. Subse-
quently, an increasing number of tumor cells become
active and move towards denser microvasculature in
response to the promoting effect of vasculature. Not-
ably, the number of active tumor cells declined at ap-
proximately 70h and then increased after 250h. In
addition, the amount of proliferative cells fluctuated
slightly at a relatively low level. These results showed
the dynamic phenotype switches between various
types of tumor cells.

We calculated the survival rate of tumor cells as a
function of time. Figure 4b shows that under EGFRI
treatment, the survival rate of tumor cells showed a
sharp decrease at approximately 120h and then de-
creased slowly from 200 to 260 h. However, at 260 h, the
rate rebounded and reached approximately 52% at the
end of the simulation (450 h). This result demonstrated

the emergence of drug resistance. As a consequence, the
effect of the EGFRI-only treatment was limited.

Deciphering mechanisms of angiogenesis-induced drug
resistance

Next, we sought to identify the driving force of drug re-
sistance to EGFRI treatment. Considering the interplay
between angiogenesis and tumor cells during EGFRI
treatment as described above, we hypothesized that
angiogenesis played essential roles in tumor growth and
the drug response, which induced glioma resistance to
EGFRI treatment.

To test the above hypothesis in silico, we integrated
the VEGFR inhibitor (VEGFRI) treatment effect into
the model to suppress angiogenesis. Figure 5a-d
shows vascular tumor growth patterns at different
time points under treatment with an EGFR inhibitor
combined with a VEGFR inhibitor at 240 h. By adding
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Fig. 5 Vascular tumor growth patterns at different time points under treatment with the EGFR inhibitor combined with the VEGFR
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VEGEFRI treatment, angiogenesis was suppressed, and
the tumor growth was controlled after 240h in con-
trast with the effect of the EGFRI-only treatment be-
fore 240 h. Figure 5e shows changes in the number of
various cells in response to the combined VEGFRI
and EGFRI treatment with VEGFRI added at 240 h.
Angiogenesis was inhibited after adding VEGFRI
treatment. Additionally, the increase in apoptotic
tumor cells was sustained, and the active tumor cells
remained at a low level.

Fig 6a shows that adding VEGEFRI at 240h (i.e., the
turning point before the survival rate curve) resulted in

a sustained decrease in the survival rate, in contrast to
the survival rate without VEGFRI. Blocking angiogen-
esis indeed prevented the recurrence of tumor
growth, suggesting a critical role of angiogenesis in
driving drug resistance.

Figure 7 shows the spatial distributions of drugs
and microenvironment factors. Angiogenesis could de-
liver drugs or chemical inhibitors to the region of
tumor cells (Fig. 7a, b), resulting in an increase in
apoptosis and the quiescent phenotype of the tumor
cells. On the other hand, the neovasculature could
transport nutrients, such as glucose and oxygen (Fig.
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Fig. 6 Effect of the timing of combining VEGFR inhibition. a Combining VEGFRI treatment at 240 h; b Combining VEGFRI treatment at 300 h. The
blue and black lines represent the tumor cell survival rates with and without VEGFRI treatment, respectively
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7c-f), to tumor cells to maintain their survival and re-
visable phenotype switching to an active or migrating
status. Provided these dynamic interactions, the tumor
cell survival rate rebounded at the later stage, and
drug resistance emerged. These results revealed the
dual roles of angiogenesis in the emergence and de-
velopment of the drug resistance of brain tumors to
EGEFRI treatment.

Synergistic combination of EGFRI and VEGFRI

Moreover, we investigated the effect of different timing
of combining VEGFRI treatment with EGFRI treatment
on the emergence of drug resistance. We added VEGFRI
at different time points, either before the turning point
of the survival rate curve (i.e., 260 h) or after the emer-
gence of drug resistance. We found that adding VEGFRI
after 240 h could also prevent the rebound of the sur-
vival rate but resulted in a higher steady state compared
to adding VEGFRI at 240h, as shown in Fig. 6b. In
addition, adding VEGFI before 240h has almost the
same effect on the survival rate as that of adding VEGFI

at 240 h (Additional file 1: Figure S2). These results sug-
gest that combining EGFRI with VEGFRI treatment
could effectively rebound the tumor cell survival rate.
Moreover, the optimal timing of adding VEGFRI treat-
ment should be approximately 240h, which is slightly
earlier than the time point (260 h) at which the survival
rate curve rebounded. Although adding VEGEFRI earlier
than 240 h had almost the same effect on preventing the
rebound of the survival rate, adding drugs too early
would produce more side effects.

Moreover, we used the Bliss combination index to
evaluate the combination effect between EGFRI and
VEGEFRI (see methods). We predicted that the drug
combination targeting both the EGFR pathway and the
VEGER pathway has a synergistic effect, since the com-
bination index is greater than 0 (Fig. 8a). We used in
vivo experimental data [25] for mice with brain tumors
to validate this prediction. The calculation of the com-
bination index for the experiments also resulted in a
synergistic effect of the combination of an EGFR inhibi-
tor (DC101, 4mg/kg) and a VEGFR inhibitor
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(cetuximab, 1 mg/kg), as shown in Fig. 8b. Therefore,
the experimental data supported the model prediction,
confirming the effectiveness of our model.

Prognostic value of EGFR and VEGFR genes

Furthermore, based on the above mechanisms and syn-
ergistic drug combination effects, we hypothesized that
the combination of EGFR and VEGER genes has clinical
relevance in glioma patients. Therefore, we assessed the
prognostic significance and accuracy of EGFR and
VEGER genes. We defined a risk signature based on the
expression levels of 4 genes, EGFR, SH2D2A, CXCL17,
and KDR. We collected clinical information and
RNA-seq data for glioma patients from the CGGA data-
base (http://www.cgga.org.cn/) and TCGA database. The
CGGA dataset (N =301) and TCGA dataset (N = 690) of
glioma patients were used for training and validation, re-
spectively. The K-M survival analysis of the 4-gene sig-
nature in the CGGA dataset (Fig. 9a) demonstrated that
the high-risk group of patients had a shorter survival
time. Figure 9b shows the time-dependent ROC curves
with respect to the 1-year, 3-year, and 5-year survival
rates of glioma patients in the CGGA dataset, illustrating
the good accuracy of EGFR and VEGFR genes in the
prognostic prediction of glioma patients.

To validate the prognostic significance and accuracy of
the 4-gene signature, we used TCGA dataset to compute
the risk score for each patient. Figure 9c shows that the
high-risk group of patients and the low-risk group of pa-
tients exhibited significantly different survival probabil-
ities, with p values of less than 0.0001 (log-rank test). In
addition, the time-dependent ROC analysis (Fig. 9d)
demonstrated that the 4-gene signature also possessed
good predictive accuracy on the TCGA dataset. These

results implied profound clinical significance of the com-
bination of EGFR and VEGEFR genes.

Discussion

In this study, we developed an agent-based model to
simulate the anti-angiogenesis effect by using VEGFRI
treatment in brain tumors. We designed some rules
to simulate tip endothelial cell migration, sprout
branching and apoptosis based on the VEGFR signal-
ing pathway. Together with the EGFR signaling path-
way in tumor cells considered in our previous studies,
we have developed a multiscale agent-based model for
the angiogenesis-tumor system. Using our model, we
investigated how tumor cells and angiogenesis re-
spond to EGFRI treatment and VEGFRI treatment in
a more realistic environment. We revealed a novel
angiogenesis-induced drug resistance mechanism and
predicted a synergistic drug combination using an
EGER inhibitor and a VEGFR inhibitor targeting both
tumor cells and angiogenesis, which was consistent
with the experimental data.

We further determined the optimal combination tim-
ing of EGFRI and VEGRIL The timing of combining
VEGEFRI was determined to be optimal at approximately
240 h, which is slightly earlier than the rebound point in
the survival rate curve. We anticipate that adding VEG-
FRI after the emergence of drug resistance (e.g., after
250 h) might be too late to rescue the recovery of the
tumor cell survival rate. On the other hand, one may ask
whether is it always true that the earlier VEGFRI was
added, the more benefit we would get? Our simulation
demonstrated that adding VEGFRI before 240 h did have
an obvious influence on the change in the amount of
tumor cells and ECs; however, the tumor cell survival
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rates were almost the same. In addition, compared with
the EGFRI-only treatment, we observed that the tumor
cell survival rates under different schedules coincided
during the early phase (0-240 h).

We interpret the above observations as follows. The
apoptosis of ECs due to VEGFRI treatment largely af-
fected the supplementation of nutrients to tumor cells,
resulting in the apoptosis and quiescence of tumor cells.
However, the lack of nutrients promoted the tumor cell
release of more tumor-induced angiogenesis factors
(TAFs), such as VEGEF, which largely activated the effect-
ive amount of VEGFR, enabling VEGFR to bind with
TAFs and decreasing the effect of VEGFRI in the early
stage. The VEGFRI treatment gradually became predom-
inant. With the obvious loss of active tip ECs, the con-
centration of nutrients was reduced, and most of the
sprouts stopped branching or migrating, which consist-
ently forced the tumor cells to die.

Our model has some limitations that require further
development in future studies. At this phase, we merely
considered the timing of combining VEGFRI treatment
with EGFRI treatment. In future studies, we will investi-
gate the dose-dependent effect of the drug combination.

In addition, many factors should be considered under
more realistic circumstances, such as the permeability of
the vessel [26] influenced by the drug during EGFRI and
VEGEFRI treatment and tumor interstitial pressure [27].

Furthermore, some drugs, such as vandetanib [28],
have been designed to inhibit tumor growth by targeting
EGFR and VEGER at the same time, which have been
under clinical trials. Vandetanib acts as a kinase inhibitor
of a number of cell receptors, mainly VEGFR, EGFR and
RET-tyrosine kinase [29]. This inhibition may resist the
influence of the potential rejection or interaction of dif-
ferent TKI and VEGEFRI treatment drugs, which might
offer a new way of suppressing tumor growth and angio-
genesis. In future studies, we will investigate the effect of
multitargeted drugs based on signaling network model-
ing and dynamic simulation.

Conclusions

In this study, we developed a single cell-based multiscale
spatiotemporal model to investigate the role of angio-
genesis in the drug response of brain tumors. The model
integrates four scales: the molecular scale (EGFR signal-
ing pathway, cell cycle pathway, VEGFR signaling
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pathway), the cellular scale (tumor cell phenotype switch
and endothelial cell migration), the microenvironmental
scale (growth factors and nutrients) and the tissue scale
(angiogenesis). The developed multiscale model demon-
strated dual roles of angiogenesis in the drug treatment
of brain tumors and revealed a novel mechanism of
angiogenesis-induced drug resistance. Furthermore, the
model predicted a synergistic drug combination target-
ing both EGFR and VEGEFR pathways with optimal com-
bination timing. This study has aimed to elucidate the
mechanistic and functional mechanisms of angiogenesis
underlying tumor growth and drug resistance. The find-
ings of this study advance our understanding of cancer
drug resistance and provide implications for designing
more effective drug combination cancer therapies.

Methods

Model assumptions

The major assumptions of our model include the
following:

(a) Angiogenesis secretes TGFa, glucose and oxygen
into the microenvironment, which mediates the
EGEFR signaling pathways and cell cycle pathways
within tumor cells and influences tumor cell
activities

(b) Tumor cells secrete TAF (e.g., VEGF) into the
microenvironment, which stimulates the VEGFR
signaling pathway and determines the survival or
migration of endothelial cells.

Multiscale modeling of vascular tumor growth

Based on the above biological mechanisms, we developed a
single cell-based multiscale spatiotemporal model to simu-
late vascular tumor growth. Our model encapsulates four
biological scales: molecular, cellular, microenvironmental
and tissue scales. At the molecular scale, the EGER signaling
pathway, cell cycle and VEGER signaling pathway were con-
sidered; at the cellular scale, tumor cells switch their pheno-
types and endothelial cells migrate, proliferate or die; at the
microenvironment scale, growth factors, nutrients (glucose
and oxygen) and chemical inhibitors diffuse and exchange;
and at the tissue scale, new blood vessels grow and branch
to form a microvasculature network. Intracellular signaling
pathways were described using ODEs, and microenviron-
mental factors were described with PDEs. The cell pheno-
type switch was simulated using a rule-based algorithm
determined by both signaling pathways and microenviron-
mental factors. The migration and branching of microvascu-
lature at the tissue scale were determined by VEGF
chemotaxis and fibronectin/haptotaxis in the microenviron-
ment. The treatment effects of the EGFR and VEGER inhib-
itors were integrated into the model based on their action
mechanisms of corresponding signaling pathways. The
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details of the multiscale modeling of vascular tumor growth
are provided in Additional file 1: Text S1.

Integrating targeted drug treatment

We integrated targeted drug treatment with an EGFR in-
hibitor (e.g., gefitnib) and a VEGFR inhibitor (sorafenib)
into the model.

EGFRI molecules first permeate through blood vessels
and then diffuse into the microenvironment, binding to
EGEFR to inhibit tumor growth accumulatively. We as-
sumed that the number of EGFRI molecules is large
enough, which, therefore, can be treated as a continuous
variable. The concentration of EGFRI ([I;](¢, x)) can be
described using the following partial differential equa-
tions (PDEs):

o) _ DAL

I
ot
+ Xves ()1 (H1=[11]) =X s (£, %) 111 =01 [I1],
(1)

where Dy, q1, Hy, uy, and & represent the diffusivity, ves-
sel permeability, in-blood concentration, tumor cell up-
take rate and natural decay rate of EGFRI, respectively.

Similarly, VEGFRI molecules also permeate through
vessels, diffuse into the microenvironment, and then
bind to VEGFR and generate an accumulative inhibitory
effect on vascular growth. The concentration of VEGFRI
([15](t, %)) can be described as follows:

M - DQA[IQ]

ot
+ Xves (%) 5 (H2=[12]) =X yppc (£, %) u2-82[I5],
(2)

where Dy, q,, H,, u,, and 6, represent the diffusivity, ves-
sel permeability, the in-blood concentration, uptake rate
by tip endothelial cells and natural decay rate of
VEGFRL

The binding and unbinding processes of inhibitors and
receptors are shown below.

k
R+1k<——>”R:1, (3)

where R represents EGFR or VEGEFR, and I represents
EGFRI or VEGFRI. We used the Hill function to esti-
mate the concentration of the EGFR:EGFRI or VEGFR:-
VEGEFRI complex as follows:

_[Rl- 01
km + [1]

R:1]

(4)

where km ~ % is the Michaelis constant, and [R], is the
initial concentration of EGFR or VEGFR. Therefore, we
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could derive the amount of effective EGFR and effective
VEGER as follows:

[EGFR], - [1]

[EGFR]yy = [EGFR]o= "= 7]

(5)

[VEGER|, - [I2)]

VEGER|yy = [VEGERy=— " A

(6)

In the above equations, [/;] and [/,] at different loca-
tions were calculated using Egs. (1 and 2). Therefore, the
concentrations of [EGFR].s and [VEGFR].4 are spatially
heterogeneous.

Under EGFRI treatment, the effective amount of
EGER in some tumor cells will decrease, resulting in
a slow rate of change in the concentration of PLCy;,
which largely reduces the migration potential of
these tumor cells. See details in Additional file 1:
Text SI1.

During VEGEFRI treatment, the amount of effective
VEGFR may decrease, which might largely reduce the
survival rate, as well as the growth, migration or branch-
ing, of tip endothelial cells. Hence, we set some new
rules to simulate endothelial cell fate determination. For
each tip EC, we first checked whether the concentration
of effective VEGER at the current location was higher
than the average concentration of VEGEFR at the loca-
tions of all active ECs. If so, then we turn to the sprout
migration or branching rules. Otherwise, the tip EC
turns to an irreversible apoptosis state that cannot mi-
grate or branch any longer. The details are described in
Additional file 1: Text S1.

Summary of the simulation algorithm
The algorithm iteratively repeated the following steps
until the end of the simulation (450 h):

1) Microenvironmental scale: solve PDEs to calculate
the distribution of glucose, O,, TGFa, TAF and
EGFRI as well as VEGFRI.

2) Molecular scale: solve ODEs to simulate EGFR and
cell cycle signaling pathways; integrating EGFRI or
VEGERI to determine the effective amount of
EGFR and VEGFR.

3) Cellular scale: simulate phenotype switches of
tumor cells and endothelial cells.

4) Tissue scale: simulate tip endothelial cell
apoptosis, migration and sprout branching
according to the distribution of VEGF and
fibronectin.

The parameters used in the model simulation are pro-
vided in Additional file 1: Tables S1-S5.
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Bliss combination index
The Bliss combination index [30, 31] was calculated as
follows:

Clpiiss(I1,12) = Ria(I1,I3)~[Ri(I1) + Ry(I2)-Ry(11) - Ro(12)], (7)

where I; and I, represent EGFRI and VEGFRI, respect-
ively. Ry5(1y, Ip) is the killing rate of the tumor cells by
combined inhibitors. Ry(/;) and R,(I,) are the killing
rates of tumor cells by EGFRI alone or VEGFRI alone,
respectively. If the combination index (CI) is greater
than 0, then the drug combination has a synergistic ef-
fect, whereas if CI is less than 0, then the combination
effect is antagonistic.

Survival analysis

To assess the clinical relevance of angiogenesis pathways in
glioma patients, we downloaded the clinical survival data
and RNA-seq data of glioma patients from TCGA database
(https://cancergenome.nih.gov/). The dataset included a
total of 648 GBM cases with clinical follow-up information
and 173 GBM cases with level 3 RNA-seq gene expression
data. By matching the sample ID, we obtained 167 GBM
cases with full data for both clinical and gene expression.
The gene symbols/aliases coding the proteins in the VEGFR
signaling pathways are listed in Additional file 1: Table S6.
The COX proportional hazards (PH) regression model [32]
was used to compute the risk score of each patient based
on the expression of genes related to VEGFR signaling
pathways in angiogenesis. The patients were divided into 2
groups according to the median of the risk score. K-M
curves were plotted for these two groups of patients. A
log-rank test was used to assess the significance of the dif-
ference between the two survival curves.

We assessed the prognostic value of EGFR and VEGFR
genes (i.e., EGFR, SH2D2A, CXCL17, KDR) for glioma
patients. The CGGA dataset (N =310) and TCGA data-
set (N =690) of glioma patients were used for training
and validation, respectively. A multivariate COX PH
model [32] was built to compute the risk score for each
patient as follows. The same risk signature was used to
compute the risk scores for patients in the CGGA data-
set. The patients in each dataset were classified into a
high-risk group and a low-risk group according to the
optimal cutoff value of the risk scores. K-M survival
curves were plotted for patients in the high-risk and
low-risk groups. The statistical significance of the differ-
ence between two K-M curves was assessed using the
two-sided log-rank test. To further investigate the pre-
dictive accuracy of prognostic classification with MNB,
we used time-dependent ROC analysis [33]. The above
risk score was used to predict the 1-year, 3-year and
5-year survival rates of patients in the CGGA dataset
and TCGA dataset.


https://cancergenome.nih.gov/
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Additional file

Additional file 1: This additional file contains the following
supplementary materials. Text S1 Details of multiscale modeling. Figure
S1 3-D vascular tumor profile at 150 h from different views. Figure S2
The survival rate of tumor cells treated with EGFRI combined with VEGFRI
at different time points before 240 h. Table S1 Kinetic equations of EGFR
signaling pathway. Table S2 Coefficients of kinetic equations of the EGFR
signaling pathway. Table S3 Kinetic equations of the cell cycle. Table S4
Parameter in cell cycle pathway. Table S5 Parameters of PDEs in the
model. Table S6 Genes in the VEGFR signaling pathway. (DOC 1227 kb)
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