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Abstract 

Background:  For sensorimotor rhythms based brain-computer interface (BCI) sys-
tems, classification of different motor imageries (MIs) remains a crucial problem. An 
important aspect is how many scalp electrodes (channels) should be used in order 
to reach optimal performance classifying motor imaginations. While the previous 
researches on channel selection mainly focus on MI tasks paradigms without feedback, 
the present work aims to investigate the optimal channel selection in MI tasks para-
digms with real-time feedback (two-class control and four-class control paradigms).

Methods:  In the present study, three datasets respectively recorded from MI tasks 
experiment, two-class control and four-class control experiments were analyzed offline. 
Multiple frequency-spatial synthesized features were comprehensively extracted from 
every channel, and a new enhanced method IterRelCen was proposed to perform 
channel selection. IterRelCen was constructed based on Relief algorithm, but was 
enhanced from two aspects: change of target sample selection strategy and adoption 
of the idea of iterative computation, and thus performed more robust in feature selec-
tion. Finally, a multiclass support vector machine was applied as the classifier. The least 
number of channels that yield the best classification accuracy were considered as the 
optimal channels. One-way ANOVA was employed to test the significance of perfor-
mance improvement among using optimal channels, all the channels and three typical 
MI channels (C3, C4, Cz).

Results:  The results show that the proposed method outperformed other channel 
selection methods by achieving average classification accuracies of 85.2, 94.1, and 
83.2 % for the three datasets, respectively. Moreover, the channel selection results 
reveal that the average numbers of optimal channels were significantly different 
among the three MI paradigms.

Conclusions:  It is demonstrated that IterRelCen has a strong ability for feature selec-
tion. In addition, the results have shown that the numbers of optimal channels in the 
three different motor imagery BCI paradigms are distinct. From a MI task paradigm, 
to a two-class control paradigm, and to a four-class control paradigm, the number of 
required channels for optimizing the classification accuracy increased. These find-
ings may provide useful information to optimize EEG based BCI systems, and further 
improve the performance of noninvasive BCI.
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Background
Brain-computer interfacing is a technology which offers an alternative communication 
mode without going through the normal neuromuscular pathways [1–10]. It makes use 
of brain signals to convey communication and control information, and in general, non-
invasive electroencephalogram (EEG) is a widely used modality to measure brain sig-
nals. Of all types of brain-computer interfaces (BCIs), we mainly focus on sensorimotor 
rhythm based BCI, which relies on imagination of movement of a limb or other parts of 
the body to induce EEG signals in corresponding brain areas [3, 10–12]. These signals 
can then be decoded and translated into control commands for specific output devices, 
e.g., cursor movement [13–15] or neuroprostheses [16].

One of the challenges in the development of an effective sensorimotor rhythm based 
BCI system is to discriminate amongst different motor imagery (MI) tasks, such as the 
imagination of movement of left hand, right hand, and feet. Generally speaking, classi-
fication of different motor imageries mainly depends on the following aspects: data pre-
processing, extraction of subject-specific features, and appropriate classifiers. However, 
aside from these, there exists another important aspect that researchers typically ignore, 
and that is channel selection, i.e., selecting the least number of channels that yield the 
best accuracy. The use of additional channels was discovered to improve classification 
performance. However, this does not mean the more the better. Actually, a large set of 
channels without going through channel selection will include noisy and redundant 
channels, which would deteriorate the BCI system performance. Moreover, the use of 
more channels increases the cost of BCI system [17, 18]. Therefore, it is necessary to 
adopt an effective approach to select the optimal channels out of the full channel set. 
Several groups have investigated this question. For example, in [19], the authors showed 
that using the algorithms REF and 10-Opt based on SVM, and the number of channels 
can be significantly reduced without an increase of error. Such method mainly relies on 
a specific classifier to evaluate the feature set. In [20, 21], the CSP method and its exten-
sion SCSP were employed to conduct channel selection on MI datasets, showing that 
most of the channels can be removed. Other methods based on mutual information [22], 
GA-ANN [23], etc., separately showed it was a feasible way to reach optimal accuracy. 
But they either ignore the correlation between channels, or consume a long period of 
time to calculate. Relief [24] is a widely used feature selection method which is inde-
pendent of classification algorithms, thus it is effective in computation. Based on its sim-
ple but effective algorithm principle, Relief has been proved to perform well in a large 
number of applications. However, due to its distance measure principle, Relief is highly 
sensitive to artifacts and noise, which would be included in multiple-channel EEG data. 
In this study, a novel iterative Relief based on distance from center (IterRelCen) algo-
rithm was proposed for optimal channel selection. IterRelCen is an enhanced approach 
based on the principle of Relief/Relieff.

By now, the channel selection studies in most of the existing literatures were performed 
in datasets recorded from MI task paradigm (details about the paradigm described in 
the “Methods” section). Few studies were conducted in datasets recorded from control 
paradigms (two-class and four-class control paradigms, details about the paradigms 
described in the “Methods” section). Like the study in [25], it focused on research on 
online autocalibration and channel selection for adaptive BCI system. However, studies 
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have shown that the characteristics of EEG signal recorded from control paradigms may 
be inherently different from the EEG data recorded from MI tasks paradigms. For exam-
ple, it was demonstrated that an increase of task complexity or attention influences brain 
activities [26, 27]. In addition, the introduction of real-time visual feedback (only exists 
in control paradigms) would augment brain activity over motor areas [28]. Furthermore, 
it has been shown that the visual stimuli or visual motion stimuli (only exists in con-
trol paradigms) can evoke brain activities in different scalp distributions [29]. Based on 
these, we believe that the problem of channel selection in datasets recorded from control 
paradigms needs to be evaluated.

In the present study, the proposed method IterRelCen was used for optimal channel 
selection over three different datasets, respectively recorded from MI tasks paradigm, 
two-class control paradigm and four-class control paradigm. It was found that due to the 
paradigm difference, it requires different number of EEG channels to reach optimal per-
formance in these datasets, and the control paradigms necessitate more channels than 
MI tasks paradigm.

Methods
Experiment and data description

In this study, three datasets were used. The specific information about each dataset and 
its corresponding experimental paradigm are described as follows:

1.	 Dataset 1 from a MI task paradigm. The dataset was made available by Dr Allen 
Osman of the University of Pennsylvania [30] for a data analysis competition dur-
ing the Neural Information Processing System (NIPS2001) [31]. In this experimental 
paradigm, subjects were asked to imagine left or right hand movement once the let-
ter “L” or “R” was shown on a computer screen. Subjects then performed sustained 
hand movement imagery in a fixed period of time. The specific experimental process 
is illustrated in Fig. 1a. Data from eight subjects were used in this study, and the scalp 
EEG was recorded from 59 channels (international 10–20 system) with a sampling 
rate of 100 Hz. For each subject, the total number of trials is 180:90 trials for left and 
90 trials for right. The length of each trial is consistent, 2.25 s.

2.	 Dataset 2 from a two-class control paradigm. The experiments were conducted in 
the Biomedical Functional Imaging and Neuroengineering Laboratory at the Uni-
versity of Minnesota according to a protocol approved by the Institutional Review 
Board of the University of Minnesota [13]. In this experimental paradigm (Fig. 1b), 
at the beginning, the screen was blank. Two seconds later, a target appeared at one 
of two locations on the periphery of the screen. At 5 s, the cursor appeared in the 
center of the screen and subjects can move the cursor horizontally through imagi-
nation of left or right hand movement. Provided with visual feedback of the cursor 
position, subjects could make real-time adjustment of their imagination patterns to 
control the cursor movement, and this is the major difference with the MI task para-
digm. A trial is finished if the cursor reached the target bar within 6 s, reached the 
wrong target, or failed to reach the target within 6 s. So each trial lasts 5–11 s. How-
ever, not all the time points of a trial carry information about the EEG modulation of 
motor imageries, so only the execution period of each trial was extracted for analysis, 
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usually 0.5–3 s. Data from eight subjects were used, and the scalp EEG was recorded 
from 62 channels (international 10–20 system) with a sampling rate of 200 Hz. For 
each subject, the total number of trials is 180:90 trials for left and 90 trials for right.

3.	 Dataset 3 from a four-class control paradigm. The experiments were also conducted 
in the Biomedical Functional Imaging and Neuroengineering Laboratory at the Uni-
versity of Minnesota according to a protocol approved by the Institutional Review 
Board of the University of Minnesota. This paradigm is similar with the two-class 
control paradigm. The only difference is that the four-class control paradigm controls 
the movement of a cursor in four directions, i.e., MI of left hand, right hand, both 
hands, and nothing control cursor move to left, right, up, and down. The experimen-
tal process is illustrated in Fig. 1c. Each trial lasts 5–11 s, and the execution period of 
each trial was extracted for analysis, usually 0.5–3 s (same with Dataset 2). Data from 
eight subjects were used here, and the scalp EEG was recorded from 62 channels 
(international 10–20 system) with a sampling rate of 1000 Hz. For each subject, the 
total number of trials is 280:70 trials for each direction.

Note that there is a little difference in electrode setups between Dataset 1 and Dataset 
2/3 (The electrode setup of Dataset 3 is the same with Dataset 2). Only three peripheral 
electrodes were not recorded during the Dataset 1 experiment. The other electrode loca-
tions were consistent with Dataset 2, so this does not affect the results.

Data processing

Dataset 3 had a relatively high sampling rate, so before signal processing, we down 
sampled the EEG data from Dataset 3 from 1000 to 200 Hz. In order to be consistent 
with the sampling rate of Dataset 1, Dataset 2 and Dataset 3 were also down sampled to 
100 Hz; we found that whether the sampling rate was consistent or not, it did not affect 

Fig. 1  Illustration of three different MI paradigms. This diagram is presented here to provide a general 
knowledge of the difference among the three MI paradigms. a MI tasks paradigm; b two-class control para-
digm (also named 1-D cursor control); c four-class control paradigm (also named 2-D cursor control). Three 
experimental stages presented in each paradigm are rest stage, preparation stage and execution stage. In the 
execution stage of paradigms b and c, eyes are open, with real-time visual feedback; whereas in execution 
stage of paradigm a, eyes are closed without visual feedback
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the result. So Dataset 2 and Dataset 3 were only down sampled to 200 Hz for the results 
presented here. Then, the data processing was carried out in the following steps: spatial 
filtering, feature extraction and feature normalization.

Surface Laplacian filtering

Raw scalp EEG has a low signal-to-noise ratio, since it is spatially smeared due to the head 
volume conductor effect. Thus, in order to improve the quality of EEG, a surface Lapla-
cian filter [32] was adopted to accentuate localized activity and to reduce diffusion in the 
multichannel EEG [33, 34]. The formulation for the surface Laplacian filter is as follows:

where Vj represents the target channel, Vk stands for neighboring channels, and Sj is the 
index set of the surrounding channels. Parameter n is the number of neighboring chan-
nels, and in most cases, n is set to 4, whereas n is 2 or 3 when the target channel is at the 
periphery.

Feature extraction

A frequency range from 5 to 35 Hz was focused on, since many studies have indicated 
that this range mainly represents the intent of user in MI-based BCI. Furthermore, the 
phenomenon of event-related desynchronization (ERD) and synchronization (ERS) in 
the mu band (8–12 Hz) and beta band (18–26 Hz) [11, 13, 35] occuring during motor 
imagination over sensorimotor cortex are also included in this frequency range. Con-
sidering that the related frequency bands are narrow banded, we decomposed the entire 
5–35 Hz into 13 partially overlapping sub-bands [36], using constant-Q scheme, which 
is also known as the proportional band width. According to the computing principle, 
the 13 sub-bands are 5.25–6.75  Hz, 6.0–7.71  Hz, 6.86–8.82  Hz, 7.84–10.08  Hz, 8.96–
11.52  Hz, 10.24–13.16  Hz, 11.70–15.04  Hz, 13.37–17.19  Hz, 15.28–19.64  Hz, 17.46–
22.45 Hz, 19.96–25.66 Hz, 22.81–29.32 Hz, and 26.07–33.51 Hz, respectively. We were 
mainly concerned about the power changes of these frequency bands, and therefore 
we extracted the envelope of each sub-band using the Hilbert transform, given that the 
envelope could quantitatively reflect the instantaneous power change of a frequency 
band. In this study, each envelope was extracted from a trial data. Each feature is the 
average of single envelope over trial time.

Feature normalization

Min–max normalization was adopted here to transform feature values into the range 
(−1, 1). The normalization was performed according to the formula below.

where Min and Max are the minimum and maximum values of a feature. The param-
eters newMin and newMax are the low and upper bound of new range, and X is the fea-
ture value that needs to be transformed.

(1)
V

Lap
j = Vj − 1/n

∑

k∈sj

Vk

(2)XN = (newMax − newMin)
X −Min

Max −Min
+ newMin
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Through the above process, we could obtain 13 normalized features during a trial from 
a single channel, and the 13 features corresponded to the aforementioned 13 sub-bands. 
When all the channels (59 or 62) were initially used, the total number of features would 
be 767 or 806 (13 × 59/62). During the computing process, features from different chan-
nels are concatenated into a feature vector representing one trial.

Channel selection

Performance assessment

Channel selection is an optimization problem which chooses the optimal subset of chan-
nels from the full set available. Our ultimate goal is to maximize the classification accu-
racy of distinct motor imageries in MI-based BCIs, so optimal here means that achieving 
best accuracy by using least number of channels. Here, the best accuracy means the opti-
mal testing accuracy in classification, which is obtained by computing the mean value of 
testing accuracy of each fold in 10-fold cross validations.

Relief and Relieff

Relief [24] is a widely used method for feature selection in binary classification problems, 
due to its effectiveness and simplicity of computation. Relieff [37] is an extension of it, 
designed for feature selection in multi-class classification problems. Relief and Relieff are 
similar in algorithm principle. So here we only take Relieff as an example to describe 
the computing principle. For technical details about Relief, please refer to [24]. A key 
idea of Relieff is to estimate the quality of attributes according to their abilities of distin-
guishing among samples that are near to each other, given in Fig. 2a. At the beginning, 
the weights for all the features are initialized to zeros (line 1). Then it randomly selects 
a sample R from the training dataset T (line 3), and selects the nearest k samples from 
the same class training set (called “Near Hits”) (line 4) and nearest k samples from each 
of the other classes (called “Near Misses”) (lines 5 and 6). It updates the feature weight 
vector W for all attributes according to Eq.  (3). The whole process would be repeated 
m times, where m is a user-defined parameter. Through the above described process, 
it could be easily understood that a large weight means the feature is important for the 

Fig. 2  Pseudo code of Relieff and IterRelCen algorithms and flow chart of the whole method. a Pseudo code 
of Relieff algorithm; b pseudo code of IterRelCen algorithm; c the flow chart of the whole method for chan-
nel selection
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classification and a small one means less important. The weight computing equation is 
as follows:

where W(f) represents the weight of feature f. Parameter k is the number of nearest sam-
ples selected, and m represents the number of repeated times of computing process. C 
represents one class except for the R’s class. Parameter p is the prior probability of a 
certain class. Function d(f, R, Ro) calculates the difference between sample vector R and 
sample vector Ro at the feature f, and Ro could be Hj (Near Hit) or Mj (Near Miss). For 
numerical attributes, d(f, R, Ro) is defined as:

IterRelCen. In Relief (Relieff) algorithm, the weight computation is affected by selec-
tion of target sample and selection of nearest neighbors (samples). However, these two 
aspects may provide a chance to bring in errors in weight computation. Specifically, 
(1) target sample is randomly chosen from the training dataset. Such strategy gives 
noisy samples (particularly the samples far away from the center of sample data in the 
same class) a chance to be selected. And it is undoubted that the use of noisy samples 
would easily bring in bias in weight computation. (2) The selection of nearest neighbors 
depends on the distances away from target sample, however the distance computation 
is determined by the features participated in. In our EEG dataset, the samples are with 
high-dimension features which could be mixed with noises or redundant features. Cer-
tainly such features would interfere with the distance computation between samples, 
and cause an error in feature weight computation. To solve the above two mentioned 
problems, an enhanced method “IterRelCen” based on the principle of Relief (Relieff) 
was proposed in this paper, given in Fig. 2b. The method IterRelCen reconstructed Relief 
(Relieff) algorithm from two aspects: First, the target sample selection rule is adjusted. 
Instead of randomly selecting sample, samples close to the center of dataset from the 
same class have the priority of being selected first (lines 5 and 6) according to formula 
(5), given that such samples could discriminate different class samples more accurately. 
Second, the idea of iterative computation is borrowed to eliminate the noisy features in 
samples (lines 1 and 14). In each iteration, the N features with the smallest weights (N is 
a user-defined parameter, depending on the required iterative speed) are removed from 
the current feature set (line 12). The left features are fed into the classifier for accuracy 
calculation (line 13). Repeat this process until the current feature set is empty. Usually, 
first removed ones are the features performing worst in discrimination. With the noisy 
features being gradually removed, the distance between samples computed from the rest 
features will reflect the relationship between samples more and more accurately.

(3)

W (f ) = W (f )−

k
�

j=1

d(f ,R,Hj)

�

(m · k)

+
�

C �=class(R)





p(C)

1− p(class(R))

k
�

j=1

d(f ,R,Mj(C))





�

(m · k)

(4)d(f ,R,Ro) =

∣

∣value(f ,R)− value(f ,Ro)
∣

∣

max(f )−min(f )
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Classification algorithm

A support vector machine (SVM) was used as the classification algorithm in this study. 
Classical SVM is a technique developed previously [38] to solve the two-class classifica-
tion problem. The main idea of this typical SVM is to separate a two-class dataset by 
finding the maximum geometrical margin between the two classes.Given a training set 
of instance-label pairs (Xi, yi), i = 1, . . . , l, where Xi ∈ Rn and yi ∈ {1,−1}. In order to 
build the SVM model, the following optimization problem needs to be solved:

The slack variables ξi are introduced in case a small part of the data is nonlinearly separa-
ble. The margin is defined as γ = 1

/

2�w�, so our goal is to make a best trade-off between 
low training error 

∑

ξi and large margin γ. We also adopted a kernel function φ(Xi) to 
map training vectors Xi onto a higher dimensional space. Thus, combined with slack var-
iables, most of the nonlinear problems can be transformed into linear problems. There 
are several kernel functions provided to be chosen, e.g. linear function, polynomial func-
tion or radial basis function (RBF). Here, RBF was used.

Classical SVM only has the ability to discriminate between two classes; however, one 
of our datasets was from four-class control paradigm. Thus, we implemented the “one-
against-one” approach [39] here to solve this multiclass classification problem. If k is the 
number of classes, then k(k − 1)/2 classifiers need to be constructed and each classifier 
model will then be trained from two-class data.

As shown in Fig. 2c, the channel selection process binds the channel selection method 
(IterRelCen) with classification algorithm. The generalization accuracies were estimated 
by ten-fold cross validation (tenfold CV) [40], in which a whole dataset is split up into 
ten folds. In each fold, feature selection using IterRelCen is performed first based on 
training set, resulting in a specific ranking of all features. And then it employs selected 
features to train the SVM model. Finally SVM is tested on the corresponding features of 
the test set to evaluate the testing accuracy. The classification accuracy was the average 
of testing accuracies of each fold, denoted by the following equation:

where k is 10, and acci is the testing accuracy of one fold.
Through the above method, the feature subset that achieved highest accuracy is rec-

ognized as optimal features. And channels hold at least one feature are considered as 
optimal channels. Note that by such method some optimal channels may only include 
several feature bands (less than 13), while some may retain all the 13 feature bands.

(5)minDist = |Si − Ct|, ∀Si, where Ct = 1
/

n

n
∑

1

Si

(6)

min
ω,b,ξ

1

2
wTw + C

l
∑

i=1

ξi

subject to yi(w
Tφ(xi)+ b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l

(7)Acc =
1

k

k
∑

i=1

acci, where acci =
Correct Numtest

Total Numtest
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Results
Classification and channel selection results

In this study, three datasets from different experimental paradigms were analyzed. 
The channel selection was initiated with all the channels, e.g., 59 channels for MI tasks 
paradigm and 62 channels for two-class control and four-class control paradigms. The 
proposed IterRelCen algorithm was used to reduce the redundant features and select 
informative channels.

Table 1 summarizes the performance (optimal classification accuracies) of all the sub-
jects from the three datasets. According to the results, the proposed method in this 
study yielded average classification accuracies of 85.2, 94.1, and 83.2 %, respectively for 
Dataset 1, Dataset 2, and Dataset 3. Compared to offline analysis results, the online aver-
age performances in Dataset 2 and Dataset 3 were only 84.9 and 70.8 %, respectively. The 
optimal results were compared with the results of using all the channels and the channel 
combination of C3, C4 and Cz (three typical motor imagery channels) in each dataset. 
Compared with using all the channels, the average accuracies were improved by 31.7, 8.0 
and 19.7 % respectively for dataset 1, dataset 2 and dataset 3. And compared with using 
(C3, C4, Cz) channels, the average accuracies were improved by 22.9, 23.5 and 18.7 %. It 
can be concluded that the performance was greatly improved through channel selection. 
The p-values shown in the last row of Table 1 were obtained from the one-way ANOVA 
among the results of optimal channels, all the channels and three typical channels (C3, 
C4, Cz) in each dataset. It is observed that all the p-values in each dataset are below 0.05, 
indicating that the improvement caused by channel selection is statistically significant.

Table 2 presents the numbers of optimal channels in all the subjects of the three data-
sets. The average numbers of optimal channels in each dataset show significant differ-
ence (p =  4.36e−4, one-way ANOVA), with the requirement of approximately 14, 22, 

Table 1  Optimal classification results and performance comparisons in the three MI para-
digms

In each dataset, the p-value is computed from one-way ANOVA among Opt Ch Acc, All Ch Acc and C3, C4, Cz Acc. It has to 
been noted that the subjects 1–8 in all the three datasets are not the same group of subjects

Parad paradigm, Ch channel, Acc accuracy, Opt optimal

Subjects Dataset 1 Dataset 2 Dataset 3

MI tasks Parad Two-class control Parad Four-class control Parad

All Ch C3, C4, Cz Opt Ch All Ch C3, C4, Cz Opt Ch All Ch C3, C4, Cz Opt Ch

Acc (%) Acc (%) Acc(%) Acc (%) Acc (%) Acc (%) Acc (%) Acc (%) Acc (%)

Sub1 67.8 88.9 92.8 95.6 92.7 99.3 75.5 69.4 87.1

Sub2 62.2 65.6 86.7 82.7 65.1 91.2 74.1 76.4 90.6

Sub3 62.2 61.7 82.8 85.9 51.8 94.1 76.3 72.7 83.3

Sub4 70.0 74.4 90.0 67.9 52.2 85.3 58.2 67.0 80.2

Sub5 71.1 79.4 90.0 93.5 76.2 96.1 63.4 63.4 77.6

Sub6 62.8 54.4 80.0 96.2 95.2 98.6 55.8 73.4 80.3

Sub7 64.4 69.4 80.0 92.2 93.8 98.1 77.7 71.2 81.8

Sub8 57.2 60.6 78.9 82.4 82.3 90.4 74.8 66.9 84.9

Mean 64.7 69.3 85.2 87.1 76.2 94.1 69.5 70.1 83.2

Std 4.6 11.2 5.4 9.5 18.0 4.9 8.8 4.2 4.2

p value – – p = 7.0e−5 – – p = 0.024 – – p = 2.4e−4
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and 29 channels respectively for MI tasks paradigm, two-class control paradigm, and 
four-class control paradigm. On average, compared to MI tasks paradigm, both the con-
trol paradigms required more channels to reach optimal accuracy. However, the differ-
ence between two control paradigms is not so obvious, although the average number of 
four-class control paradigm is bigger than that in two-class control paradigm. The num-
ber of optimal channels in Dataset3 has a relatively large fluctuation. The numbers of two 
subjects (Sub4 and Sub6) are close to the average number of 1-D cursor control, while 
the numbers of other subjects are far beyond that number. It seems that the numbers 
of optimal channels vary distinctively, and this is especially true when an experimental 
paradigm changes from an MI tasks paradigm to control paradigms. The significant dif-
ference among paradigms may be due to the intrinsic differences in experimental para-
digms which may induce distinct EEG waves or EEG distributions over scalp.

Accuracy over varying number of channels

In this section, the accuracy behaviors over varying number of channels are presented to 
show how the channel number impacts the classification performance in each MI para-
digm. In each subject, channels are added one by one according to its channel weight 
until all the channels are used. Channels with larger weight have the priority to be added 
first. Overall accuracy behaviors averaged from all the subjects in each dataset are shown 
in Fig. 3. It is shown that for each paradigm, the accuracy reaches the optimal point at 
a certain point of channel number, and then degrades with the increase of used chan-
nel number. Compare subfigure (a) with subfigures (b) and (c), it is observed that the 
performances from MI tasks paradigm degrade more quickly and deeply along with the 

Table 2  The numbers of Optimal Channels in all the subjects from the three MI Paradigms

Subjects Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Mean Std

Dataset1 11 11 12 16 19 5 20 18 14 5

Dataset2 35 19 16 20 19 20 22 24 22 6

Dataset3 32 30 43 18 34 23 27 25 29 8

Fig. 3  Overall accuracy curves showing the accuracy behaviors with the varying numbers of channels. For 
each subject, channel is added one by one in term of its channel weight. Channels with large weights have 
the priority of being added first. The overall accuracy curves are the average over eight subjects in each 
dataset. The red line is the mean accuracy curve and the blue dot lines represent the envelopes of ±standard 
deviation. a Average accuracy curve for MI tasks paradigm; b average accuracy curve for two-class control 
paradigm; c average accuracy curve for four-class control paradigm
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increase of channel number. Whereas, the accuracy curves from two-class control and 
four-class control are relatively stable.

Distribution of optimal channels and frequency bands

Used the method described in the “Methods” section, the optimal channels and their 
reserved frequency bands for each subject are determined. In this section, we are con-
cerned about which part of brain regions these optimal channels locate over. So the 
selected optimal channels in each subject were mapped onto their corresponding loca-
tions in the electrode cap, and the weight of an optimal channel in topography is deter-
mined by its sum of reserved frequency band weights. For example, if 3 of 13 frequency 
bands in a channel are selected and the weights of the selected frequency bands are 
0.001, 0.002 and 0.003 respectively, then the weight of this channel will be 0.006. As for 
non-optimal channels (discarded channels), their weights are set to zero. Figure 4 pre-
sents the optimal-channel topographies of 9 representative subjects from the three para-
digms (3 for each paradigm).

It is shown in Fig. 4 that for the MI tasks paradigm, the optimal channels are mainly 
located over motor cortex with a good bilateral symmetry for each subject, and few 

Fig. 4  The optimal channel topographies of nine subjects. Topographies demonstrate which part of the 
cortex area the selected optimal channels locate over. The color indicates the importance of a channel in MI 
classification, and the importance of a channel is determined by its weight which is the sum of weights of 
the selected features. For non-optimal channel (discarded channel), its weight is set to zero here. a1, a2, a3 
represent three subjects from MI tasks paradigm, b1, b2, b3 are from two-class control paradigm and c1, c2, 
c3 are from four-class control paradigm
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channels scattered over other cortex regions. Whereas for both control paradigms, the 
spatial distributions of the optimal channels involves a broader brain area, centered in 
motor area. For two-class control paradigm, the distribution of each subject is much 
more scattered, especially for the latter two subjects (b2, b3), but the most important 
channels still locate over or near motor cortex, so is the case for the four-class control 
paradigm. This means that for control paradigms, though plenty of channels may con-
tribute their impacts in MI classification, but the channels over motor area are still in a 
dominant position. Furthermore, the topographies of two-class control and four-class 
control paradigms show that there were active brain activities over visual cortex during 
motor imageries, particularly in four-class control paradigm. This may be induced by 
real-time visual feedback during the experiments. In comparison, the brain activities in 
MI tasks paradigm are much weaker.

Figure 5 shows the usage conditions of 13 frequency bands in each representative sub-
jects. The heights of 13 bars in each sub-figure quantitatively reflect how many chan-
nels out of the total channels (59 or 62) reserved this frequency band. It is shown that 
the usage of frequency bands varies across subjects, but several frequency bands are 
commonly used across the subjects and experimental paradigms. And those bands are 
bands No. 5–7 and bands No. 10–12, which agree with the frequency ranges of mu band 
(8–15 Hz) and beta band (17–28 Hz). Mu and beta bands are well known to be dominant 

Fig. 5  The usage of each frequency band in the representative subjects. The height of each bar (y axis) quan-
titatively reflects how many channels reserved this frequency band as an informative feature. The numbers in 
x axis represent the frequency band serial number. The frequency range corresponding to each band no. is 
shown at the bottom of the figure. The subjects are the same with the ones in Fig. 4. a1, a2, a3 are the three 
subjects from MI tasks paradigm; b1, b2, b3 from two-class control paradigm; c1, c2, c3 from four-class 
control paradigm
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during MI. Moreover, compared to the MI tasks paradigm and two-class control para-
digm, the frequency bands 8–15 Hz and 17–28 Hz in four-class control paradigm are 
included in more channels. The spatial locations of beta wave are presented in Fig.  6, 
where the distribution of beta wave is averaged from the three representative subjects 
in each paradigm. It is shown that the beta wave mainly locates over motor cortex and 
its distribution in four-class control paradigm is broader than the other two paradigms.

Comparison with other feature selection methods

The algorithm mRMR is effective in feature selection and has been proved to outper-
form plenty of feature selection methods, such as MaxDep and MI (mutual information) 
through extensive experiment comparisons [41, 42]. So in the present study, mRMR was 
also adopted for channels selection and accuracy calculation for the purpose of compari-
son. Relief/Relieff was also used for comparison, since our proposed method is based on 
Relief/Relieff. The results in Fig. 7 show that compared to mRMR and Relief/Relieff, the 
method IterRelCen performed better, achieving the best average accuracies over all the 
three datasets. This means that IterRelCen has a relatively strong ability to select better 
channel and features.

Fig. 6  Averaged distributions of beta wave over three subjects in each paradigm. The beta wave (17–28 Hz) 
corresponds to the frequency band 10, 11, 12. The weight of each channel in the topographies is the average 
of channel weights from three representative subjects. a Averaged distribution for MI tasks paradigm; b aver-
aged distribution for two-class control paradigm; c averaged distribution for four-class control paradigm
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Discussions
An enhanced method

In a sensorimotor rhythm based BCI system utilizing MI, the ability to effectively clas-
sify distinct patterns of MI is crucial. It was discovered that the use of multiple chan-
nels improves classification performance. However, when a large number of channels are 
used, it is better to conduct channel selection to eliminate noisy and redundant chan-
nels. The obtained results proved that our proposed method based on IterRelCen per-
formed excellently in classification and optimal channel selection. The advantages of 
our method are mainly embodied in two aspects. First, the underlying information rel-
evant with motor imageries in single channel is completely explored by dividing channel 
signal into 13 overlapping frequency bands, avoiding the possibility of rejecting useful 
channels. Second, an enhanced method based on Relief/Relieff strengthens the ability of 
optimal feature selection. Compared to Relief/Relieff, IterRelCen solved the noise sensi-
tive problem, making itself much stronger and robust in noisy dataset analysis. Using 
iterative deletion strategy to eliminate the influence of noisy features in nearest neigh-
bor search, the weights arrived from these sample data could reflect the importance of 
features more accurately. In the present study, by combining IterRelCen algorithm with 
this feature extraction method, comprehensive information without irrelevant features 
was flexibly extracted. The adoption of our proposed method may also account for the 
results that in two-class and four-class control paradigms, the numbers of optimal chan-
nels are relatively large. That is because of the fine division of frequency bands combined 
with flexible selection, and it will not let any informative frequency band in any channel 
be ignored, whereas such missing or ignoring may happen to other methods.

Number of related channels in different MI paradigms

Our results suggested that in the three MI paradigms, the channel number seems to 
impact in optimizing the performance of MI classification. The obtained results reveal 
that the average numbers of optimal channels were significantly different among the 
three MI paradigms. From MI task paradigm to two-class control paradigm, and to four-
class control paradigm, the number of required channels for optimizing the classifica-
tion accuracy increased. This is particular true when a paradigm changes from MI tasks 
paradigm to any one of the control paradigms. However, one limitation of this study is 
that this conclusion is only drawn from a small number of subjects. And this result needs 
to be further confirmed through data analysis over a large number of subjects.

A reasonable explanation for this conclusion is that the intensity of involved brain 
activities and the region of involved brain areas vary in different MI experimental para-
digms. Research indicates that an increase of task complexity or attention results in an 
increased magnitude of brain activities [28, 43]. From this perspective, the MI task para-
digm is the simplest one, where subjects only perform imagination of left or right hand 
movement. However, for the control paradigms, their complexity of experimental para-
digms are reflected in two aspects: one is that they need to concentrate more on mental 
tasks in order to adjust the control strategy and brain states in real time; the other is 
that the control paradigms provide visual stimulation which is not included in the MI 
tasks paradigm. Another explanation accounts for the conclusion is suggested in [10], 
that visual feedback during MI could augment brain activity over the motor areas. Thus, 
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augmented brain activity may expand to a broader brain region, and therefore it is rea-
sonable that the number of relevant channels is larger in two-class and four-class control 
paradigms than the MI tasks paradigm. The difference between any one of the control 
paradigms and MI tasks paradigm is significant. As to the distinction between two con-
trol paradigms, the four-class control paradigm demands more patterns of brain states 
than the two-class control paradigm in order to generate four distinct mental tasks. Fur-
thermore, switching of more brain states may result in a heavier burden of brain cogni-
tion and more focused attention, which may induce stronger brain activities in a broader 
brain area than the two-class control paradigm. So compared to two-class control, it 
was found that most of subjects in the four-class control paradigm correlates with more 
channels. However, there are also subjects whose numbers of optimal channels are close 
to the average level of the two-class control paradigm, such as Sub4 and Sub6 shown in 
Table 2. This can be explained by this: for some well-training subjects, the induced EEGs 
are more focused in cortex and the switching of brain states is not a burden for them. 
Such subjects may induce MI related EEG in a relatively small range, similar with the 
two-class control paradigm. And thus the numbers of optimal channels may be close to 
the two-class control paradigm.

A minor drawback of our study design is that the experimental conditions are not 
strictly controlled due to the limitation of experimental condition: first, the three data-
sets were not strictly collected from the same group of subjects; second, there is a minor 
difference in electrode setups because of variation in experimental conditions between 
datasets.

Relevant channels and frequency bands

We can observe the locations of relevant channels from the representative subjects in 
Fig. 4. It is shown that the most important channels were mainly over or near left or right 
sensorimotor areas with an almost symmetrical distribution in most subjects. This result 
is consistent with the findings from previous studies [26, 43], which show that motor 
imagery induces brain activity in primary motor area, supplementary motor area, etc.

As shown in Fig. 5, frequency bands that play the most important role in classification 
are bands 5–7 and bands 10–12, corresponding to 8–15 Hz and 17–28 Hz respectively. 
These bands have a large overlap with the mu band (8–12 Hz) and beta band (18–26 Hz). 
This finding is consistent with the existing literature which has already shown that the 
phenomenon of ERS or ERD is notably observed in mu and beta bands [12, 34]. Though 
the mu and beta frequency bands are dominant in classification, the other bands also 
contribute to the improvement of classification accuracy. From this perspective, it is 
wise to divide a single-channel signal into multiple frequency-domain signals, avoiding 
loss of partial related information by rejecting a channel or introduction of irrelevant 
information by adopting a whole channel signal. So in such condition, the combination 
of frequency decomposition with IterRelCen algorithm could provide a useful approach 
for selection of related features.

Furthermore, it is beneficial to have a clear understanding of which channels and 
bands are of most importance, since this could provide a quick reference on utilization 
of the most important channels and frequency bands under the situation where it is 
required to use the least number of channels with acceptable classification accuracy.
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Limitations and future work

We performed an offline analysis on three datasets recorded from three different types 
of online experiments in this study. Since the offline and online classifications have dis-
tinct characteristics, a further test in a real online experimental environment should be 
conducted to confirm the present findings. In addition, the number of subjects is rela-
tively small, and the obtained results need to be further confirmed over a large number 
of subjects. Furthermore, the classifier used in the present study is time-consuming, and 
it is not suitable for real-time MI classification due to its high demand on computational 
speed. Thus it is necessary to develop an efficient algorithm for multi-class classification 
meeting the requirements of online modality.

Conclusions
In summary, we have developed a novel channel selection method IterRelCen and 
applied it to three different datasets, respectively collected from a MI tasks paradigm, a 
two-class control paradigm, and a four-class control paradigm. The classification accu-
racies show that the proposed approach is capable of effectively classifying multi-class 
motor imagery patterns and it outperformed several widely used feature selection meth-
ods. The channels and feature bands that are well known to be important (from a neuro-
physiological view) are consistent with the results obtained by our study.

An interesting finding in this study is that the obtained results about channel selec-
tion reveal that there exists a distinct difference of the number of optimal channels in 
the three MI based BCI paradigms. From a MI task paradigm, to a two-class control 
paradigm, and to a four-class control paradigm, the required channels for optimizing 
the classification accuracy increased. This conclusion is particularly true when a para-
digm changes from MI tasks paradigm to any one of the control paradigms. The reasons 
for this may be attributed to the following two aspects: (1) increased task complexity or 
attention results in an increased magnitude of brain activities; (2) real-time visual feed-
back during MI could augment brain activity. The present results could provide useful 
information for channel selection in real MI based BCI experiments.
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