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Background and Objectives: Autologous or allogeneic bone marrow-derived mesenchymal stem cells (BMSCs) have been 
applied in clinical trials to treat liver disease. However, only a few studies are comparing the characteristics of autolo-
gous MSCs from patients and allogeneic MSCs from normal subjects.
Methods and Results: We compared the characteristics of BMSCs (BCs and BPs, respectively) isolated from six healthy 
volunteers and six patients with cirrhosis. In passage 3 (P3), senescent population and expression of p53 and p21 
were slightly higher in BPs, but the average population doubling time for P3–P5 in BPs was approximately 65.3±11.1 
h, which is 18.4 h shorter than that in BCs (83.7±9.2 h). No difference was observed in the expression of CD73, 
CD90, or CD105 between BCs and BPs. Adipogenic differentiation slightly increased in BCs, but the expression levels 
of leptin, peroxisome proliferator-activated receptor γ, and CCAAT-enhancer-binding protein α did not vary between 
differentiated BCs and BPs. While ATP and reactive oxygen species levels were slightly lower in BPs, mitochondrial 
membrane potential, oxygen consumption rate, and expression of mitochondria-related genes such as cytochrome c 
oxidase 1 were not significantly different between BCs and BPs.
Conclusions: Taken together, there are marginal differences in the proliferation, differentiation, and mitochondrial ac-
tivities of BCs and BPs, but both BMSCs from patients with cirrhosis and healthy volunteers show comparable 
characteristics.
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Introduction 

  Cirrhosis, caused by chronic liver injury, presents with 
hepatocyte cell death and formation of regenerative nod-
ules and fibrous septa, leading to loss of liver function and 
might progress to hepatocellular carcinoma in up to 5% 
of patients. With progression, complications such as vari-
ceal bleeding, ascites, and hepatic encephalopathy reduce 
the quality of life and increase mortality (1, 2). Although 
liver transplantation is a treatment option for advanced 
cirrhosis (3), it is limited by lack of donors, surgical com-
plications, immune rejection, and high medical costs. 
Therefore, as an alternative therapy for cirrhosis, cell ther-
apy using primary hepatocytes, bone marrow mononuclear 
cells, hematopoietic stem cells, and mesenchymal stem 
cells (MSCs) have been studied at preclinical and clinical 
levels and shown to improve liver function (4-9). MSCs 
have several advantages such as easy isolation and culture 
in various tissues and organs, including the liver, bone 
marrow, and fat; in vitro expansion; and viability after cry-
opreservation (10-12). To date, more than 1000 clinical tri-
als using MSCs have been conducted or are in progress, 
and more than 87 of them are intended to treat liver dis-
ease (https://clinicaltrials.gov). MSCs can migrate to dam-
aged liver tissues (13, 14), differentiate into hepatocytes 
(15), ameliorate inflammatory responses (16), reduce liver 
fibrosis (17), and act as antioxidants (18). MSC trans-
plantation into patients with liver diseases is safe, has no 
side effects, and improves liver function (19).
  Autologous or allogeneic MSCs derived from adipose 
tissue, bone marrow, and umbilical cord have been ap-
plied to clinical trials for liver diseases, and both MSCs 
have been shown to improve liver function (20). Given 
that the therapeutic effects of autologous or allogeneic 
MSCs are the same, optimal preparation at the time of 
transplantation can be an important criterion for selecting 
one of them. Generally, it takes approximately 1 month 
to isolate and culture autologous stem cells from cirrhosis 
patients, but in the case of allogeneic transplantation, the 
MSC preparation period can be significantly shortened. 
Additionally, few studies have been conducted to de-
termine whether the characteristics of proliferation, differ-
entiation, and expression of cell surface antigens of MSCs 
isolated from patients differ from those of normal MSCs. 
Here, we compared and analyzed the surface antigen ex-
pression, proliferation, aging, differentiation and mi-
tochondrial activities of BMSCs (BCs or BPs, respectively) 
isolated from the bone marrow of six healthy volunteers 
or six patients with cirrhosis to verify the efficacy of autol-
ogous transplantation. 

Materials and Methods

Cell culture
  This study was approved by the Institutional Review 
Board of Yonsei University Wonju College of Medicine 
(CR 319009). BMSCs at P1 or P2 from six cirrhosis pa-
tients (Korean, mean age 45.8±8.8 years) were obtained 
with informed consent from Pharmicell Co., Ltd. (Sungnam, 
Korea). Bone marrow mononuclear cells from six healthy 
volunteers (Caucasian, mean age 43.2±8.7 years) were 
purchased from the American Type Culture Collection 
(Manassas, VA, USA) and plated in 100 mm dishes (2×105 
cells/cm2) with low-glucose Dulbecco’s modified Eagle’s 
medium (LG-DMEM, Gibco BRL, Rockville, MD, USA) 
containing 10% fetal bovine serum (FBS, Gibco BRL) and 
penicillin/streptomycin. After 2 days, the medium was 
changed to remove non-adherent cells, and then the cell 
culture medium was changed twice weekly. When the cells 
reached 90% confluence (P0), the BMSCs were trypsinized 
and passaged at a density of 5×103 cells/cm2. Population 
doubling time (PDT) was determined by dividing the total 
number of hours in culture by the number of doublings. 
To calculate the cumulative cell numbers, BMSCs were se-
rial passaged until the PDT of each BMSC reached 150 
h. BC or BP represents BMSCs from healthy volunteer or 
patient. The number after BC or BP represents each in-
dividual in the volunteers’ or the patients’ group.

Colony forming unit–fibroblast (CFU-F) assay from 
bone marrow of SD rat
  All animal experimental protocols and procedures were 
approved by the Institutional Animal Care and Use 
Committee of Yonsei University Wonju College of Medicine 
(YWC-180724-1). Male Sprague-Dawley (SD) rats (7 weeks 
old) were purchased from Orient Bio Inc. (Seongnam, 
Korea). Cirrhosis was induced by intraperitoneal injection 
of thioacetamide (TAA, Sigma-Aldrich, St. Louis, MO, 
USA; 200 mg/kg body weight) twice a week for 12 weeks. 
After administration of TAA for 12 weeks, rats were sacri-
ficed with isoflurane anesthesia (Ifran, Hana Pham, 
Hwaseong, Korea). Femora were aseptically removed and 
washed 3 times with PBS. Thereafter, the bone marrows 
were flushed out using LG-DMEM onto 24-well plates. 
The culture medium was changed twice weekly for two 
weeks. For direct visualization of the colonies, the cells 
were washed with PBS and fixed in 95% ethanol for 5 
min, and then the cells were incubated for 30 min at room 
temperature in 0.5% crystal violet in 95% ethanol. Excess 
stain was removed by washing with distilled H2O. The 
plates were dried and the number of CFU-F was counted. 
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Table 1. Primers used for studies

Genes Forward sequence (5’⟶3’) Reverse sequence (5’⟶3’)

CAT TGGGATCTCGTTGGAAATAACAC TCAGGACGTAGGCTCCAGAAG
C/EBPα TGTATACCCCTGGTGGGAGA TCATAACTCCGGTCCCTCTG
GPX1 TATCGAGAATGTGGCGTCCC TCTTGGCGTTCTCCTGATGC
Leptin GGCTTTGGCCCTATCTTTTC ACCGGTGACTTTCTGTTTGG
MnSOD TGGTGGTCATATCAATCATAGC ATTTGTAAGTGTCCCCGTTC
MT-CO1 AGCCTCCGTAGACCTAACCA CGAAGAGGGGCGTTTGGTAT
Nanog ACCTATGCCTGTGATTTGTGG AGTGGGTTGTTTGCCTTTGG
OCT4 ACATCAAAGCTCTGCAGAAAGAACT CTGAATACCTTCCCAAATAGAACCC
PPARγ AGCCTCATGAAGAGCCTTCCAAC TCTCCGGAAGAAACCCTTGCATC
PPIA TCCTGGCATCTTGTCCAT TGCTGGTCTTGCCATTCCT
SDHB GCTACTGGTGGAACGGAGAC GCGCTCCTCTGTGAAGTCAT
Sox2 GGGAAATGGGAGGGGTGCAAAAGAGG TTGCGTGAGTGTGGATGGGATTGGTG
Tfam AGCTCAGAACCCAGATGCAA CCGCCCTATAAGCATCTTGA

We defined a CFU-F unit as consisting of more than 100 
cells using a microscope.

Surface antigen expression
  A total of 5×105 BMSCs were stained with antibodies 
conjugated with phycoerythrin (PE) against CD73, CD90, 
and CD105 (BD Biosciences, San Jose, CA, USA) for 20 
min at room temperature. PE-conjugated mouse IgGs were 
used as the control isotype. The fluorescence intensity of 
the cells was evaluated by flow cytometry (FACS Aria III; 
BD Biosciences).

Real-time polymerase chain reaction (qPCR)
  Total RNA was extracted using TRIzol Reagent (Gibco 
BRL). The reverse transcription reaction was conducted 
using RT RreMix Kit (iNtRON Biotechnology, Sungnam, 
Korea) to detect stemness genes (Nanog, OCT4, and Sox2), 
differentiation genes [leptin, peroxisome proliferator-acti-
vated receptor γ (PPARγ), and CCAAT-enhancer-bind-
ing protein α (C/EBPα)], and parameters of mitochon-
drial activities [cytochrome c oxidase subunit I (MT-CO1), 
transcription factor A, mitochondrial (Tfam), succinate 
dehydrogenase complex iron sulfur subunit B (SDHB), 
catalase (Cat), glutathione peroxidase 1 (GPX1), and man-
ganese superoxide dismutase (MnSOD)] using gene-spe-
cific primers (Table 1). The reagents in 10 μl reaction 
mixture included cDNA, primer pairs, and the SYBR 
Green PCR Master Mix (Applied Biosystems, Dublin, 
Ireland). All qPCR reactions were performed in duplicate. 
Peptidylprolyl Isomerase A was used for normalization. 
The 2−(Ct) method was used to calculate the relative fold 
change of mRNA expression.

Senescence-associated β-galactosidase (SA-β-gal) 
staining
  BMSCs in P3 were stained for β-gal activity as de-
scribed by Dimri et al. (21). Briefly, 4×104 cells were seed-
ed in 12-well plates and cultured for 2 days. The β-gal 
activity was assessed with a senescence β-gal staining kit 
(Cell Signaling Technology) according to the manu-
facturer’s instructions. The percentage of senescent cells 
was represented by the number of stained cells in the total 
population.

Immunoblotting assay
  Proteins were extracted, separated by 10% Tris-glycine 
on SDS-PAGE, transferred to an Immobilon membrane 
(Millipore), and then incubated with primary antibodies 
against p53, p21, and GAPDH (1：1000, Santa Cruz 
Biotech, Santa Cruz, CA, USA), followed by incubation 
with peroxidase-conjugated secondary antibody (1：2000, 
Santa Cruz Biotech). The membrane was then treated 
with EZ-Western Lumi Pico (DOGEN, Seoul, Korea) and 
visualized using ChemiDoc XRS＋ system (Bio-Rad, 
Hercules, CA, USA).

Adipogenic differentiation
  BMSCs (2×104 cells/cm2) were seeded in 6-well plates 
and cultured for 1 week. The medium was then changed 
to an adipogenic medium [10% FBS, 1 μM dexame-
thasone, 0.5 mM 3-isobutyl-1-methylxanthine, 10 μg/ml 
insulin, and 100 μM indomethacin in high glucose (HG)- 
DMEM] for an additional 3 weeks. Cells were fixed in 4% 
paraformaldehyde for 10 min, stained with fresh Oil Red 
O solution to stain the lipid droplets, and photographed. 
Oil Red O was then eluted with isopropanol, and the ex-
tracted Oil Red O was quantitated by measuring the ab-
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Fig. 1. Positive cell surface markers 
of BCs and BPs. Positive cell surface 
markers (CD73, CD90, and CD105) 
in passage 3 of BCs and BPs were 
analyzed by flow cytometry, and 
mean fluorescence intensity (MFI) 
was compared in BCs and BPs. (A) 
Positive expression of BMSC markers.
(B) MFI of positive cell surface mar-
kers. All data are shown as the mean±
SE, n=6.

sorbance at 540 nm.

Mitochondria DNA (mtDNA) assay
  Total genomic DNA of BMSCs were isolated using 
QIAamp DNA Mini Kit (Qiagen, Germantown, MD, 
USA), and mtDNA was analyzed using Absolute Human 
Mitochondrial DNA Copy Number qPCR kit (Sciencell 
Research Laboratories, Carlsbad, CA, USA), according to 
the manufacturer’s instructions.

Mitochondrial membrane potential (MMP) assay
  MMP was measured using the lipophilic cationic dye 
5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolylcar-
bocyanine iodide (JC-1, Molecular Probes, Thermo Fisher 
Scientific). BMSCs were seeded and treated for 4 h with 
carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FC 
CP) or vehicle control (dimethyl sulfoxide). The fluo-
rescence intensity for both aggregates and monomer of 
JC-1 was measured with a fluorescence microplate reader 
(Flexstation II, Molecular Devices, San Jose, CA, USA; 
JC-1 aggregates: excitation/emission=540/590; JC-1 mono-
mer: excitation/emission=490/535).

ATP assay
  BMSCs were lysed with the cell lysis reagent supplied 
in ATP Bioluminescence assay kit HS II (Roche Diagnos-
tic GmbH), and the lysates were centrifuged to recover the 
supernatant. After the reaction, ATP levels were measured 
with a microplate luminometer (Synergy 2, Bio-Tek Ins-
trument, Winooski, VT, USA) and normalized to the pro-
tein concentration.

Oxygen consumption rate measurement
  BMSCs were plated on Seahorse 96 well plate (Agilent 
Technologies, Cedar Creek, TX, USA). After 24 h, cells 
were changed to XF DMEM medium containing 1 M glu-
cose, 100 mM pyruvate, and 200 mM L-glutamate (pH 7.4, 
Agilent Technologies) and were maintained at 37℃ with-
out CO2 for 1 h. Oxygen consumption rate (OCR) was 
evaluated by Seahorse XF kit and Seahorse XFe96 
Analyzer (Agilent Technologies), and normalized by pro-
tein concentration. The cycles (three times for 3 min) were 
run for every measurement, and the Mitostress kit (Agilent 
Technologies) was used that contained 2 μM oligomycin 
(ATP synthase inhibitor), 2 μM FCCP (mitochondrial 
uncoupler), 0.5 μM rotenone (respiratory chain complex 
I inhibitor), and antimycin A (complex III inhibitor).

Reactive oxygen species (ROS) quantification
  ROS generation was evaluated using 5-(-6)-chlorometh-
yl-2’,7’-dichlorodihydrofluorescein diacetate, acetyl ester 
(CM-H2DCFDA; Invitrogen, Eugene, OR, USA). After 
CM-H2DCFDA incubation, fluorescence was measured at 
the excitation and emission wavelengths of 485 and 538 
nm, respectively, by using a fluorescence microplate read-
er (Flexstation II, Molecular devices).

Statistical analysis
  Data are presented as the mean±standard error of the 
mean. To compare group means, Student’s t-test and 
one-way analysis of variance were used, followed by the 
Scheffe’s test. Any difference was considered statistically 
significant at *p＜0.05, **p＜0.005, and ***p＜0.0001.



398  International Journal of Stem Cells 2020;13:394-403

Fig. 2. Proliferation potentials of BCs 
and BPs. (A) Representative PDT 
changes in BC2 and BP1 during seri-
al passages. (B) Mean PDT of P3, P4, 
and P5. *p＜0.05 (n=6). (C) Cumu-
lative cell number, (D∼F) Expression
of transcription factors (Nanog, OCT4,
Sox2) regulating proliferation. Expre-
ssion level was evaluated by qPCR. 
n=6. (G) Colony forming unit–fibro-
blast (CFU-F) in normal and cirrhotic 
SD rat. The CFU-F units counted us-
ing a microscope. *p＜0.05 (n=5). 
We defined a CFU-F unit as a col-
ony consisting of more than 100 
cells. All data are shown as the 
mean±SE.

Results

Cell surface antigen expression
  Representative positive cell surface antigens of MSCs 
are CD73, CD90, and CD105 (22), and approximately 
99% of positive cells in both BCs and BPs at passage 3 
(P3) expressed all these antigen (Fig. 1A). Furthermore, 
there was no statistically significant difference in mean 
fluorescence intensities (MFI) of CD73, CD90, and 
CD105 in BCs and BPs, suggesting comparable expression 
of cell surface antigens on these BMSCs (Fig. 1B).

Proliferation potentials of BCs and BPs 
  To compare the proliferation potential of BCs and BPs, 
we analyzed the average PDT at P3, P4, and P5, the early 
passages, and calculated the total cumulative cell number 
obtained after serial passage until the PDT of each BMSC 
reached 150 h. Besides, we analyzed the mean expression 
levels of Nanog, Oct4, and Sox2, stemness regulators in 
P3, P4, and P5. The mean PDT of BPs (65.3±11.1 h) at 
the early passage was significantly shorter than that of 
BCs (83.7±9.2 h), but the average total cumulative num-
ber of cells was higher in BCs (5.97×107 cells) than in 
BPs (4.90±107 cells); however, the difference was not sig-
nificant (Fig. 2A∼C). Furthermore, no differences in ex-

pressions of stemness regulators between BCs and BPs 
were observed in the early passage (Fig. 2D∼F). To eval-
uate whether the lower PDT in BPs is a common phenom-
enon in cirrhosis disease, we investigated the colony form-
ing unit–fibroblast (CFU-F) in normal and cirrhotic SD 
rat. Interestingly, much more colony formation was ob-
served in the bone marrow of thioacetamide-induced cir-
rhotic rats than normal rats, and colony size was larger 
in cirrhotic rats than in normal rats (Fig. 2G). These re-
sults suggest that pathologic conditions with fibrosis and 
inflammation, such as cirrhotic changes, may promote the 
proliferation of stem cells.

Cellular senescence of BCs and BPs
  At P3, senescent cells formed 11.22±7.03% and 
19.06±3.55% in BCs and BPs, respectively (Fig. 3A). 
Consistently, p21 and p53 expression was significantly 
higher in BPs than in BCs (Fig. 3B). Despite the shorter 
PDT in the early passage, there were 1.7 times more aging 
cells in the BP group.

Adipogenic differentiation potentials of BCs and BPs
  As the passage of MSCs progressed, the differentiation 
ability of adipocytes decreases gradually (23). We com-
pared the differentiation capability of BCs and BPs in the 
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Fig. 3. Cellular senescence of BCs 
and BPs. BCs and BPs of passage 3 
were used to detect the cellular sen-
escence and expression of its mark-
ers, p21 and p53. (A) SA-β-gal ac-
tivity in P3 of BCs and BPs. SA-β- 
gal-positive cells were photographed 
(100× magnification) with a phase - 
contrast microscope and enumerated.
At least 200 cells were counted from 
six different fields, and the percent-
age of positive cells is shown. *p＜
0.05 (n=6). (B) Expression of sen-
escence regulators, p21 and p53. All 
data are shown as the mean±SE
(n=6). 

Fig. 4. Adipogenic differentiation po-
tentials of BCs and BPs. BCs and BPs 
at passage 3 were differentiated into 
adipocytes and stained with Oil Red 
O stain. *p＜0.05. Adipogenesis was
also evaluated by qPCR to detect 
adipogenic markers, Leptin, PPARγ,
and C/EBPα. (A) Oil Red O staining.
(B) qPCR for Leptin, PPARγ, and 
C/EBPα. All data are shown as the 
mean±SE (n=6). Adipo.: adipogene-
sis.

early passage into adipocytes. More lipid droplets follow-
ing differentiation were microscopically observed in BCs 
than in BPs (Fig. 4A). On measuring the degree of differ-
entiation by the absorbance of Oil Red O extracted with 
isopropanol, the absorbance of BCs was significantly high-
er than that of BPs. When leptin, PPARγ, and C/EBPα 

expressed in adipocytes were identified by qPCR, the ex-
pression level of adipocyte-related genes in both groups 
was not significant (Fig. 4B).

Parameters for mitochondrial function in BCs and BPs
  Mitochondria is bioenergetically important for ATP 
production (24) and also generates ROS and activates 
apoptosis (25, 26). To compare the mitochondrial activ-
ities of BCs and BPs, we analyzed mtDNA copy number, 
MMP, OCR, and ROS generation. There was no sig-
nificant difference between mtDNA copy numbers in BCs 

and BPs, and in fact increased variations were observed 
in individual BPs (Fig. 5A). The JC-1 fluorescence ratio 
of J-aggregates and monomer reflects the MMP, which was 
slightly lower in BPs (1.99±0.28) than in BCs (2.24±0.18) 
but not significant (Fig. 5B). FCCP-induced depolariza-
tion was similar between BCs (0.69±0.10) and BPs 
(0.68±0.11). ATP production was significantly higher in 
BCs (43.72±5.95 nmol/mg protein) than in BPs (30.70±8.45 
nmol/mg protein) (Fig. 5C). The expression levels of mi-
tochondrial proteins including MT-CO1, Tfam, and 
SDHB were not different between BCs and BPs (Fig. 5D
∼F). As a sensitive indicator of mitochondrial activity, we 
measured mitochondrial OCRs in the basal state and max-
imal stimulation. Mitochondrial respiratory activities were 
not significantly different between BCs and BPs (Fig. 5G
∼I). Additionally, although not significant, the expression 
of antioxidant genes, CAT, GPX1, and MnSOD, were 
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Fig. 5. Parameters for mitochondrial 
activities of BCs and BPs. To analyze 
parameters for mitochondrial activ-
ities, BCs and BPs at passage 3 were 
used. (A) Mitochondrial DNA (mtD 
NA) copy number. (B) Mitochondrial 
membrane potential (MMP), **p＜
0.01 and ***p＜0.001. (C) ATP ge-
neration. (D∼F) Mitochondrial bio-
genesis related-gene expression. (G) 
OCR of BCs. (H) OCR of BPs. (I) 
Relative OCR in BCs and BPs. (J∼L) 
ROS-regulating gene expression. (M) 
ROS generation. **p＜0.01. All data 
are shown as the mean±SE (n=6).

slightly higher in BPs than in BCs (Fig. 5J∼L). Unlike 
the expression of antioxidants, ROS generation in the bas-
al state and after H2O2 treatment was lower in BPs than 
in BCs, implying less oxidative stress in BPs (Fig. 5M).

Discussion

  We report that the PDTs at early passages (P3, P4, and 
P5) were shorter in BPs than in BCs, but cellular sen-
escence was slightly higher in BPs. The differentiation po-
tential into adipocytes and ATP synthesis were higher in 
BCs than in BPs. Although the PDT in BPs at early pas-
sage was shorter than that in BCs by approximately 18.4 

h, there was no difference in the total cumulative mean 
cell numbers in BCs and BPs. To our knowledge, a com-
parison of the proliferation and differentiation character-
istics between BMSCs from patients with cirrhosis and 
healthy volunteers has not been performed yet. Furthermore, 
for the first time, we have investigated different aspects 
of mitochondrial activities of MSCs related to stem cell 
functions derived from patients with chronic cirrhosis.
  It is known that senescent cells have high SA-β-gal ac-
tivity, reduced autophagy, increased G1 cell cycle arrest, 
augmented ROS production, and expression of p53 and 
p21 (27). The mitochondrial electron transport chain is an 
important source of ROS (28) and helps to induce cellular 
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senescence (29-32). We observed that antioxidant ex-
pression was higher and total ROS levels in the resting 
state and upon H2O2 exposure were lower in BPs than in 
BCs. However, cell senescence was slightly accelerated in 
BPs, notwithstanding attenuated oxidative stress. BPs had 
shortened PDT, meaning increased proliferation rate. We 
infer that BPs may have a heterogeneous population com-
posed of fast-growing and rapidly aging cells. However, 
their proliferation and differentiation properties were not 
markedly affected, thus, maintaining regenerative capabi-
lities.
  Because of heterogeneity, the proliferative capacity of 
BPs might be underestimated. Indeed, much more colony 
formation was observed in the bone marrow of thio-
acetamide-induced cirrhotic rats than normal rats, and 
colony size was larger in cirrhotic rats than in normal rats. 
These results suggest that pathologic conditions with fib-
rosis and inflammation, such as cirrhotic changes, may 
promote the proliferation of stem cells. Consistent with 
our observation, Yu et al. (33) reported that macrophages 
could induce survival and proliferation of MSCs through 
ERK and AKT signaling pathways via a CD44-dependent 
mechanism.
  No significant differences were observed in MMP, OCR, 
and mitochondrial biogenesis (i.e., MT-CO1, Tfam, and 
SDHB) between BCs and BPs, but the cellular ATP levels 
were marginally reduced in BPs. There is accumulating 
evidence that ATP content affects stem cell differentiation 
and proliferation (34-37). Buravkova et al. (34) reported 
that reduced ATP levels of MSCs in hypoxic conditions 
increased proliferation. They concluded that even lowered 
ATP production via glycolysis could be sufficient for the 
maintenance of MSCs in an uncommitted state. In addi-
tion, MSCs in the early passages can release ATP, which 
can modulate the proliferating property of MSCs that like-
ly acts as one of the early factors determining stem cell 
fate (35). To understand the functional consequences of 
ATP reduction in stem cells, further investigation is 
required.
  In summary, firstly, doubling times of BPs were shorter 
than those of BCs, implying better proliferating ability. 
Secondly, mitochondrial biogenesis and functions such as 
MMP, OCR, and mitochondrial biogenesis (i.e., MT-CO1, 
Tfam, and SDHB) were not significantly altered in BPs. 
Lastly, there is no evidence that autologous MSCs have 
lower stem cell function than that of allogenic MSCs in 
clinical studies. Therefore, we concluded that BMSCs 
from patients with cirrhosis did not show marked impair-
ment of stem cell functions in regard to proliferation and 
differentiation. Thus, autologous BMSC transplantation in 

patients with liver cirrhosis may not have limitations for 
the quality of stem cells. However, many of our results 
showed variations among individuals in the BPs as well 
as the BCs. Therefore, it is necessary to repeat the experi-
ment using additional units of BMSCs. More importantly, 
further studies need to compare and analyze the character-
istics of MSCs with high or low regenerative therapeutic 
effects. Through these studies, optimal criteria for pro-
liferation, differentiation, and mitochondrial activity of 
MSCs for clinical application should be established.
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