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Abstract

Synaptic inputs to neurons are processed in a frequency-dependent manner, with either low-pass or resonant response
characteristics. These types of filtering play a key role in the frequency-specific information flow in neuronal networks. While
the generation of resonance by specific ionic conductances is well investigated, less attention has been paid to the spatial
distribution of the resonance-generating conductances across a neuron. In pyramidal neurons – one of the major excitatory
cell-types in the mammalian brain – a steep gradient of resonance-generating h-conductances with a 60-fold increase
towards distal dendrites has been demonstrated experimentally. Because the dendritic trees of these cells are large, spatial
compartmentalization of resonant properties can be expected. Here, we use mathematical descriptions of spatially
extended neurons to investigate the consequences of such a distal, dendritic localization of h-conductances for signal
processing. While neurons with short dendrites do not exhibit a pronounced compartmentalization of resonance, i.e. the
filter properties of dendrites and soma are similar, we find that neurons with longer dendrites (*1 space constant) can
show distinct filtering of dendritic and somatic inputs due to electrotonic segregation. Moreover, we show that for such
neurons, experimental classification as resonant versus nonresonant can be misleading when based on somatic recordings,
because for these morphologies a dendritic resonance could easily be undetectable when using somatic input.
Nevertheless, noise-driven membrane-potential oscillations caused by dendritic resonance can propagate to the soma
where they can be recorded, hence contrasting with the low-pass filtering at the soma. We conclude that non-uniform
distributions of active conductances can underlie differential filtering of synaptic input in neurons with spatially extended
dendrites, like pyramidal neurons, bearing relevance for the localization-dependent targeting of synaptic input pathways to
these cells.
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Introduction

Responses to synaptic input are shaped by a neuron’s

membrane properties. In the subthreshold membrane potential

range such filtering can have low-pass or resonant characteristics –

i.e., a cell either shows the largest amplitude responses to low input

frequencies, or it responds maximally to input in a particular

frequency band (see [1] and references therein). Such resonant

properties of neuronal membranes are thought to play an essential

role in the generation of brain rhythms associated with various

behavioral and perceptual states [2]. Membrane-potential reso-

nances are generated by voltage-dependent conductances that

actively oppose changes in membrane potential and activate slowly

compared to the membrane time constant [1]. A key player in the

generation of subthreshold resonance is the h-type current, which

is carried by the hyperpolarization-activated, cyclic nucleotide-

gated HCN channels (h-channels). Its voltage-dependent dynamics

underlie membrane-potential resonance in, e.g., cortical and

hippocampal pyramidal cells [3–9]. In the hippocampus it is

thought to play a central role in the generation of local-field theta

oscillations (4–12 Hz range; [10,11]).

While a somatic subthreshold resonance can be well described by

a single compartment neuron model [12–14], h-channels are, in

fact, distributed in a highly non-uniform way across the soma and

dendrites in various types of neurons [15]. In particular, pyramidal

cells have dendritic trees of considerable spatial extent and show a

steep gradient of h-conductances along the dendrite. Experimental

work demonstrated that the density of h-channels increases up to

60-fold with somatic distance along the apical dendrites of

pyramidal cells in hippocampus and neocortex [15–19]. An

important consequence of such location-specific channel expres-

sion is that the characteristics of the membrane-potential

resonance typically also vary across the neuron [20,21], and

may hence be expected to affect the processing of synaptic input in

a location-dependent manner.

Here, we aim to understand how a distal, dendritic concentra-

tion of resonance-generating conductances affects the response to

dendritic versus somatic input. Using an analytically tractable

PLOS ONE | www.plosone.org 1 November 2013 | Volume 8 | Issue 11 | e78908



neuron model, we show that a predominant expression of

resonance-generating channels in distal dendrites can be respon-

sible for a strong dendritic resonance that shapes the somatic

response to dendritic input, without affecting the response to

somatic input. A key requirement is that the resonant conduc-

tances are concentrated approximately one electrotonic space

constant (or more) away from the soma, a condition that seems

particularly applicable to the extended apical, dendritic trees of

pyramidal neurons (see, e.g., [22,23]). An important consequence

of a dendritic localization of resonant conductances is that

experimental classification of resonant versus nonresonant cells

may be misleading when based on somatic recordings. Finally, we

demonstrate that dendritically-generated membrane-potential

oscillations (MPOs) may still propagate to the soma where they

can be picked up by somatic measurements while the dendritic

resonance itself is not reflected in somatic input-response

characteristics.

Results

In this study, we investigated the consequences of a distal,

dendritic expression of resonance-generating h-channels for

neuronal signal processing. We focused on how such a channel

localization affects the neuronal response to dendritic and somatic

input. Concomitantly, we considered the experimental detectabil-

ity of subthreshold resonance in somatic measurements of such

neurons. To quantify the effects of non-uniform h-channel

distributions on input filtering and detectability of resonance, we

derived a minimal mathematical model of a spatially extended

neuron with active channel dynamics (for details see Methods).

The model consisted of a soma with a finite dendritic cable, similar

to the Rall model of the motoneuron [24]. We extended the

dendritic cable with a lumped, active compartment representing

the distal dendrites expressing the h-channels (Figure 1A). This

captured the steep asymmetry of h-channel density along the

apical dendrite of pyramidal neurons, while allowing us to treat the

model analytically. Spatial dimensions of our reference model

were in accordance with morphological data on cortical pyramidal

cells [25]. The description of the h-current, Ih, was based on

recordings from cortical neurons [26] and consisted of a dominant

fast component (40 ms time constant) and a smaller slow

component (300 ms). The biophysical properties of h-channels

can give rise to a resonance within the theta range (see, for

example, [7,27–29]). To allow for mathematical analysis of the

frequency-dependent input filtering of the neuron model, we

linearized the h-current around a holding potential VR (here, {60
mV; see Methods and [30]).

Visibility of dendritic resonance in the somatic
compartment

The subthreshold voltage response to current input can be

characterized by the input impedance, which is quantified based

on current injection in one site and recording of the voltage

response at the same site. Mathematically, it is a complex-valued

function of the input frequency, defined by the ratio of the voltage

to the input current (see Methods). Although it is measured by

current injection at one site and recording the voltage response at

that same site, it is important to realize that the input impedance is

not only determined by local membrane properties, but is also

shaped by membrane properties of other, neighboring compart-

ments depending on the electrical coupling with those compart-

ments. Before considering a distal concentration of h-channels, we

first illustrate two standard cases comprising an entirely passive

model neuron and a model neuron with an exclusively somatic

expression of h-channels (Figure 1B). We considered the somatic

input impedance (i.e., both injection of current and measurement

of voltage at the soma). As one would expect, the entirely passive

model showed a low-pass somatic input impedance (Figure 1B,

gray curve), whereas the model with somatic h-conductances

showed a resonance in the somatic input impedance (Figure 1B,

magenta curve). The resonant (or band-pass) filter peaked at a

frequency of *8:2 Hz. We characterized the ‘‘quality’’ of the

resonance with the so-called ‘‘Q-value’’: the ratio of the

impedance amplitude at the resonant frequency to the input

resistance (see [31,32]), which yielded a value of *1:3 for this

model. Note that while Q-values larger than 1 denote a band-pass

filter, in experimental studies one should generally rely on larger

Q-values (usually more than 1.2) for identification of membrane

resonances in order to surpass the intrinsic noise level [13].

The resonance observed above was clearly reflected in the input

impedance, as the latter was determined in the compartment

Figure 1. Dendritic resonance may not be detectable in somatic
measurements. (A) Schematic of the standard model used through-
out the study showing the spatial dimensions of the soma and dendrite.
The soma and proximal part of the dendrite had passive membrane
properties while the distal, dendritic end (gray) had voltage-dependent
h-conductances. (B) The somatic input impedance of a passive neuron
(gray) demonstrated low-pass behavior. When h-conductances were
added to the soma (magenta curve), this resulted in a band-pass filtered
response. (C) If the h-conductances were located in the distal dendritic
end as in panel (A), a resonance was observed in the dendritic input
impedance (blue curve), but was not detectable somatically (red curve).
Thin curves in panels (B) and (C) correspond to numerical results from
the full nonlinear model (see Methods).
doi:10.1371/journal.pone.0078908.g001
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where the resonant h-conductances were located. Next, we turned

to the model described in Figure 1A with h-channels distributed in

a pyramidal-cell like manner (i.e., concentrated in the distal part of

the dendrite). Again, when we measured the input impedance in

the active compartment (here, current injection and response

measurement at the distal dendritic end) we observed a strong

resonance (Figure 1C, blue curve, Q = 1.36). However, when we

determined the input impedance at the soma, we observed a low-

pass filter, as if there was no resonant current present in the

neuron (Figure 1C, red curve, Q = 1.00). Note that the analytically

calculated impedance profiles (Figure 1B–C, thick curves) coin-

cided with numerical simulations of the response of the full

nonlinear model (thin curves; see Methods), showing that the

nonlinear models were very well approximated by the analytically

treatable linear ones.

The natural question to ask next is whether the resonant

dendritic responses are, in fact, visible at the soma. For this we

characterized the signal filtering along the dendritic cable using

the so-called transfer impedance (see Methods). Whereas the input

impedances that we computed above characterized the voltage

response at the same location where the current input was

provided, transfer impedances relate the current injected in one

location to the voltage response that this current elicits in a

different location. Though the transfer impedance is symmetrical

in the sense that it is identical in the opposite direction (i.e., when

switching the input and recording sites; see, e.g., [33]), we typically

refer to the transfer impedance from dendrite to soma, since this is

the usual direction of input-output flow in a neuron.

We considered the same three neuron models as in Figure 1. As

expected, the transfer impedance of the passive model showed

low-pass characteristics (Figure 2A; the inset depicts the somatic

input impedance from Figure 1A). The model with somatic h-

channels (Figure 2B) not only showed a resonant peak in the

somatic input impedance (inset), but also in the transfer impedance

(black curve). Hence, the somatic response is qualitatively the same

for somatic input as for dendritic input. However, in the model

with h-channels in the distal dendritic end, the transfer impedance

and the somatic input impedance are qualitatively different

(Figure 2C): whereas the somatic response to somatic input

demonstrated low-pass characteristics (inset), the somatic response

to dendritic input showed a resonance (black curve). Hence, the

two ‘pathways’ were differentially filtered. Importantly, this also

illustrates that for a neuron with a pyramidal-cell-like distribution

of h-conductances, a somatic assessment of the input impedance

could misleadingly suggest that the neuron cannot show band-pass

filtering, whereas in fact it can for dendritic input.

Note that the models with somatic or distal dendritic h-

conductances showed almost identical resonant transfer imped-

ance profiles (Q-values of 1.25 and 1.28 and resonant frequencies

of 6.58 Hz and 6.84 Hz, respectively). This is in accordance with

results from [34], who demonstrated that the transfer impedance is

hardly affected by the precise distribution of Ih between input and

output locations as long as the total h-conductance remains the

same, which was indeed the case for the two models above.

Resonance-associated membrane-potential oscillations
Resonant membrane properties can underlie the generation of

membrane-potential oscillations (MPOs) through an interplay

between the resonant conductances and noise (from ion channel

stochasticity or other sources; [13,35,36]). Intuitively, cell-intrinsic

or synaptic broadband noise is filtered by the subthreshold

resonance, resulting in noise-driven voltage fluctuations whose

preferred frequency is reflected in a peak (at non-zero frequency)

in their voltage power spectrum. MPOs have been demonstrated

in various cell types, including stellate cells from entorhinal cortex

[13,37] as well as pyramidal cells and interneurons from

hippocampus [38,39]. Though resonance and noise-driven MPOs

can be considered two sides of the same coin, these phenomena

can also occur independently. Resonance need not be accompa-

nied by MPOs if the noise amplitude is small. However, the

opposite case, MPOs without resonance, is more difficult to

explain. A mechanism for the latter case was provided by

Richardson and colleagues [40] in a single-compartment model

in a narrow parameter range. Here, we show that the spatial

separation of h-channels from the soma in a pyramidal-cell-like

morphology provides an additional mechanism how MPOs can

occur in the apparent absence of somatic resonance.

The results in the previous section suggest that neurons with a

distal, dendritic localization of h-conductances could be classified

as nonresonant by somatic input impedance measurements, but

that band-pass-filtered responses may propagate from the

dendrites to the soma. Hence, if the noise source underlying

MPOs is located in the distal dendrites, MPOs can be created

locally in the distal dendrite and then propagate to the soma. To

demonstrate this, we provided white noise current input (repre-

senting synaptic or channel noise) to the distal dendritic segment of

the three models (passive, somatic h-channels, dendritic h-

channels) and measured the voltage response at the soma. From

the voltage traces themselves it was not clear whether the somatic

response showed any oscillatory components (Figure 2D–F, top

traces; see also [35]). However, the voltage power spectra

demonstrated maxima in the theta range (*8 Hz) for both

neurons with h-channels, while the passive neuron did not show a

preferred frequency. The spectra of the nonlinear models were

well-approximated by the squared transfer impedances (multiplied

by the noise power spectrum) calculated analytically for the linear

models (Figure 2D–F, black dots versus green curves). In

summary, somatic MPOs were present even in the absence of

somatically-detectable resonance. In general, the extent to which

dendritic resonance and MPOs are reflected in the somatic

compartment depends on properties of the membrane as well as

neuronal morphology. Both aspects are investigated in the

following sections.

Conditions for differential filtering of somatic and
dendritic inputs

To identify the conditions when dendritic resonance does not

affect somatic input, while maintaining an effect on dendritic

signals reaching the soma (such as synaptic inputs or MPOs), we

analyzed the transfer and input impedances in the model with

distal dendritic h-channels across a range of morphological and

electrical parameters (Figure 3). Such regimes are defined by a

dendro-somatic transfer impedance exhibiting a substantial peak

(at non-zero frequency) while the somatic input impedance is low-

pass. Quantitatively, we compared the Q-value of the somatic

input impedance (red lines) with the Q-value of the dendro-

somatic transfer impedance (black lines) when varying the model

parameters.

For the dendritic compartment with resonant conductances not

to affect the response of the somatic compartment to somatic

input, the two compartments need to be electrotonically

sufficiently distant from each other. Hence, model parameters of

interest can be predicted from classical cable theory (see, e.g.,

[41]). The electrotonic distance between two points along a cable

increases with the physical distance and the axial resistivity, while

it decreases with the cable diameter and the membrane resistance.

Furthermore, the larger the (passive) soma membrane area, the

less its response is affected by dendritic membrane properties.

Somatic versus Dendritic Resonance
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Indeed, results from our model agree with those predictions. A

key parameter determining the presence of a resonance in the

somatic input impedance was the length of the passive dendrite

(Figure 3A). Long dendrites displayed a low-pass somatic input

impedance (Q-value for red curve is 1), while the transfer

impedance showed a strong resonance over the entire depicted

range. Hence, when the h-conductances were electrotonically

remote from the soma (here, larger than *1 space constant, which

was 527 mm), their effects were not detectable in the somatic input

impedance.

In our default parameter set (indicated by vertical dashed lines

in all panels of Figure 3), the somatic input impedance did not

show a resonance. This changed only slightly when increasing the

dendrite diameter (Figure 3B). While this decreased the electro-

tonic segregation between soma and the distal dendritic compart-

ment, it also decreased the contribution of the active, distal

compartment to the model’s response, hence strongly decreasing

the Q-value of the transfer impedance. In contrast, only a small

decrease of the transfer impedance was observed when we

increased the soma surface area (Figure 3C), while the somatic

input impedance was unaffected.

Another important parameter controlling the resonance of the

somatic input impedance was the axial resistivity, Ra. Decreasing

this parameter revealed the dendritic resonance in the soma

(Figure 3D), because it decreased the electrotonic separation

between the active dendritic segment and the soma. It is important

to note here that experimental estimates of Ra vary considerably,

both for the same type of neuron as well as between different types

of neurons. For example, a recent study found that the axial

resistivity of CA1 pyramidal neurons lies within the range of 139–

218 Ohm cm [42], which is approximately twice as high as what

was reported for cortical layer V pyramidal neurons (70–100 Ohm

cm) [43].

Parameters that affected the resonant membrane properties

directly, such as the h-conductance in the distal dendritic end

(Figure 3E) and the cell’s holding potential (Figure 3F), also

controlled the Q-values of the transfer impedance. However, they

did not change the low-pass nature of the somatic input

impedance, since these parameters did not affect the electrotonic

separation between the soma and the active, distal dendritic

segment.

As an alternative to varying the physiological parameters that

determine cell morphology (dendrite length and diameter, and

soma surface area), we also systematically analyzed the electro-

tonic properties of the cell: the electrotonic length of the passive

stretch of dendrite that connects to the active distal compartment

Figure 2. Signals of dendritic origin reflect dendritic resonance in the somatic compartment. (A–C): Dendro-somatic transfer impedances
for an entirely passive neuron (A), a cell with h-channels localized in the soma (B), and a neuron with h-channels in the distal end of the dendrite (C).
Insets show local somatic impedances from Figure 1. In contrast to the input impedances, transfer impedances showed a resonant peak, independent
of whether h-channels were located somatically (B) or dendritically (C). (D–F): For all three models white noise current was injected at the distal
dendritic end. Based on numerical simulations of the (in the two cases with h-conductances nonlinear) model equations, example voltage traces were
obtained (solid black curves). Power spectra of responses (black dots) agreed with the squared dendro-somatic transfer impedances (green curves).
Dendritic resonance-induced MPOs could be seen in somatic measurements despite the apparent absence of the resonance (F).
doi:10.1371/journal.pone.0078908.g002
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as well as the ratio of the dendritic input conductance to the soma

conductance, r? [24,41]. The dendritic-soma conductance ratio

r? indicates the relative electrical ‘‘magnitude’’ of the two

elements; for a given dendrite, r? is inversely proportional to the

size of the soma. For most of the parameter range that we

explored, the somatic input impedance did not show resonance

(dark blue color in Figure 4A, left panel; white circle denotes

default model parameters) while the transfer impedance (right

panel) did, with resonance frequencies between 5 and 10 Hz

(Figure 4B). Only electrotonically small neurons (electrotonic

length below *0:5) with large r? (i.e. small soma, r?w1)

displayed resonances for somatic input.

Analysis of different dendritic morphologies and
conductance distributions

In the previous section we considered the default model neuron

with ball-and-stick morphology and a distal dendritic localization

of h-channels. As we show next, our results also held for various

simple neuronal morphologies and different distributions of h-

channels across the dendrite. Besides for our standard model

(Figure 5, model a), we determined response characteristics for

three additional neuron models with distinct morphologies: a cell

with a tapering dendrite (model b), a neuron with two dendrites

(model c), and a neuron with a branching dendrite (model d).

Furthermore, we considered two models with modified spatial

distributions of h-channels: a cell with a uniform dendritic

distribution (model e) and a cell with an exponentially increasing

h-channel density that was constrained by experimental data from

pyramidal neurons (model f) [16,19]. In all cases, Q-values for the

dendritic input impedance, somatic input impedance, and the

dendro-somatic transfer impedance were determined.

The resonance of the transfer impedance (red bars) had a

similar Q-value (*1:3) for all six models. This was expected since

the models had the same total ‘‘number of h-channels’’ distributed

between input and output locations [34]. In contrast, the

resonance was absent for the somatic input impedance (red bars)

in all models; the only exception was the model with the uniform

h-channel distribution (model e), which had a similar (local)

resonance strength for somatic and for dendritic input, since there

was no electrical separation between the soma and the active

Figure 3. Dendritic resonance can be reflected somatically despite low-pass filtering of somatic inputs. Q-values of somatic input
impedance (red curves) and dendro-somatic transfer impedance (black curves) when varying dendrite length (A), dendrite diameter (B), soma surface
area (C), axial resistivity (D), h-conductance (E), and membrane holding potential (F). Vertical dashed lines indicate the default parameter values used
in this study. There were large regions in the parameter space where MPOs propagated to the soma, but resonance was not detectable somatically.
doi:10.1371/journal.pone.0078908.g003
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dendrite. Similarly, local resonance strength for dendritic input

was high for all models, except again for model e, where resonance

was limited because of the lower h-channel density. Note that the

model with the experimentally motivated exponential increase in

h-channel density along the dendrite (model f) gave similar results

as the default model a; Q-values for the dendritic and somatic

input impedances as well as the transfer impedance were

approximately the same.

In summary, differential somatic responses to somatic versus

dendritic input – and consequently the existence of somatic MPOs

in the absence of somatic resonance – are common features of

neurons with various morphologies, provided that the majority of

resonance-generating conductances is electrotonically sufficiently

distant (*1 space constant or more) from the soma.

Discussion

We have used mathematical descriptions of spatially extended

neurons to analyze the effect of non-uniform distributions of

resonant conductances on the processing of dendritic and somatic

input. This was motivated by the finding that h-channels, which

underlie subthreshold resonance in many types of neurons, are

often – notably in cortical and hippocampal pyramidal neurons –

distributed in a highly non-uniform fashion across the soma and

dendrites, with most of the channels concentrated in the distal

dendrites [15–19]. Our results demonstrate that a dendritic

resonance may strongly shape the somatic response to dendritic

inputs, without affecting the response to somatic input, or indeed,

without being detectable with somatic current clamp recordings,

as long as the majority of resonant conductances are located in the

dendrites, approximately one space constant or further from the

soma. In contrast, membrane potential oscillations (MPOs) caused

or supported by dendritic resonance can still be discernible in

somatic recordings.

Previous mathematical work on input integration in cells with

active dendritic currents has typically considered uniform mem-

brane properties, using the so-called quasi-active description of

dendritic cables [31,44–46]. In the present study we analytically

quantified the effects of a strongly polarized distribution of active

conductances on the response to dendritic and somatic input (part

of these results are also presented in [47]). To this end, we

extended the Rall model of a passive dendritic neuron [24] by

including a lumped distal dendritic segment with active membrane

properties. We found that the extent to which the distal dendritic

resonance affects the somatic response to somatic input depends

on the electrotonic separation of the resonant dendritic segments

from the soma. If the resonant membrane is close to the soma and

Figure 4. For electrotonically large cells the origin of input determines the ‘‘visibility’’ of dendritic resonance in somatic
measurements. Color-coded Q-value (A) and resonant frequency (B) of the somatic input impedance (left panels) and the dendro-somatic transfer
impedance (right panels). The somatic input impedance exhibited a resonance only for short electrotonic lengths and large dendritic-soma
conductance ratios r?. In contrast, the transfer impedance showed a resonance across the whole parameter range with the exception of cells that
are electrotonically small and have a low dendritic-soma conductance ratio. White circles correspond to the default model with electrotonic length
L~1:7 and conductance ratio r?~2:7.
doi:10.1371/journal.pone.0078908.g004
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the dendritic-soma conductance ratio is large (i.e. the soma is

small), the somatic input will activate the resonant current, which,

in turn, will shape the somatic response. However, if the resonant

membrane is more distant, the somatic input will perhaps

propagate sufficiently into the dendrites to activate the distal

resonant conductances, but this dendritically filtered response will

be further attenuated on the way back to the soma, thereby

rendering its effect on the somatic response negligible. In other

words, for somatic input to be affected by a distal dendritic

resonance and be picked up in a somatic voltage recording, it has

to cover the distance between the soma and the resonant

membrane twice. In contrast, distal dendritic input will be locally

filtered by the resonant conductances, and the response will still be

detectable at the soma (unless the electrotonic distance becomes

too large). In this case, the distance between the soma and the

resonant membrane needs to be covered only once. We

demonstrated that these results hold for a variety of cell

morphologies and distributions of the resonant conductances.

Frequency- and location-specific filtering of inputs
The spatial distribution of resonance-generating conductances

as analyzed in this study has important implications for neuronal

input processing. A high density of h-channels in the distal part of

the dendrite will lead to band-pass filtering of synaptic inputs

impinging on this part of the dendritic tree, which will also be

reflected somatically. Our work shows, however, that somatic

input to the same cell may give rise to low-pass responses. This

occurs when the dendritic resonance is electrotonically distant and

therefore does not substantially affect input to the somatic

compartment. Our analysis demonstrates that this requires an

electrotonic distance of *1 space constant. This argues against

such differential filtering to occur in electrotonically compact cells

such as cerebellar Purkinje cells [48]. However, the large apical

dendritic trees of cortical and hippocampal pyramidal neurons

appear particularly suited to allow for the location-specific filtering

of inputs (see, e.g., [22,23]). This is particularly relevant because

input projections to neurons often target specific domains of the

neuron. For example, in CA1 pyramidal cells, inputs from

entorhinal cortex project to the distal dendrites, while inputs from

hippocampal CA3 cells arrive proximally to the soma. The steep

gradient of h-channels along the dendrites of CA1 pyramidal cells

suggests that inputs arriving from these two pathways are subject

to distinct filtering (see also [20]). Moreover, spike initiation may

be subject to an additional frequency-dependent filter process due

to local resonant currents that activate at more depolarized levels

[21,49,50].

Membrane-potential oscillations without resonance
Membrane-potential oscillations have been observed in many

neuron types, including cells in the entorhinal cortex and

hippocampus [13,37–39]. Modeling work suggests that MPOs

can result from the interplay between resonance-generating active

conductances and noise that arises from, e.g., ion-channel

stochasticity [13,35,36]. These MPOs are irregular, but their

voltage power spectrum exhibits a prominent peak. Usually, it is

assumed that if subthreshold MPOs can be detected, also a

subthreshold membrane-potential resonance should be present.

Our results show, however, that depending on the spatial location

of the resonating mechanism, MPOs can be picked up by somatic

recordings in the absence of a resonance in the somatic input

impedance. This is the case if the resonant conductances are

located in electrotonically distant compartments, like the distal

ends of apical dendrites, such that the dendritic resonance is not

reflected in the local voltage responses to currents injected

somatically. Noise-driven MPOs of distal dendritic origin (caused

either by channel or synaptic noise) may, nevertheless, still reach

the somatic compartment and result in a peaked voltage power

spectrum. For completeness, it should be mentioned that an

alternative mechanism by which somatic MPOs can occur in the

apparent absence of somatic membrane-potential resonance has

been reported previously [40]. This single-compartment mecha-

nism does not require a spatial separation of resonance and

appears in a narrow parameter regime, where damped oscillations

can occur in the absence of membrane-potential resonance.

Consequences for in vivo modulation of neural dynamics
Resonant properties can be dynamically modified via neuro-

modulation (e.g., changes in acetylcholine levels [51]) or through a

variation in the conductance of the membrane (e.g., in vivo changes

in synaptic input levels [52]). It is tempting to conclude that,

hence, also the frequency-dependent filtering of inputs to affected

neurons must be changed. However, our results imply that the

effect on the frequency-dependent information flow in local

circuits depends on the neuronal localization of the modulation.

Along these lines, a high-conductance state of the soma may

eradicate local somatic resonance properties and detectability of

resonance in somatic measurements [52]. Nevertheless, inputs to

distal dendritic parts may still be filtered by a dendritic resonance

and hence may preferentially contribute to spiking in the resonant

frequency range.

Conclusions
Experimental investigations of the location dependence of input

filtering are demanding, as they require recordings (potentially

Figure 5. Differential filtering of somatic and dendritic input
persists for a variety of cell morphologies and a gradual
distribution of the active current. Q-values of the dendritic input
impedance (blue), somatic input impedance (red), and dendro-somatic
transfer impedance (black). a: The default model from Figures 1B, 2C, 3,
and 4 (length of passive cable l~900mm, length of active distal end
ld~100mm, dendrite diameter d~2mm, peak conductance in active
segment �ggh~23:9 nS). b: Tapering of diameter towards the dendritic
end (dendrite diameter gradually decreases from d~2mm to d~1mm).
c: Neuron with two dendrites, both with the same parameters as model
a. d: Branching neuron (length of primary dendrite l~500mm, length of
passive parts of both daughter dendrites l~400mm, length of active
dendritic ends ld~100mm). e: Uniform distribution of h-conductances
(peak conductance density �ggh~0:38 mS/cm2). f: Exponential distribu-
tion of h-conductances (�ggh~26:71 exp (0:0041x) mS/cm2). Note that the
total h-conductance and the length of the path between distal
dendritic end and the soma were the same in all considered cases.
doi:10.1371/journal.pone.0078908.g005
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with multiple electrodes) from dendrites, which typically have

diameters of less than 1 mm. Our theoretical study based on

simplified morphologies helps to assess the effects of spatially

confined resonances. Our results propose that spatial compart-

mentalization of resonance via non-uniform ion channel distribu-

tions could contribute to frequency-dependent information routing

in the brain. Accordingly, also the functional effect of neuromo-

dulation and changes in conductance states have to be interpreted

with respect to the localization of their action. In particular, for

cells with an extended dendritic tree, like cortical or hippocampal

pyramidal neurons, it is likely not sufficient to assess fundamental

properties of neuronal input processing based on somatic

recordings alone.

Methods

Mathematical model of a dendritic neuron with a non-
uniform distribution of active currents

To mathematically analyze the frequency-dependent response

to dendritic and somatic input in a neuron with a strongly

polarized distribution of active conductances, we extended the

Rall model of a passive dendritic neuron [24] by including an

active distal dendritic segment (see Figure 1A). The passive cable

equation satisfies

l2 L2V (x,t)

Lx2
{tm

LV (x,t)

Lt
{(V (x,t){EL)~0, ð1Þ

where V (x,t) is the membrane voltage along the cable, l is the

space constant, tm is the membrane time constant, and EL is the

leak reversal potential. The soma, represented by a single

isopotential compartment, is attached at x~0:

Csoma
LV (0,t)

Lt
~{

V (0,t){EL

Rsoma
z

1

ra

LV (0,t)

Lx
, ð2Þ

where Csoma is the capacitance and Rsoma is the membrane

resistance of the somatic compartment, and ra is the axial

resistance of the dendritic cable. Our standard model considers

that the active conductances are concentrated in a lumped

compartment at the distal end of the passive dendritic cable

(x~lpas):

Cdend
LV (lpas,t)

Lt
~{

V (lpas,t){EL

Rdend
{

1

ra

LV (lpas,t)

Lx
{Ih , ð3Þ

where Cdend is the capacitance and Rdend the membrane resistance

of the dendritic compartment, and Ih is the voltage-dependent h-

current. The model of the h-current is based on [26] (see also [53]

and [32]) and consists of a fast and a slow component:

Ih~�ggh(0:8hfz0:2hs)(V{Eh) , ð4Þ

tf
dhf

dt
~h?(V ){hf , ð5Þ

ts
dhs

dt
~h?(V ){hs , ð6Þ

with activation function h?(V )~1=(1z exp ((Vz82)=7)), peak

conductance �ggh, reversal potential Eh~{43 mV, fast activation

time constant tf~40 ms, and slow activation time constant

ts~300 ms.

To allow us to compute the filtering characteristics of the above

nonlinear model, we linearized the h-current around holding

voltage VR. Such a linear approximation retains the activation

dynamics of a voltage-dependent current, but loses the nonline-

arity of the activation function and the voltage-dependence of the

driving force and the activation time constant. The approximation

is valid for small voltage changes, however, these voltage changes

can, in fact, be quite large (say, 10–20 mV), depending on the

specific active current and the type of stimulus. The linearized

membrane dynamics of the distal active compartment can now be

described as an LRC electric circuit consisting of two phenom-

enological inductances, three resistances and a capacitance; for

perturbations around VR the h-current responds as if the total

membrane resistance is in parallel with two inductive branches:

Cdend

LV (lpas,t)

Lt
~{

V (lpas,t){VR

R�dend

{
1

ra

LV (lpas,t)

Lx
{If{Is,

Lf
dIf

dt
~{rf IfzV (lpas,t){VR ,

Ls
dIs

dt
~{rs IszV (lpas,t){VR , ð7Þ

with resistances

R�dend~
1

1
Rdend

z�gghh?(VR)
,

rf~
1

0:8�ggh(VR{Eh) L
LV

h?(VR)
,

rs~
1

0:2�ggh(VR{Eh) L
LV

h?(VR)
,

and inductances Lf~rf tf and Ls~rs ts.

Input impedance and transfer impedance of the neuron
model

To characterize the voltage response of the linearized model to

somatic and dendritic current input we computed the (frequency-

dependent) transfer function. For this we expressed the above

system in the frequency domain. The cable equation (1) is then

written as

d2 ~VV (x,v)

dx2
{c2(v) ~VV (x,v)~0 ð8Þ

with v~2pf (where frequency f is in Hz) and with propagation

constant

c2(v)~
1zivtm

l2
:
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The boundary conditions defined by equations (2) and (3) with

an impulse current Iinj~d(t) in the distal dendritic segment can be

written in the frequency domain as

1

ra

L ~VV (0,v)

Lx
~csoma(v) ~VV (0,v), ð9Þ

1

ra

L ~VV (lpas,v)

Lx
~1{cdend(v) ~VV (lpas,v) , ð10Þ

where for the passive soma

csoma(v)~ivCsomaz
1

Rsoma

and for the active dendritic segment

cdend(v)~ivCdendz
1

Rdend
z�gghh?(VR)z

1

rfzivLf
z

1

rszivLs
:

By solving equation (8) with boundary conditions given by

equations (9) and (10) we obtained the transfer function of the

neuron model:

~GG(x,v)~ ~VV (x,v)~A(v) cosh (cx)zB(v) sinh (cx), ð11Þ

where coefficient A(v)~cK(v) and B(v)~racsomaK(v), with

K(v)~

ra

rac(csomazcdend) cosh (c lpas)z(csomacdendr2
azc2) sinh (c lpas)

,

and c~c(v), csoma~csoma(v), cdend~cdend(v).
The absolute value of the (complex-valued) transfer function

gives the (frequency-dependent) impedance amplitude of the

neuron model. We considered both input impedances (which

determine the voltage response at the same location as the input

current) and transfer impedances (which determine the voltage

response in another location than the input current). To compute

the input impedance at the distal dendritic end or the transfer

impedance between the active dendritic compartment and the

soma, one must let x~lpas or x~0 in Equation (11), respectively.

When the current input is injected somatically we have

A(v)~(c cosh (c lpas)zracdend sinh (c lpas))K(v) and

B(v)~{(racdend cosh (c lpas)zc sinh (c lpas))K(v) and one can

compute the somatic input impedance by letting x~0. Input and

transfer impedances for the neuron with active soma and/or

passive distal dendritic segment can be obtained by setting csoma

and cdend appropriately.

The linear system (Equation (7)) may show a resonant voltage

response for particular input frequencies, which is observable in

the input impedance and/or transfer impedance as a peak at a

non-zero frequency. To describe the quality of the resonance we

calculated the so-called ‘‘Q-value’’ (see [31,32]), which is defined

as the ratio of the impedance amplitude at the resonant frequency

to the input resistance (i.e. the impedance at zero frequency).

Numerical computation of impedances of the nonlinear
model

We also numerically determined the input impedance and

transfer impedance of the nonlinear conductance-based model

using the NEURON simulation environment [54]. To compute

somatic and dendritic input impedances for Figure 1B,C we

injected a so-called ZAP current IZAP(t)~I0 sin (2pf (t)t), with

frequency f (t)~fm t=2T , input amplitude I0~0:01 nA, maximum

frequency fm~100 Hz, and stimulus duration T~150 s. At the

same location we measured the membrane potential V (t) and

computed the input impedance as
~GG(f )~FFT(V (t))=FFT(IZAP(t)), where FFT is the Fast Fourier

Transform, an algorithm to efficiently compute the discrete

Fourier transform.

To determine the transfer impedances and power spectra for

Figure 2D-F, we injected a white noise current (with a duration of

100 s and standard deviation of 0.1 nA) at the distal dendritic end

and measured the somatic voltage V (t). The impedance amplitude

profile was determined as j~GG(f )j~FFT(V (t))=FFT(Inoise(t)). To

obtain the results shown in Figure 5, we used the Impedance Tool

that is part of NEURON. The time step in the simulations was set

to 0.025 ms.

Model parameters
The neuron models had a uniform leak conductance gL~0:09

mS/cm2 and capacitance C~1mF/cm2 yielding a passive

membrane time constant tm~C=gL~11 ms. We based the

morphological parameters of our standard model (see Figure 1A)

on experimental data on cortical pyramidal cell morphologies

[25]: length of passive dendritic cable lpas~900mm, length of the

active distal dendritic end lact~100mm, dendrite diameter

ddend~2mm, surface area of the distal dendritic end

Sdend~pddend lact~628mm2, length and diameter of the cylindri-

cal soma dsoma~lsoma~20mm, surface area of the soma

Ssoma~pdsoma lsoma~1257mm2. This gave a somatic and dendritic

membrane resistance of Rsoma~1=(gLSsoma)~0:88 GOhm and

Rdend~1=(gLSdend)~1:77 GOhm, respectively, and a somatic

and dendritic capacitance of Csoma~CSsoma~12:6 pF and

Cdend~CSdend~6:28 pF. Axial resistivity was set to Ra~200

Ohm cm, resulting in an axial resistance ra~4Ra= pd2
dend

� �
~6366

MOhm/cm and a space constant l~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ddend=(4RagL)

p
~527mm.

The dendritic-soma conductance ratio (which indicates the relative

electrical ‘‘magnitude’’ of the two elements and which is inversely

proportional to the size of the soma; see [24,41]) was

r?~pd
3=2
dend= 2Ssoma

ffiffiffiffiffiffiffiffiffiffiffi
RagL

p
ð Þ~2:7, electrotonic length of the

passive stretch of dendrite L~lpas=l~1:7. The active dendritic

or somatic compartment had �ggh~23:9 nS. The holding potential

was uniformly set to VR~{60 mV. Note that we adjusted the

leak reversal potential EL in the active (dendritic or somatic)

compartment in order to maintain the same holding potential for

the various parameter settings. The parameters of the linearized

model (for the default set described above with an active dendritic

compartment) were R�dend~0:64 GOhm, rf~0:54 GOhm,

rs~2:15 GOhm, Lf~21:6 MH, and Ls~645 MH.
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