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Introduction
In 1956, Crick stated the central dogma of molecular bio­
logy describing the f low of information from DNA to 
RNA to protein.1 Although the process of information 
transmission was oversimplif ied, the central dogma hinted 
at the wealth of information that can be extracted from 
every biological sequence. The mining of information from 
nucleotide and protein sequences prompted the develop­
ment of bioinformatics, the science that interfaces biology 
and computer science to answer biological questions on a 
molecular level. Sequence-based discovery allows the elu­
cidation of the relationships between structure, function, 
and evolution. Discovering the relationships between our 
genetic sequences and the various genetic actions, includ­
ing the causes of diseases, is one of the main goals of 
bioinformatics.

The development of biomarker identifications is often 
associated with the diagnosis and evaluation of various dis­
eases. Many biomarkers are macromolecules of nucleic acids, 
carbohydrates, and proteins in nature. The initial isolation of 
nucleic acid-based biomarkers requires the need for genomics 
as opposed to proteomics, which is needed to isolate protein-
based biomarkers. These raw -omic outputs are often subjected 
to further analyses with bioinformatics techniques that focus 
on particular aspects of the dataset, specifically, in this dis­
cussion, biomarkers.2 Recently, there has been an increased 

emphasis on the role of microRNA (miRNA) as a biomarker 
in the diagnosis and possible treatment for cancer.3,4 miRNAs 
are small single-stranded noncoding RNAs that control gene 
expression at the posttranscriptional level. miRNAs act as 
posttranscription regulators of mRNA by binding to a specific 
miRNA-binding site on the 3′-untranslated region (3′-UTR) 
of mRNA.5 They are often regarded as both predictive and 
prognostic biomarkers.6 Sequence-level polymorphisms in 
miRNA or their target sites can have strong downstream 
effects in phenotype. These polymorphisms have been impli­
cated in a number of diseases, ranging from cancer, diabetes, 
Parkinson’s, and Alzheimer’s. For example, miRNAs have 
been considered as a serum biomarker for cancer diagnosis 
and prognosis, particularly in B-cell lymphoma as noted by 
Lawrie et al.7

With the advent of next-generation sequencing (NGS), 
the identification and quantitation of miRNA as bio­
markers are becoming more precise. Many experiments of 
miRNA quantitation were the results of whole transcriptome 
sequencing, often referred to as RNA-seq.8 The hallmark 
feature of NGS is the ability to elucidate millions of strands 
of nucleotides simultaneously, which results in an unprece­
dented amount of coverage for any genome. While NGS is of 
great interest to many readers, the technical detail is beyond 
the scope and the allotted space of this review. For users 
interested in NGS technology, review articles by Mardis, 
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Mutz et al, and Koboldt et al provide a thorough coverage on 
its usage and application.9–12 For readers interested in NGS 
and classical methods of miRNA discovery, Eminaga et al, 
Tam et  al, and Git et  al provide an excellent overview for 
the processes.13–15

NGS is also known as massive parallel sequencing or 
deep sequencing due to its potential outputs. Consequently, 
the amount of data generated has also been unprecedented. 
This requires the establishment of corresponding protocols 
in processing miRNA data from RNA-seq experiments. For 
bioinformatics to contribute to the analysis of these RNA-
seq datasets, protocols need to be created for finding the 
most relevant miRNA species. While the main goal of this 
review is to focus on various repositories of miRNAs and 
their interactions, it is worthy of note that efforts of compu­
tational approaches, such as miRClassify,16 are also accele­
rating the overall annotation process of miRNAs. In addition, 
TargetScan,17 miRanda,18 and PicTar19 are the leading pro­
grams in the field, as reflected by the number of citations. 
For other computational approaches, it is recommended that 
readers should review articles by Zou et al, Wang et al, and 
Wei et al.16,20,21

As one of the most important goals in bioinfor­
matics, the proper storage and organization of data will 
lead to easy retrieval and dissemination of information. 
This review focuses on the specif ic aspect of databases in 
miRNA discovery. Several databases are discussed below. 
The inclusion of databases reviewed here must meet the 
following criteria: (1) clear documentation of updates and 
history, (2) recent updates in the past 12 months, and (3) 
not a simple derivative on data from another database. The 
major features of each database reviewed here are summa­
rized in Table 1.

miRBase
miRBase (www.mirbase.org) combines the knowledge of 
miRNA and NGS to create a repository aimed at assigning 
stable and consistent names to novel miRNAs.22 While it can 
be accessed via its web interface, bulk download via file trans­
fer protocol is also available. Established in 2002, miRBase 
was originally called the miRNA Registry, which allowed 
submissions of novel miRNAs to be named in a consistent and 
organized fashion.23 Its first release contained 218  miRNA 
loci from five species. As of June 2014, after continuous 
growth, release 21 contains 28,645 entries representing hair­
pin precursor miRNAs that expressed 35,828 mature miRNA 
products in 223 species. miRBase can be used for searching 
and browsing both hairpin and mature sequences.

Since the inception of miRBase, the annotation strat­
egy was developed and continually improved to organize all 
the information associated with miRNA species. Its goal was 
to officialize identifiers as quickly as possible for publication 
in articles. For example, the prefix in dme-mir-100 desig­
nates the organism and is followed by sequentially assigned 
numbers. Recently, for sequences derived from the 5′ and 3′ 
arms of the hairpin precursor, names are assigned as dme-
miR-100-5p and dme-miR-100-3p, respectively, to specify 
the mature sequences. This standardized scheme also includes 
a strategy where homologous miRNA loci are assigned the 
same number from different species. Two of the most recent 
developments for miRBase are associated with the advances of 
NGS technology and community-based contributions toward 
the textual and functional information on miRNAs.22 The 
curators for miRBase attributed the most recent database addi­
tions to the next-generation or deep sequencing. This has led 
to more research groups participating in the process. Similar 
to many other knowledge bases, the annotation process is also 

Table 1. Summarized features from databases reviewed.

Database Main Feature Annotation Download 
Options

Integrated Tools,  
API and Visualization 

Data Source

mirBase Nomenclature assignment Manual, automated
(text mining)

EMBL, fasta, 
gff3

Stem-loop, deep-
sequencing

SRA, GEO, PubMed, 
community

miRDB Functional annotation Automated
(machine-learning)

Spreadsheet, 
flat file

n/a PubMed, RNA-seq, 
miRBase

mirWalk Predicted binding sites Mutomated
(multiple programs)

Search tables n/a Refseq 61, miRBase 

mirTarBase miRNA-target interactions Manual, automated
(NLP)

Spreadsheet, 
flat file

Word cloud, expression 
profile, structure of pre-
miRNA, CytoscapeWeb

TCGA, GEO, CLIP-seq,  
CLASH-seq, 
Degradome-seq

mirCancer miRNA expression Manual, automated 
(text mining)

Flat file n/a miRBase, PubMed

doRiNA RNA binding proteins  
(RBPs), miRNA 

Automated pipeline BED file UCSC Genome Browser, 
REST, Python API

GEO, CLIP-seq, 
selected literature

SomamiR Somatic and germline 
mutations

Automated, aided by 
KEGG

Spreadsheet n/a NHGRI GWAS, TCGA

EDRN Biomarker information Manual, automated 
in EDRN Catalog and 
Archive Service (eCAS)

Flat file Biomarker Summary 
Information, BioMuta

Studies from participants
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community based in miRBase. Two major sources are involved 
in the annotation process: publications from PubMed and 
contribution of textual and functional annotations from the 
miRNA community. miRBase provides primary references for 
each miRNA sequence describing its discovery, links to evi­
dence supporting the annotation, coordinates on the genome, 
and links to databases of predicted and validated target sites. 
miRBase can be searched with identifiers or keywords along 
with genomic location. miRNA sequences were also collected 
and mapped from the Gene Expression Omnibus (GEO) and 
the Short Read Archive, which are hosted by the National 
Center for Biotechnology Information (NCBI).

miRDB
While serving as an online resource for functional annota­
tions, miRDB (www.mirdb.org) also functions as a reposi­
tory for miRNA-target predictions with data downloaded 
from version 21 of miRBase.24 Users can also submit their 
own sequences for prediction at miRDB. As of early 2015, 
2.1 million predicted gene targets regulated by 6,709 miRNAs 
are included in miRDB. The above target prediction was per­
formed with MirTarget.24 MirTarget was developed by ana­
lyzing high-throughput expression profiling data in a support 
vector machine framework. The MirTarget  algorithm also 
serves as the back-end for the web server interface in predic­
tion. One of the most recent developments was the inclusion 
of integrated computational analyses with literature, result­
ing in a new strategy and a scoring system for the identifi­
cation of functional miRNA with the following four selection 
criteria. First, PubMed literature mining was utilized to map 
NCBI gene database for the association of miRNAs with cor­
responding PubMed records. Second, sequence conservation 
among different species was considered as functionally impor­
tant. Third, expression profiles from 81 RNA-seq experiments 
were used for functional miRNA identification. Fourth, func­
tional annotations by miRBase resulted in the identification 
of high confidence human miRNAs with structural analysis and 
expression counts. Furthermore, to alleviate falsely identified 
miRNAs from high-throughput sequencing, the curators of 
miRDB used a combination of computational analyses and 
literature mining to identify 568 and 452 functional miRNAs 
in humans and mice, respectively, for the FuncMir collection 
in miRDB (http://mirdb.org/miRDB/FuncMir.html).

miRWalk
The third database reviewed is miRWalk (mirwalk.uni-hd.de),  
which hosts predicted and validated miRNA-binding sites 
along with information on all known genes of human, 
mouse, and rat.25 Similar to miRDB, miRWalk also uti­
lizes automated text mining searches of PubMed to extract 
information on miRNAs. It is designed as a comprehensive 
database for predicted and validated targets for miRNAs asso­
ciated with genes, pathways, diseases, organs, cell lines, and 
transcription factors.

One of the goals for miRWalk is to use a computa­
tional approach to identify the longest consecutive comple­
mentary regions between miRNA and gene sequences. The 
identified miRNA binding sites are generated with the 
miRWalk algorithm and then combined with the results of 
many other established prediction programs and databases, 
including DIANA-microTv4.0,26,27 DIANA-microT-CDS,26 
miRanda-rel2010,18 mirBridge,28 miRDB4.0,24 miRmap,29 
miRNAMap,30 doRiNA,31 PicTar2,19 RNA22v2,32 
RNAhybrid2.1,33 and TargetScan6.2.34 Continual updates 
and upgrades are the goals for improving miRWalk. Recently, 
the comparative platform of miRNA-binding sites within the 
mRNA 3′-UTR region was also upgraded with 13 miRNA-
target prediction datasets. All results described above can be 
found via the web interface of miRWalk 2.0, containing two 
modules: predicted target module (PTM) and validated tar­
get module (VTM). The PTM provides novel comparative 
platforms of binding sites for the promoter, coding sequence 
(CDS), and 5′- and 3′-UTR regions. The VTM contains inter­
action information associated with genes, pathways, organs, 
diseases, cell lines, Online Mendelian Inheritance in Man 
(OMIM) disorders, and literature on miRNAs, in addition 
to information on proteins known to be involved in miRNA 
processing. The above modules are categorized into differ­
ent search pages to allow users to retrieve miRNA-associated 
information using different identifiers.

miRTarBase
The miRTarBase (mirtarbase.mbc.nctu.edu.tw) aimed to 
provide “the most current and comprehensive informa­
tion of experimentally validated miRNA-target interactions 
(MTIs).”35 For its initial launch of version 1.0 in 2010, the data­
base utilized over 100 published studies. As of September 15,  
2015, version 6.0 is the most current iteration of miRTarBase 
containing 4,966 articles and 3,786  miRNAs. In compa­
rison to databases that provide collections of miRNAs without 
deeper annotation, the uniqueness of miRTarBase is the cura­
tion on MTIs with both manual and computer-aided methods 
together with a robust suite of tools for the visualization of 
MTIs and diseases.

In the most recent release, over 360,000 MTIs were col­
lected by manual review after applying natural language pro­
cessing (NLP) on literature text. In comparison to others, the 
application of an artificial intelligence approach by the curators 
of miRTarBase, such as NLP, is a unique feature and should 
increase the number of relevant articles in the database. Unlike 
other miRNA databases, miRTarBase contains many robust 
features of graphical visualization. For instance, the word cloud 
is a new feature to visualize relationships between individual 
miRNA and medical conditions. For interactions between 
miRNAs and their respective targets, Cytoscape Web can be 
integrated to aid the understanding of miRNA-target regula­
tion.36 Beyond the usage of Cytoscape Web, the curators also 
used the Database for Annotation, Visualization and Integrated 
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Discovery (DAVID) gene annotation tool to perform gene 
ontology and Kyoto Encyclopedia of Genes and Genome 
(KEGG) pathway enrichment annotation to further examine 
the functions of the target genes involved in MTIs.37–39 These 
MTIs and associated annotations can be searched by users via 
the interfaces of the species browser and search utility. The 
above two interfaces have recently undergone enhancement 
and redesign. This allows basic MTI searches by miRNA, tar­
get gene symbol, validation method, or PubMed ID.

Other than user interface and visualization tools, miR­
TarBase sets itself apart from similar databases by incorporat­
ing datasets from NCBI GEO (www.ncbi.nlm.nih.gov/geo/) 
and The Cancer Genome Atlas (TCGA) (cancergenome.
nih.gov/) to provide miRNA-target gene expression profiles. 
Specifically, TCGA provides clinical aspects of miRNA and 
gene expression profiles. Gene expression profiles from the 
above two data sources are currently considered as a method 
for experimental validation with the NGS technology. Several 
specific approaches involving NGS technology are currently 
being utilized by the curators, including cross-linking and 
immunoprecipitation (CLIP)-seq,40 crosslinking, ligation, 
and sequencing of hybrids (CLASH-seq),41 and degradome-
seq.42 Overall, miRTarBase contains 21 human CLIP-seq 
datasets, 5  mouse CLIP-seq datasets, 6 nematode datasets, 
and 1 human CLASH-seq dataset.

miRCancer
For readers specifically interested in miRNA and cancer, miR­
Cancer (mircancer.ecu.edu) provides a comprehensive collection 
on the expression of miRNAs via text mining of PubMed.43 The 
components for this approach are literature collection, named 
entity and expression recognition, rule matching, voting, man­
ual verification, and recording. Regular expressions were first 
used to identify miRNA in literature for miRCancer with miR 
and miR- for locating miRNA names. Species prefixes, such as 
hsa- and mmu-, were also used as a part of the regular expres­
sions in searching for related literature. For recognition of can­
cer names, a cancer name dictionary was compiled from the 
International Classification of Diseases for Oncology (codes.
iarc.fr). The curators also established a dictionary for miRNA 
expression with 28 terms to include common keywords and 
phrases for upregulation and downregulation. The text mining 
approach for miRCancer further relies on 75 rules constructed 
by the curators using sentence structures commonly found in 
describing miRNA expressed in cancer cells. These rules are 
hard-coded sentence structures. Manual revision is then car­
ried out to improve automated extraction. As of March 2015, 
44,353 miRNAs for 173 cases of human cancer are associated 
with 2,073 publications in miRCancer.

doRiNA 2.0
The main goal of doRiNA is to create a single framework for the 
systematic curation, storage, and integration of RNA-binding 
proteins (RBPs) and miRNAs from different species.31,44 

It is a database of RNA interactions in posttranscriptional 
regulation, with predictions carried out by PicTar.19 Unlike 
other miRNA databases, doRiNA 2.0 (dorina.mdc-berlin.de) 
stands out with a strong capability for local implementation, 
allowing integration into third-party pipelines. Further­
more, doRiNA 2.0 solicits user feedback, can be implemented 
locally, and operates on an open-source model. As a part of the 
upgraded version 2.0, the developers also reworked the user 
interface and expanded the database to improve the usability 
of the website. It therefore should be considered as one of the 
most unique and technically sophisticated databases.

Developers of doRiNA 2.0 collected and integrated 
all available data on miRNA and RBP target sites from the 
public domain. More than 67 new publicly available RBP 
datasets have been added into doRiNA 2.0. In the latest ver­
sion of doRiNA, miRNA and their targets were identified 
with both computational predictions and new experimental 
techniques by chimeric sequencing reads. Due to the lack of 
reliable in silico predictions of RBP target sites, the curators  
have decided to focus on high-resolution, transcriptome-wide 
CLIP experiments. All candidate miRNA target sites are still 
subject to probabilistic scoring by a hidden Markov model. 
Data from various cell lines of human, mouse, roundworm, 
and fly are available in Browser Extensible Data (BED) for­
mats, allowing integration of coordinates and annotation 
tracks with the UCSC Genome Browser.45

Recent updates in version 2.0 provide various improve­
ments from the previous version. Developers of doRiNA paid 
special attention toward the infrastructure and interoperabil­
ity surrounding their repository. doRiNA 2.0 can now achieve 
high query speed and complexity by precomputing several 
important data characteristics. External developers can eas­
ily integrate doRiNA 2.0 into third-party analysis piplines via 
a representational state transfer application program interface 
(API), while the Python API can be used for local queries by 
users. Documentations for the above two APIs can be found 
at http://dorina.mdc-berlin.de/docs. The developers have also 
migrated away from the traditional Common Gateway Inter­
face (CGI) and Structured Query Language (MySQL) imple­
mentations and instead used a fast key-value cache and store 
(redis.io) as well as in-memory caching of frequent queries for 
faster access. Mirrored sites and database servers are utilized 
by doRiNA 2.0 to achieve high service availability. Both the 
web application and the APIs are available under an open-
source license approved by the Open Source Interconnection 
that permits research and commercial access and reuse. The 
developers at doRiNA essentially created an ecosystem that pro­
vides a user-friendly environment while encouraging external 
developers to adapt this miRNA repository.

SomamiR
SomamiR (compbio.uthsc.edu/SomamiR/) was created to 
integrate heterogeneous datasets to investigate the impact 
of somatic and germline mutations on miRNA function in 
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cancer.46 It specifically contains experimentally determined 
germline and somatic miRNA mutations associated with 
cancer, along with  their target sites. A total of 15 sources of 
somatic mutations that have been identified from whole-
genome sequencing of paired normal and cancer samples were 
analyzed and incorporated into SomamiR.

Three methods were used to predict how mutations may 
impact target sites in SomamiR. First, a comprehensive list 
of how somatic mutations may alter miRNA-binding sites 
was created with methods established by Ellwanger et  al.47 
Second, two popular miRNA-target prediction algorithms, 
TargetScan17 and PITA,48 were used to determine mutations 
that are more likely to alter functional binding sites. Third, five 
major types of information were used to annotate miRNAs, 
genes, and target locations in SomamiR: results of association 
studies, gene pathways, sequence conservation, expression of 
miRNAs in cancer, and germline mutations. For association 
studies, high scoring markers from genome-wide associa­
tion studies (GWAS) of cancer in National Human Genome 
Research Institute (NHGRI) GWAS catalog were collected. 
The data on meta-analysis of cancer candidate gene associa­
tion studies from the Cancer GAMAdb49 were also collected. 
Developers also carried out functional annotation of genes 
containing somatic mutations that alter miRNA target sites 
with the KEGG. They further highlighted genes with somatic 
mutations from miRNA target sites in each pathway. To 
improve miRNA-target prediction, the conservation of a target 
site sequence across species has been used. A 46-way multiZ50 
alignment of vertebrate genomes was utilized to determine 
whether the sequence of a predicted target site was conserved. 
To better understand somatic cell mutations associated with 
cancer, miRNA expression data from various cancer genome 
sequencing projects deposited at TCGA were also collected. 
In addition to somatic cell mutations, germline mutations that 
alter predicted and experimental miRNA target sites were col­
lected from PolymiRTS.51 The name PolymiRTS derives from 
polymorphisms in miRNAs and their target sites. PolymiRTS 
is a database for tracking and identifying sequence polymor­
phisms in miRNAs or their target sites to possibly reveal links 
to molecular, physiological, and behavioral disease phenotypes.

In SomamiR, each gene is represented by a single web 
page to provide all somatic mutations that alter miRNA target 
sites in the gene, as well as associate with specific types of can­
cer. Each web page representing a gene can also be accessed 
through several browsable tables that are linked from the data­
base homepage. These browsable tables contain somatic muta­
tions in miRNAs and respective target sites. Furthermore, 
experimental evidence linking these mutations to various can­
cer types is also incorporated into these tables. Two additional 
tables can be used to browse database entries in the context of 
association studies and KEGG gene pathways. SomamiR also 
allows the following criteria for searching against the database: 
miRNA, gene symbol, RefSeq ID, and chromosome location. 
The search can be performed using the form on the website or 

by uploading a batch file with multiple terms. For users who 
are interested in parsing the database for further analysis, the 
complete content of SomamiR is also available for download 
at http://compbio.uthsc.edu/SomamiR/download/.

Early Detection Research Network (EDRN)
While the above-described databases are exclusively for the dis­
covery and understanding of miRNAs, other repositories can 
contain similar information from various types of biomarkers. 
One such effort in categorizing data related to multiple types 
of biomarkers is EDRN from the National Cancer Institute52 
(edrn.nci.nih.gov). While EDRN is not exclusively desig­
nated as a sequence-level repository, biomarker data, includ­
ing miRNAs, can be found under the section of informatics. 
Several tools are under the informatics section with a link to 
Biomarker Database being the most relevant to this review. 
The database is further divided into five sections: biomarkers, 
studies, publications, terms/glossary, and sites. Some data can 
be visualized using BioMuta, a curated single nucleotide vari­
ation and disease association database where the variations are 
mapped to the genome/protein/gene. Finally, EDRN is also 
aiming at establishing biomarker bioinformatics standards 
and ontology for the community.

Conclusion
While data repositories were the main focus for this review, 
miRNA-target prediction also presents other interesting 
questions in bioinformatics. It is more challenging to predict 
miRNA targets in animals than in plants, due to imperfect 
base pairing with target sites. This demonstrates the potential 
limitation for any prediction algorithms due to the complex­
ity of many biological systems. There will be a strong need 
for further improvements to develop accurate predictions for 
miRNA targets. In addition to the goal of predicting miRNA 
targets, the selected miRNA databases reviewed above share 
the commonality of relying on textual information, mostly 
from PubMed, in the retrieval of relevant literature. It is also 
important for readers to note that one of the most important 
efforts is the standardization of biomarker nomenclature, 
including various miRNAs by EDRN. Standardization will 
improve the interoperability among different research groups 
and databases. Furthermore, nearly all curators for the above 
repositories recognized that major growth of data will result 
from sequencing. With the advent of new technologies, there 
is no doubt that more miRNAs will be discovered, resulting in 
an exciting new era for researchers.
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