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Abstract: The COVID-19 pandemic has been a disastrous event that has elevated several psycho-
logical issues such as depression given abrupt social changes and lack of employment. At the same
time, social scientists and psychologists have gained significant interest in understanding the way
people express emotions and sentiments at the time of pandemics. During the rise in COVID-19 cases
with stricter lockdowns, people expressed their sentiments on social media. This offers a deep under-
standing of human psychology during catastrophic events. By exploiting user-generated content on
social media such as Twitter, people’s thoughts and sentiments can be examined, which aids in intro-
ducing health intervention policies and awareness campaigns. The recent developments of natural
language processing (NLP) and deep learning (DL) models have exposed noteworthy performance
in sentiment analysis. With this in mind, this paper presents a new sunflower optimization with
deep-learning-driven sentiment analysis and classification (SFODLD-SAC) on COVID-19 tweets.
The presented SFODLD-SAC model focuses on the identification of people’s sentiments during
the COVID-19 pandemic. To accomplish this, the SFODLD-SAC model initially preprocesses the
tweets in distinct ways such as stemming, removal of stopwords, usernames, link punctuations, and
numerals. In addition, the TF-IDF model is applied for the useful extraction of features from the
preprocessed data. Moreover, the cascaded recurrent neural network (CRNN) model is employed
to analyze and classify sentiments. Finally, the SFO algorithm is utilized to optimally adjust the
hyperparameters involved in the CRNN model. The design of the SFODLD-SAC technique with the
inclusion of an SFO algorithm-based hyperparameter optimizer for analyzing people’s sentiments on
COVID-19 shows the novelty of this study. The simulation analysis of the SFODLD-SAC model is
performed using a benchmark dataset from the Kaggle repository. Extensive, comparative results
report the promising performance of the SFODLD-SAC model over recent state-of-the-art models
with maximum accuracy of 99.65%.

Keywords: COVID-19; sentiment analysis; Twitter; mental illness; deep learning; natural lan-
guage processing

1. Introduction

COVID-19 is a communicable disease that can be transferred or spread mainly by
the tiny droplets released by the individual during sneezing, coughing, and also while
talking. It is currently becoming a source of anxiety depression and stress, owing to the
false information that is to be posted on social media. The mental well-being of people is
severely affected due to the fast spread of incorrect information on social media [1,2]. Due
to the present situation of lockdown and social distancing, people are mainly dependent on,
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or even addicted to, the internet and mobile phones, as revealed by reports indicating that
the highest number of activities are performed [1] on social media. At the time of lockdown,
traffic on social media has extremely increased [3]. Among all other social media, Twitter
ranks first in spreading COVID news [4,5]. The devastating part of such news is subjective
because it involves mostly personal thoughts and confusion, which leads to intentional
fake information, negativity, and uncertainty in the human community [6]. Meanwhile,
this condition is seeking the interest of researcher scholars to make calculable analyses to
create a wholesome picture. This study mainly aims at sentiment analysis based on Twitter
datasets with regard to COVID-19 through a supervised machine learning algorithm.

During lockdowns, all individuals, particularly teenagers, usually spend more time on
Twitter, and in fact, users are more active than at any other time. The reason behind this is
to receive up-to-date information regarding COVID-19 news. Meanwhile, they share their
thoughts and feelings with friends and society through a medium. Therefore, in this pandemic
situation, the analysis of Twitter data has received attention from the research community.
Sentiment analysis (SA) is a technical study that deals with the opinions, attitudes, and
emotions of people [7]. It is considered an efficient way to calculate people’s opinions on
specific topics. Additionally, SA is able to convey several impacts on the community in various
means. Additionally, SA summarizes the different anxieties and mental health conditions
of people that arise during the pandemic situation. We can quickly identify the depression
status and panic disorder of individuals in a community from the SA outcome [8]. The only
solution to bring positivity to society is to apply various virtual depression optimizers for
that depressed person. It should be mentioned that the success of most applications is based
on the sentiments of social users. SA for active users is considered one of the efficient ways
of tracking public opinion. In this pandemic situation, these kinds of studies have made
important contributions to helping policymakers and governments.

Based on this background, this paper presents a new sunflower optimization with
deep-learning-driven sentiment analysis and classification (SFODLD-SAC) on COVID-19
tweets. The presented SFODLD-SAC model initially preprocesses the tweets in distinct
ways such as stemming, removal of stopwords, usernames, link punctuations, and numer-
als. In addition, the TF-IDF model is applied for the useful extraction of features from
the preprocessed data. Moreover, a cascaded recurrent neural network (CRNN) model
is employed to analyze and classify sentiments. Finally, the SFO algorithm is utilized
to optimally adjust the hyperparameters involved in the CRNN model. The simulation
analysis of the SFODLD-SAC model is performed using a benchmark dataset from the
Kaggle repository. In short, the paper’s contributions are as follows:

• An intelligent SFODLD-SAC model is presented consisting of TF-IDF-based feature
extraction, CRNN classification, and SFO-based hyperparameter optimization for
COVID-19 tweet analysis. To the best of our knowledge, the SFODLD-SAC model has
been never presented in the literature;

• The SFODLD-SAC technique involves the design of an SFO algorithm to optimally
choose the hyperparameters, which helps in increasing the classification accuracy and
avoids computational overhead;

• The performance of the SFODLD-SAC model is validated using a benchmark dataset
from the Kaggle repository, and the results are investigated under distinct sizes of
training/testing data.

The rest of this paper is organized as follows: Section 2 offers related research, and
Section 3 discusses the proposed model. Then, Section 4 elaborates on the experimental
validation with the benchmark Kaggle dataset, and Section 5 draws the conclusions of
the paper.

2. Literature Review

This section offers a detailed review of existing SA models related to COVID-19. Re-
searchers in [9] analyzed Indian people’s sentiment during the lockdown. They used some
popular hashtags for measuring negativity and positivity in people. Samuel et al. [10] high-
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lighted public sentiments related to the COVID-19 pandemic using two machine learning
(ML) classification techniques. The researchers in [11] presented an architecture, in which a
deep-learning-based language model was applied through long short-term memory (LSTM)
recurrent neural network for sentimental analysis during the increase in COVID-19 cases in
India. In [12], bidirectional encoder representation conducted COVID-19 tweet data analy-
sis from a Transformer-based (BERT) model. Gulati et al. [13] implemented a comparative
analysis of an ML-based classifier. This classifier was employed for above 72,000 tweets re-
lated to COVID-19. Mujahid et al. [14] employed a Twitter dataset comprising 17,155 tweets
regarding e-learning. ML and DL methods showed the potential, suitability, and capability
for object detection, natural language processing, and image processing tasks. Luo and
Xu [15] presented a DL method to explore customer opinion regarding restaurant features
and to discover reviews with mismatched ratings. This study strengthens the extant litera-
ture by analyzing restaurant reviews posted during the COVID-19 pandemic and finding a
DL algorithm for text mining tasks [16].

Singh et al. [17] proposed a DL technique for SA of Twitter statistics based on COVID-19
analyses. The suggested model depends on the LSTM–RNN-based network and improved
featured weight by attention layer. This approach makes use of an improved feature
transformation architecture through the attention model. Yin et al. [18] conducted a study
based on COVID-19 vaccination on Twitter. The authors analyzed the deliberations of
individuals in terms of this research topic and the emotional polarization between vaccine
brands and perceptions of countries. The results showed that the majority of individuals
trust the usefulness of vaccines, and they are ready to vaccinate themselves. In another
study [19], the authors focused on increasing the consideration of public awareness of
the COVID-19 pandemic trend and uncovering meaningful themes of concern posted by
Twitter users in the English language. An NLP method and the latent Dirichlet allocation
model was utilized to classify cluster and identify themes based on keyword analysis,
along with identifying the most common twitter topics. In [20], data from the Arabic
COVID-19-based tweet dataset were gathered. The data were processed according to the
ML prediction model. The results showed that applying the SVM classification together
with bigram in TF-IDF outperformed other algorithms, with 85% accuracy.

Lyu et al. [21] identified sentiments and topics in COVID-19 vaccine-interrelated con-
versation among the public on social networking platforms and discriminate the relevant
modifications in sentiments and topics over time for a good understanding of public emo-
tions, perceptions, and concerns that might affect the accomplishment of herd immunity
objectives. Basiri et al. [22] presented a methodology according to the fusion of four DL
and one traditional supervised ML method for SA of COVID-based twitters from eight
countries. Moreover, the authors analyzed COVID-based searches using Google Trends
for a good understanding of the changes in sentimental patterns at dissimilar places and
times. Imran et al. [23] analyzed the reaction of citizens from various cultures to the novel
COVID-19 and people’s sentiments regarding subsequent actions taken by many countries.
The deep LSTM model was utilized for assessing the emotions and sentimental polarities
from extracted tweets. In [24], GloVe and fastText were tested as word embedding. Data
collected from Twitter were prepared as stemmed and unstemmed datasets.

In short, SA can be considered a meaningful source of data mining, particularly for
circumstances relevant to the requirement of examining massive quantities of publicly rele-
vant data, such as investigating public behavior concerning the COVID-19 pandemic and its
outcome on people’s lives. Furthermore, it is desirable to improve decision makers’ counter-
measures and offer them an effortless method with a collection of common rules that assist
complex decision-making processes depending on people’s sentiments and via examining
and sorting an essential set of key features for COVID-19 posts. Thus, the proposed study in
this paper varies from earlier research in combining DSS with SA for improving government
decisions at the time of COVID-19. The use of the SFODLD-SAC model offers more insights
and achieves better performance than other state-of-the-art techniques.
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3. Materials and Methods

In this study, a novel SFODLD-SAC model was developed for the identification and
classification of sentiments on COVID-19 tweets. The presented SFODLD-SAC model
follows a series of processes—namely, preprocessing, TF-IDF feature extraction, CRNN
classification, and SFO-based parameter optimization. Figure 1 illustrates the pipeline of
the SFODLD-SAC model. The workflow of each module in the SFODLD-SAC model is
elaborated in the following subsections.

Healthcare 2022, 10, x 4 of 17 
 

 

examining and sorting an essential set of key features for COVID-19 posts. Thus, the pro-
posed study in this paper varies from earlier research in combining DSS with SA for im-
proving government decisions at the time of COVID-19. The use of the SFODLD-SAC 
model offers more insights and achieves better performance than other state-of-the-art 
techniques. 

3. Materials and Methods 
In this study, a novel SFODLD-SAC model was developed for the identification and 

classification of sentiments on COVID-19 tweets. The presented SFODLD-SAC model fol-
lows a series of processes—namely, preprocessing, TF-IDF feature extraction, CRNN clas-
sification, and SFO-based parameter optimization. Figure 1 illustrates the pipeline of the 
SFODLD-SAC model. The workflow of each module in the SFODLD-SAC model is elab-
orated in the following subsections. 

 
Figure 1. Overall process of SFODLD-SAC technique. 

3.1. Data Used 
In this section, the performance of the SFODLD-SAC model on the COVID-19 tweet 

dataset is investigated [25]. The dataset holds 2750 instances with 11 class labels. The de-
tails related to the dataset are given in Table 1. Some sample tweets related to COVID-19 
are provided in Table 2. 

  

Figure 1. Overall process of SFODLD-SAC technique.

3.1. Data Used

In this section, the performance of the SFODLD-SAC model on the COVID-19 tweet
dataset is investigated [25]. The dataset holds 2750 instances with 11 class labels. The details
related to the dataset are given in Table 1. Some sample tweets related to COVID-19 are
provided in Table 2.

Table 1. Dataset details.

Class Label Class Name No. of Instances

Class 0 Optimistic 250

Class 1 Thankful 250

Class 2 Empathetic 250

Class 3 Pessimistic 250
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Table 1. Cont.

Class Label Class Name No. of Instances

Class 4 Anxious 250

Class 5 Sad 250

Class 6 Annoyed 250

Class 7 Denial 250

Class 8 Surprise 250

Class 9 Official report 250

Class 10 Joking 250

Table 2. Sample tweets.

ID Tweets Labels

1 NO JOKE I WILL HOP ON A PLANE RN! (Well after COVID-19 lol) (0) (10)

2 Has anyone else FB ads been killing it since this coronavirus hit? (0) (5) (10)

3 Im waiting for someone to say to me that all this corona thing is just an April fool’s joke (3) (4)

4 He is a liar. Proven day night. Time again. Lies when the truth will do. COVID-19 (6)

5 NEW: U.S. CoronaVirus death toll reaches 4000 after nearly 900 new deaths were reported
today (BNO News) COVID-19 CoronaVirusOutbreak (8)

6 Coronavirus impact Govt extends I-T deadlines related to Sections 80C, 80D (5) (8)

7 That moment you realize your new medication has side effects identical to coronavirus
symptoms how will I know? (4) (9)

8 Watch the government play off Corona virus as a big April Fool’s Joke (10)

9 The problem of poverty has now covered the cover of religion. The issue has changed. There
is relief from corona. All is well (0) (4)

10 My mental health hasn’t suffered at all under the coronavirus quarantine! Ha-ha, April Fools. (10)

11 i cannot die before watching a concert live coronavirus pls try to understand (5) (10)

3.2. Data Preprocessing

At first, the SFODLD-SAC model preprocessed the tweets in distinct ways such as
stemming, removal of stopwords, usernames, link punctuations, and numerals [25].

• Removing usernames and links in tweets that do not affect SA;
• Removing punctuation marks such as hashtags and converting them to lower case;
• Removing stopwords and numerals.

In addition, stemming was performed to reduce the terms to their root forms. The
process of reducing the term also aids to reduce the complexity of text features. Then, the
TextBlob approach was used to determine the sentiment scores. Afterward, the TF-IDF
model was executed to generate a collection of feature vectors. In this study, the TF-IDF
model was applied for the useful extraction of features from the preprocessed data.

3.3. Sentiment Classification Using CRNN Model

For the effective recognition and classification of sentiments, the CRNN model was
exploited [26]. RNN is a branch of an artificial neural network (ANN), that is, a feedforward
neural network (FFNN) with connections and loops. Unlike FFNN, RNN is able to calculate
input sequence using a recurrent hidden layer with the activation of previous steps. Given
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the sequential dataset (x1, x2, . . . , xT), where xi denotes the data in ith time step, RNN
upgrades the recurrent hidden layer ht as follows:

ht =

{
0, i f t = 0.

φ(ht−1, xt), otherwise.
(1)

where φ indicates a nonlinear function. Therefore, RNN is made up of output (y1, y2, . . . , yT).
Eventually, data classification is implemented by an output yT. In the traditional RNN model,
the update rule of the recurrent hidden layer in (1) can be implemented by

ht = φ(Wxt + Uht−1), (2)

where W and U represent the coefficient matrix for input and activation of recurrent hidden
units. Given that p(x1, x2, . . . , xT) is a sequential probability as follows:

p(x1, x2, . . . , xT) = p(x1) · · · p(xT |x1, . . . , xT−1). (3)

Next, the conditional likelihood distribution can be developed by utilizing a recurrent
network. The tweets can be processed as sequence data, and a recurrent network is
employed to model spectral sequence [26]. In contrast to the LSTM unit, GRU needs a
smaller number of variables pertinent for classification, and a fewer number of training
instances is needed. Therefore, GRU was chosen as a key element of RNN. The essential
component of GRU is 2 gating units that are used to control the data flow within the unit.
Figure 2 depicts the framework of CRNN.
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p(xt|x1, . . . , xt−1) = φ(ht), (4)

ht = (1− ut)ht−1 + ut h̃t. (5)

Now, ut symbolizes the update gate as follows:

ut = σ(wuxt + vuht−1). (6)

3.4. Parameter Optimization

Finally, the SFO algorithm was utilized to optimally adjust the hyperparameters
involved in the CRNN model. Gomes et al. [27] introduced an approach for flowering
plants based on a flower pollination technique that takes into account the biological process
of reproduction.

Generally, the SFO algorithm involves six steps, as given in Figure 3. It starts with the
parameter initiation process, during which the number of sunflowers, maximum iterations,
and solution dimension space are initialized. Then, the sunflower parameters such as
pollination rate, mortality rate, and survival rate are fixed. In the third step, the optimal
objective of every sunflower is arbitrarily chosen. Next, the optimal sunflower is updated.
Afterward, the new sunflower is produced depending upon the pollination and mortality
rate. In the final step, the termination condition is checked, and the process continues until
the stopping criteria are fulfilled. The mathematical modeling of the SFO algorithm is given
in what follows.
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For this algorithm, we considered the peculiar nature of sunflowers in detecting the
optimal direction toward the sun. Pollination was considered to occur randomly, with
minimal distance between flower i and flower i + 1. Then, the flower patch releases billions
of pollen gametes. For simplicity, it was assumed that each sunflower only generates
1 pollen gamete and reproduces individually. Next, the amount of heat Q accomplished by
the plant is given by

Qi =
P

4πr2
i

, (7)

where P denotes source power, and ri indicates distance amongst current plant and optimal
i. The sunflower’s direction toward the sun can be represented as follows:

→
si =

X∗ − Xi
||X∗ − Xi||

, i = 1, 2, . . . , np. (8)

The sunflowers in direction s are evaluated by

di = λ× Pi(||Xi + Xi−1||)× ||Xi + Xi−1||, (9)

where λ represents constant value, Pi(||Xi + Xi−1||) denotes pollination possibility, i.e.,
sunflower i pollinated with neighboring i− 1, creating an individual in an arbitrary position
that varies according to the distance among the flowers. Specifically, the individual near
the sun would take small steps in the local refinement search. Additionally, it is necessary
to bound maximal steps given by the individual. Hence, it is defined as

dmax =
||Xmax − Xmin||

2× Npop
, (10)

where Xmax and Xmin indicates lower and upper bounds, and Npop represents the number
of plants in the population. It can be expressed as follows:

→
Xt+1 =

→
Xi + di ×

→
si . (11)

The SFO approach resolves an FF for achieving enhanced classification performance.
In this case, the minimized classifier error rate was assumed to be the FF determined by
Equation (12). The best result includes a minimal error rate, and the worse result gains a
high error rate.

Classi f ierErrorRate(xi) =
number o f misclassi f ied tweets

Total number o f tweets
∗ 100. (12)

4. Performance Validation
4.1. Result Analysis

Figure 4 illustrates a set of confusion matrices formed by the SFODLD-SAC model
on a test dataset. The figures indicate that the SFODLD-SAC model ensured the effective
identification of distinct class labels on 70% of the training set (TRS) and 30% of the testing
set (TSS).

Table 3 provides the detailed classification outcomes of the SFODLD-SAC model on
70% of TRS. The experimental results revealed that the proposed model provided effective
outcomes under all class labels.

Figure 5 reports a brief result of the SFODLD-SAC model on 70% of TRS in terms of
accuy, precn, and recal . The results indicated that the SFODLD-SAC model accomplished
effective results under each class. For instance, the SFODLD-SAC model identified class
0 with accuy, precn, and recal of 99.64, 99.69, and 99.43% correspondingly. In line with this,
the SFODLD-SAC model identified class 5 with accuy, precn, and recal of 99.74, 99.44, and
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97.78%, respectively. Moreover, the SFODLD-SAC model identified class 10 with accuy,
precn, and recal of 99.01, 96.95, and 91.91%, respectively.
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Table 3. Result analysis of SFODLD-SAC technique with distinct measures on 70% of TRS.

Training Set (70%)

Class Labels Accuracy Precision Recall Specificity F-Score MCC

0 99.64 96.69 99.43 99.66 98.04 97.85

1 99.12 96.47 93.71 99.66 95.07 94.60

2 99.48 96.05 98.27 99.60 97.14 96.86

3 99.38 98.84 94.48 99.89 96.61 96.30

4 99.12 91.92 99.45 99.08 95.54 95.14

5 99.74 99.44 97.78 99.94 98.60 98.46

6 99.84 100.00 98.20 100.00 99.09 99.01

7 99.69 98.25 98.25 99.83 98.25 98.07

8 99.79 98.31 99.43 99.83 98.86 98.75

9 99.48 96.53 97.66 99.66 97.09 96.81

10 99.01 96.95 91.91 99.71 94.36 93.86

Average 99.48 97.22 97.14 99.71 97.15 96.88

Figure 6 offers detailed results of the SFODLD-SAC model on 70% of TRS in terms
of specy, Fscore, and MCC. The experimental values denoted that the SFODLD-SAC model
led to proficient performance levels in all classes. For instance, the SFODLD-SAC model
recognized class 0 with specy, Fscore, and MCC of 99.66, 98.04, and 97.85%, respectively. In
line with this, the SFODLD-SAC model acknowledged class 5 with specy, Fscore, and MCC
of 99.94, 98.60, and 98.46%, respectively. In addition, the SFODLD-SAC model categorized
class 10 with specy, Fscore, and MCC of 99.71, 94.36, and 93.86%, respectively.
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Figure 7 highlights the average classification performance of the SFODLD-SAC model
on 70% of TRS. The results indicated that the SFODLD-SAC model accomplished an average
accuy, precn, and recal of 99.48, 97.22, and 97.14%, respectively. Thus, the SFODLD-SAC
model accomplished effective sentiment classification on tweets.
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Figure 7. Average analysis of SFODLD-SAC technique on 70% of TRS.

Table 4 provides the detailed classification outcomes of the SFODLD-SAC model
on 30% of TSS. Figure 8 showcases a comparative result of the SFODLD-SAC model on
30% of TSS in terms of accuy, precn, and recal . The figure exhibits that the SFODLD-SAC
technique attained improved performance under all class labels. For instance, the SFODLD-
SAC model recognized class 0 with accuy, precn, and recal of 99.52, 96.05, and 98.65%,
respectively. Moreover, the SFODLD-SAC method identified class 5 with accuy, precn,
and recal of 99.76, 98.57, and 98.57%, respectively. Furthermore, the SFODLD-SAC model
recognized class 10 with accuy, precn, and recal of 99.76, 100, and 97.40%, correspondingly.

Table 4. Result analysis of SFODLD-SAC technique with distinct measures on 30% of TSS.

Testing Set (30%)

Class Labels Accuracy Precision Recall Specificity F-Score MCC

0 99.52 96.05 98.65 99.60 97.33 97.08

1 99.88 100.00 98.67 100.00 99.33 99.26

2 99.64 96.25 100.00 99.60 98.09 97.91

3 99.39 100.00 92.75 100.00 96.24 95.99

4 99.88 98.53 100.00 99.87 99.26 99.20

5 99.76 98.57 98.57 99.87 98.57 98.44

6 99.76 100.00 97.59 100.00 98.78 98.65

7 99.64 96.34 100.00 99.60 98.14 97.96

8 99.64 97.37 98.67 99.73 98.01 97.82

9 99.27 96.20 96.20 99.60 96.20 95.80

10 99.76 100.00 97.40 100.00 98.68 98.56

Average 99.65 98.12 98.05 99.81 98.06 97.88
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Figure 8. Accy, Precn, and recal analyses of SFODLD-SAC technique on 370% of TSS for classes 0–10.

Figure 9 validates a detailed comparative study of the SFODLD-SAC model on 30% of
TSS in terms of specy, Fscore, and MCC. The experimental values revealed that the SFODLD-
SAC model gained better results under each class. For instance, the SFODLD-SAC model
identified class 0 with specy, Fscore, and MCC of 99.60, 97.33, and 97.08%, respectively. At
the same time, the SFODLD-SAC model identified class 5 with specy, Fscore, and MCC of
99.87, 98.57, and 98.44%, respectively. Al, the SFODLD-SAC model identified class 10 with
specy, Fscore, and MCC of 100, 98.68, and 98.56%, correspondingly.
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Figure 10 showcases the average classification performance of the SFODLD-SAC
model on 30% of TSS. The results revealed that the SFODLD-SAC model provided an
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average accuy, precn, and recal values of 99.76, 98.12, and 98.05%, respectively. Therefore,
the SFODLD-SAC model accomplished effective sentiment classification on tweets.
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The training accuracy (TA) and validation accuracy (VA) attained by the SFODLD-
SAC model on phishing email classification is demonstrated in Figure 11. Based on the
experimental outcomes, the SFODLD-SAC model gained maximum values of TA and VA.
Specifically, VA seemed to be higher than TA.
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The training loss (TL) and validation loss (VL) achieved by the SFODLD-SAC model on
phishing email classification are shown in Figure 12. Based on the experimental outcomes,
it can be inferred that the SFODLD-SAC model accomplished the least values of TL and VL.
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Specifically, VL seemed to be lower than TL. The results denoted that the SFODLD-SAC
model exhibited its ability in categorizing different classes on the test datasets.
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4.2. Discussion

To highlight the supremacy of the SFODLD-SAC model, a comparative study with
recent approaches [12] was conducted, the results of which are shown in Table 5 and
Figure 13. The experimental outcomes stated that the SVM and DT models showed the
least classification performance over the other methods. At the same time, the RF and
XGBoost models accomplished slightly improved outcomes over the other techniques. In
addition, the extra tree classifier accomplished reasonable performance with accuy, precn,
recal , and F1score of 92.32, 93.08, 92.42, and 92.13%, respectively.

Table 5. Comparative analysis of SFODLD-SAC technique with existing approaches.

Methods Accuracy Precision Recall F1 Score

Random Forest 90.13 91.22 90.30 90.29

XGBoost Algorithm 90.16 90.35 90.39 90.36

Support Vector Machine 89.43 89.29 89.12 89.18

Extra Tree Classifier 92.32 93.08 92.42 92.13

Decision Tree 89.29 89.47 89.21 89.29

SFODLD-SAC 99.65 98.12 98.05 98.06
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However, the SFODLD-SAC model accomplished superior outcomes with maximum
accuy, precn, recal , and F1score of 99.65, 98.12, 98.05, and 98.06%, respectively. The above-
mentioned results and discussion demonstrate that the SFODLD-SAC model accomplished
effective classification performance on COVID-19 tweets. The enhanced performance of the
proposed model is due to the optimal hyperparameter tuning of the CRNN model using
the SFO algorithm.

5. Conclusions

In this study, a novel SFODLD-SAC model was introduced for the recognition and
classification of sentiments on COVID-19 tweets. At the initial stage, the SFODLD-SAC
model preprocessed the tweets in distinct ways, such as stemming, removal of stopwords,
usernames, link punctuations, and numerals. Then, the TF-IDF model was applied for the
useful extraction of features from the preprocessed data. Afterward, features were passed
into the CRNN model to analyze and classify sentiments. Lastly, the SFO algorithm was
utilized to optimally adjust the hyperparameters that exist in the CRNN model. A simula-
tion analysis of the SFODLD-SAC model was performed using a benchmark dataset from
the Kaggle repository. Extensive comparative results report the promising performance of
the SFODLD-SAC model over other recent state-of-the-art models, with maximum accuy,
precn, recal , and F1score of 99.65, 98.12, 98.05, and 98.06%, respectively. Thus, the presented
SFODLD-SAC model can be applied for enhanced SA on COVID-19 tweets, as well as on
big data environments to analyze the sentiments in a real-time environment. In the future,
outlier detection and clustering models can be employed to improve the sentiment classifi-
cation performance. Moreover, the proposed SFODLD-SAC model can be extended to the
design of an ensemble voting-based fusion model to improve classification performance.
In addition, the proposed model can focus on the design of metaheuristic feature selection
techniques to reduce the curse of dimensionality. Finally, different data preprocessing
approaches can be employed for improving the input data quality in the future.
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