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Sensorineural hearing loss (SNHL) is currently a major health issue. As one

of the most common neurodegenerative diseases, SNHL is associated with

the degradation of hair cells (HCs), spiral ganglion neurons (SGNs), the stria

vascularis, supporting cells and central auditory system cells. Autophagy

is a highly integrated cellular system that eliminates impaired components

and replenishes energy to benefit cellular homeostasis. Etiological links

between autophagy alterations and neurodegenerative diseases, such as

SNHL, have been established. The hearing pathway is complex and depends

on the comprehensive functions of many types of tissues and cells in

auditory system. In this review, we discuss the roles of autophagy in

promoting and inhibiting hearing, paying particular attention to specific cells

in the auditory system, as discerned through research. Hence, our review

provides enlightening ideas for the role of autophagy in hearing development

and impairment.
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Introduction

As a key sensory basis for communication, hearing plays an essential role in the
development of language and mental functions, and therefore, hearing loss can lead to a
battery of economic difficulties and psychosocial problems (Shan et al., 2020; Yigider
et al., 2020). For example, in individuals over 65 years old, hearing loss is a leading

Abbreviations: ABR, auditory brainstem response; AHL, Age-related hearing loss; ATG, autophagy-
related genes; CLU, clusterin; DRP-1, Dynamin-related protein-1; EP, endocochlear potential; ER,
endoplasmic reticulum; GSK3β, glycogen synthase kinase 3β; HCs, hair cells; HEI-OC1, House Ear
Institute-organ of Corti 1; IHC/OHC, inner/outer hair cells; OSCs, Outer sulcus cells; PARP-1, Poly
(ADP-ribose) polymerase-1; PE, phosphatidylethanolamine; PI3P, phosphatidylinositol 3-phosphate;
PINK1, PTEN-induced putative kinase 1; PRDX1, Peroxiredoxin 1; PTSs, permanent threshold shifts;
ROS, reactive oxygen species; SGNs, spiral ganglion neurons; SIRT1, Sirtuin 1; SNHL, Sensorineural
hearing loss; sPTS, severe permanent threshold shift; TTSs, temporary threshold shifts; Uchl1,
Ubiquitin carboxyl-terminal hydrolase isozyme L1.
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contributor to disability, which have important implications in
the loneliness, social isolation, and cognitive decline (Lin et al.,
2013; Shukla et al., 2020; Ge et al., 2021). Data from the WHO
show that approximately one-half billion people worldwide have
disabling hearing loss, and the incidence is expected to rise to 1
in 10 people by 2050 (Chadha et al., 2021). Therefore, hearing
loss has come to be a major global health concern (Wilson et al.,
2017; Campos and Launer, 2020).

Hearing loss can be categorized as conductive or
sensorineural, which difference lies in the impairment of
sound transmission or perception, and when both forms are
evident, the condition is categorized as mixed (Cunningham
and Tucci, 2017; Anastasiadou and Al, 2020). Caused by
degenerative processes associated with aging, ototoxic drugs,
noise exposure, and genetic mutations, SNHL is the most
common type of hearing loss, and it is associated with a
decrease in hearing sensitivity and an increase in hearing
thresholds. Age-related hearing loss (AHL) is mainly caused
by age-related degeneration at various auditory sites, which
involves a gradually reduced hearing capacity and poor
speech discernibility that is initially perceived in noisy
environments. Many chemicals and clinical medications, such
as aminoglycoside antibiotics and cisplatin, are known to induce
deleterious ototoxic side effects. Loud sounds are ubiquitous
in modern life and can damage hearing acuity, and loud noise
exposure can result in temporary threshold shifts (TTSs) or
permanent threshold shifts (PTSs) through direct mechanical
stress and stress-induced molecular changes. Furthermore,
researchers have indicated that certain genetic defects including
mutations can lead to SNHL. Although SNHL is a common
disease, SNHL pathogenetic mechanisms and interventions
remain to be elucidated.

In the past decade, the field of autophagy research has grown
exponentially (Mizushima, 2018). Since the breakthrough
discovery of the molecular mechanism of autophagy by
Yoshinori Ohsumi, who was awarded the Nobel Prize in 2016,
considerable attention has been directed toward the role of
physiopathological autophagy in various diseases (Levine and
Kroemer, 2019). To maintain homeostasis, cells have evolved a
self-regulating quality control system that enables adaptation to
nutrient deprivation, metabolic stress, damaging challenges, and
development or differentiation processes (Pohl and Dikic, 2019;
Gross and Graef, 2020; Xiong et al., 2020; Yun et al., 2020). Given
the prominent role of autophagy in organisms, it is important to
investigate the extent to which autophagy contributes to hearing
loss. Because autophagy is a programmed cell death process (Wu
et al., 2020), several studies have been performed to determine
whether interfering with autophagy may be potentially useful
as a therapeutic strategy in SNHL. The results of these studies
have increasingly shown that autophagy is connected to SNHL
caused by ototoxic drugs, noise exposure, aging factors, and
other causes.

Autophagy mechanisms

In general, among the types of autophagy, the three most
common forms are macroautophagy, microautophagy, and
chaperone-mediated autophagy. Macroautophagy, hereafter
referred to as autophagy, is the major type of autophagy and
is regarded as a classical degradation pathway. Degradation
pathway in cells under stress is vital for preventing several
clinical conditions among which cancer, neurodegeneration,
and SNHL (Levy et al., 2017; Fu and Chai, 2019; Djajadikerta
et al., 2020; Yang and Klionsky, 2020). Significant progress has
been made in understanding the features of autophagy,
and a series of genes named autophagy-related genes
(ATG) have been identified in this process (Figure 1A). In
response to the aforementioned cell stress, the ATG1/ULK
kinase complex activates autophagy. After the assembly of
multiprotein complexes (including Beclin1 and VPS34),
phosphatidylinositol 3-phosphate (PI3P) is generated and
is involved in phagophore formation. Organelle membrane
sources and PI3P production promote membrane elongation
through the recruitment of the ATG2–WIPI (ATG18 in
yeast) complex. In addition, ATG9 vesicles, consisting
of transmembrane core ATG protein, contribute to the
expanding phagophore membrane. Underscoring the
importance of the ATG complex, ATG12 is conjugated
to ATG5 and ATL16L1, and LC3 subfamily proteins are
bound to phosphatidylethanolamine (PE), resulting in an
expanding phagophore that engulfs autophagic cargo via
autophagy receptors and the completion of double-membrane
autophagosomes. Eventually, autophagosomes fuse with
lysosomes, and thus mature into autophagolysosomes, in which
the autophagy cargo is degraded (Glick et al., 2010; Morishita
and Mizushima, 2019; Mizushima, 2020).

To reduce cell stress, reactive oxygen species (ROS) and
damaged organelles, can be removed through the autophagy
mechanism described. As expected, previous reviews have
suggested that in SNHL of various etiologies, autophagy leads
to a certain antioxidative effect (He et al., 2018; Ye et al., 2018).
However, these reviews mainly discussed different categories
of hearing loss, not diverse structures or cells involved in
hearing loss. Autophagy in auditory system diseases is cell-
specific and difficult to generalize on the basis of type of
deafness. Therefore, increasing attention has been directed to
the significance of cell specificity in hearing loss (Takeda et al.,
2018; McGovern et al., 2019; Roccio et al., 2020; van der Valk
et al., 2021). Herein, we update the progress in understanding
autophagy in auditory development and hearing loss, uniquely
focusing on cellular components. Cognition of cellular state
not only can lead to a better understanding of the specific
role of autophagy in physiological and pathological auditory
systems but can also indicate future directions in the work of
this field.
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FIGURE 1

Autophagy in the cells of the auditory system. (A) In response to cellular stress, autophagy is promoted by AMPK or suppressed by mTORC1 and
initiated by the activation of the ATG1/ULK kinase complex. After the assembly of multiprotein complexes (including Beclin1 and VPS34), the
class III phosphatidylinositol 3-phosphate complex (PI3KC3) is generated to act in phagophore formation. Membrane sources from organelles
and the production of PI3KC3 promote membrane elongation by recruitment of the ATG2–WIPI (ATG18 in yeast) complex. In addition, ATG9
vesicles, the transmembrane core ATG protein, contribute to the membrane supply. Underscoring the importance of the ATG complex, ATG12
conjugates with ATG5 and ATL16L1, and the LC3 subfamily conjugates with PE, resulting in an expanded phagophore engulfing autophagic
cargo via autophagy receptors and the completion of double-membrane autophagosomes. Eventually, it gives rise to the maturation of
autophagolysosomes and degradation following fusion with lysosomes. (B) Structure of the cochlea, especially meticulous cells in the scala
media, filled with endolymph. The crucial part of auditory perception, hair cells (including IHC and OHC), are located on the basilar membrane
and surrounded by epithelia-supporting cells in the Organ of Corti. Sensory HCs make synaptic connections with SGNs whose dendrites form
connections with the cochlear nucleus. The stria vascularis lies on the lateral wall, and work with supporting cells plays an important role in
cochlear homeostasis and acoustic function.

Physiology and pathology of the
auditory system and autophagy
participation

The cochlea, a mammalian sensor stimulated by
environmental sounds, is a sophisticated and minute structure
(Raphael and Altschuler, 2003; Stephenson, 2012; Iyer et al.,
2016; Wright and Horn, 2016; Fettiplace, 2017). Figure 1B
shows that the membranous cochlea comprises three ducts
filled with endo/perilymph. The membranous cochlear duct,
also called scala media, is the middle duct, and plays the
most important role in sound sensing. The scala media is
bounded by the vestibular membrane (on the superior side)
and basilar membrane (on the basal side). The spiral ligament
and stria vascularis comprise the lateral wall. Located on
the basilar membrane, the spiral organ, also known as the
organ of Corti, includes inner/outer hair cells (IHC/OHC),
supporting cells, and the tectorial membrane. Overall, cells
in the cochlea and surrounding structures are crucial for
auditory perception and transmission. A full understanding
of autophagy in specific cell types has been the basis for

the physiological and pathological studies described in
detail below.

Autophagy in sensory cell
development

Autophagy is required during the development of multiple
organisms (Allen and Baehrecke, 2020). Otocysts, also named
otic vesicles, are the origins of the developing sensory organs
in the early embryonic inner ear. Otic vesicle ventral cells give
rise to the auditory organ consisting of HCs, several types
of supporting cells and neurons, which together comprise the
cochlea in mammals (Magariños et al., 2014). Interestingly,
an excessive number of otic cells are generated during
development and are later exquisitely cleared by regulated
mechanisms such as apoptosis and senescence. Developmental
senescence seems to control the balance of specific cell
populations in endolymphatic sac formation and modulate
the otic vesicle morphology. Autophagy provides the energy
for the elimination of apoptotic cells and migration of otic
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neuroblasts (Aburto et al., 2012; Varela-Nieto et al., 2019). In
contrast, deficient autophagy leads to aberrant inner ear
development (Magariños et al., 2017).

Recently, reports cited certain deafness genes (DFNA5,
DFNA59, DFNA67, and connexin26) linked to autophagy and
described their roles in genetic hearing loss (Hayashi et al.,
2020; Koh et al., 2022). It is conceivable that autophagy is a
significant process in both antenatal and postnatal cochlear
cell development. A study showed that mice deficient in the
Atg5 gene presented with severe congenital hearing loss and
HC degeneration, revealing that autophagy is requisite for
HC morphogenesis and hearing acuity stabilization (Fujimoto
et al., 2017). Similarly, a newly published study described
time-dependent stereocilia damage, somatic electromotility
disturbances, and synaptic ribbon degeneration in mouse
OHCs due to the genetic ablation of Atg7, reconfirming the
role of ATG-dependent autophagy in HC preservation and
hearing (Zhou et al., 2020). Another study has proven that
disruptions to autophagy are involved in impaired development
of cochlear ribbon synapses between IHCs and SGNs, with
reduced exocytosis by IHCs in postnatal mice before hearing
onset (Xiong et al., 2020). In addition, after sevoflurane exposure
in utero, offspring mice exhibited poor hearing, as measured by
the auditory brainstem response (ABR) test, with degenerated
ribbon synapses despite unchanged HCs. Remarkably, impaired
autophagy has been observed in cochlear explant cultures
(Yuan et al., 2020). The ATG, Becn1, Atg4, Atg5, and Atg9
genes have been reported to be expressed during mouse
cochlear development and their upregulated expression has
been associated with concerted inner ear functional maturity.
In particular, LC3B is abundant in SGNs since the first month
of life, which may signify the primary association of autophagy
with SGN activity (de Iriarte Rodríguez et al., 2015). In contrast
to apoptosis, autophagy is gradually increased during SGN
development (Hou et al., 2020).

Although no single illustration of the role of autophagy in
non-sensory cell development has been described, autophagy
undoubtedly has an effect on hearing. However, more evidence
is needed on cochlear cell development and autophagy in
pathological auditory cells.

Autophagy in hair cell dysfunction

HCs are crucial to auditory perception and they exhibit
limited regenerative capacity in mammals. Specifically, IHCs
specialize in the transformation of mechanical force into
an electrical signal, while OHCs enhance the quality and
sensitivity of the transduced signal. Damage to HCs is the
major cause of SNHL. Figure 2 shows the involvement of
autophagy in HC dysfunction. Some groups have found that
C57BL/6 mice are susceptible to early onset hearing loss and
HC loss upon upregulation of miR-34a expression; indeed, in

these mice, autophagic flux is impaired (Pang et al., 2017).
Specifically, ATG9A was significantly decreased after miR-
34a overexpression (Yang et al., 2013) and when Sirtuin
1 (SIRT1) expression was deficient. SIRT1 is a conserved
NAD-dependent deacetylase that has been confirmed as a
miR-34a target (Yamakuchi et al., 2008; Imai and Guarente,
2014). A study suggested that SIRT1 deacetylates ATG9A to
induce autophagy, protecting HCs and delaying AHL (Pang
et al., 2019). When exposed to noise, adult CBA/J mice
undergo a TTS, PTS, or sPTS (severe permanent threshold
shift), with elevated lipid oxidation and protein nitration
(4-hydroxynonenal and 3-nitrotyrosine, respectively, leading
increased oxidative stress), mainly in OHCs. Interestingly,
potentiated autophagy has been observed in OHCs exposed
to moderate noise levels (such as those associated with
TTSs), but autophagy was unaltered in OHCs exposed to
noise associated with sPTSs, while suppressed autophagy
(inhibited by 3-MA or LC3B siRNA) converted TTS to
PTS and exacerbated OHC death. Additionally, activation of
autophagy by rapamycin attenuated oxidative stress and thus
promoted OHC survival, suggesting that autophagy modulates
HC death in hearing loss and that excessive oxidative stress
eliminates the benefits of autophagy (Yuan et al., 2015).
Pexophagy (Germain and Kim, 2020), a selective form of
autophagy, has been recently linked to pejvakin-mediated
protection of HCs against noise-induced oxidative damage
(Defourny et al., 2019).

As studies have progressed, increasing evidence has
supported the idea that autophagy is closely associated with
the alleviation of drug-induced ototoxicity of inner ear cells.
Ototoxicity is an attention-attracting adverse effect of cisplatin
(Yu et al., 2020), and cisplatin exposure as well as noise induce
apoptosis and autophagy in HCs (Xu et al., 2018). However,
the effect of autophagy on cisplatin-induced ototoxicity in
HCs remains ambiguous and is debated. A study revealed an
otoprotective effect of rapamycin, which reduces HC loss after
cisplatin treatment by inducing autophagy (Fang and Xiao,
2014). The protective effect of autophagy induced by SIRT1 has
also been described in age-dependent HC loss (Xiong et al.,
2015; Pang et al., 2019). Pang et al. (2018) proposed that SIRT1-
induced autophagy activation attenuates cisplatin-induced HC
death in the mouse cochlea and zebrafish lateral line. Moreover,
promoted autophagy in HCs accompanied by glycogen synthase
kinase 3β (GSK3β) inhibition or PTEN-induced putative kinase
1 (PINK1) activation has been reported to alleviate cisplatin-
induced ototoxicity. PINK1, known for its role in mitophagy,
inhibits JNK pathway-related apoptosis induced in response
to cisplatin injury of C57BL/6 murine cochlear explants (Yang
et al., 2018a; Liu T. et al., 2019). Intriguingly, autophagy may
accelerate cisplatin-induced cytotoxicity, but debate on this
possibility continues (Yin et al., 2018). Recent research has
indicated that mutation of the transcription factor Pou4f3
promotes apoptotic HC death by inducing autophagy in
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FIGURE 2

The delicate balance of autophagy in cell survival and death. Autophagy is involved in the auditory pathway, which is reviewed exactly from the
peripheral to the central auditory system. Autophagy is activated by Fox family members, BNIP3L, Urolithin A, PINK1, AMPK, DRP-1, rapamycin,
SIRT1, and PRDX1 but inhibited by miR-34a, 3-MA, GSK3β, and mTORC1 signaling in cells suffering from aging, noise and ototoxic drugs. Some
common stresses usually exist, such as ROS and LPS. Accumulated lipofuscin and disrupted nuclear translocation of TFEB are shown in
degenerated SGNs with impaired autophagy; in contrast, SGN degeneration is ameliorated after restoring autophagy and promoting TFEB
nuclear translocation. Furthermore, autophagy is thought to defend against damage to the auditory cortex caused by aging or ototoxicity.
Autophagy can alleviate these conditions and protect cells, although controversy remains. Activation of autophagy by Pou4f3 mutation and
NLRX1 mediation can accelerate the ototoxic potential of cisplatin in hair cells and HEI-OC1 cells. Most importantly, appropriate autophagy
plays a vital role in maintaining the balance of cell homeostasis.

cisplatin-treated murine models of deafness (Xu et al., 2020).
It is difficult to elucidate the reasons for the discrepancies
in different conclusions, but they might be related to various
experimental subjects. Alternatively, diversities in the timing
and extent of autophagy activation may explain the differences.
For example, early and moderate upregulation of autophagy has
been shown to exert a protective function, but later and excessive
autophagy leads to a deleterious outcome (Maiuri et al., 2007).
Aminoglycoside antibiotics constitute a class of noted ototoxic
medicines that includes neomycin and gentamicin, which seem
to enter HCs by endocytosis through the apical membrane,
basolateral membrane or mechanoelectrical transducer (MET)
channel located atop stereocilia (Huth et al., 2011). A study
revealed that autophagy was increased in HC explants after
2 mM neomycin treatment, and stimulation of autophagy
by rapamycin rescued HCs from ROS injury and death (He
et al., 2017). Other studies have shown that in gentamicin-
treated cochlear HCs, multiple autophagic vacuole formed,
lysosomal fusion was decreased and autophagic flux was
impaired, which caused delayed onset ototoxicity (Kim et al.,
2017, 2019). These studies suggest that enhancing autophagic
flux might prevent aminoglycoside-induced SNHL, although

we need be aware of the proapoptotic effects of autophagy
overactivation.

Autophagy in the stria vascularis and
supporting non-sensory cell pathology

The stria vascularis consists of three layers of cells,
including marginal, intermediate, and basal cells. It is critical
for maintaining endocochlear potential (EP) and endolymph
ion homeostasis and is constantly exposed to cell stress because
of its high metabolic activity. It is generally assumed that
the K + cycle is one of the most important mechanisms
in cochlear cells; indeed, a normal stria is essential for HC
mechanosensory function (Liu et al., 2016). Aberrant stria
vascularis is involved in multiple types of hearing loss (Shi,
2016; Tawfik et al., 2019) and is associated with heavy oxidative
burden, microvascular insults, and depletion of ion transport
channels and pumps, all of which contribute to stria vascularis
atrophy and, eventually, to hearing loss. Pillar, Deiters’, and
Hensen’s cells are all portrayed as supporting cells with distinct
morphology, location, and function, providing structural and
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molecular support for HCs. Furthermore, supporting cells are
thought to be involved in the development and survival of
HCs and SGNs and show remarkable potential for promoting
HC regeneration, analogous to glia in the central nervous
system (Monzack and Cunningham, 2013). Emerging evidence
has suggested that the earliest signs of ototoxic drug-induced
death appear in supporting cells (Ding et al., 2020); however,
supporting cells are not as well characterized as sensory cells,
and they deserve further investigation in efforts to prevent
hearing loss.

Unfortunately, few studies have focused on autophagy
related to dysfunctional non-sensory cells in hearing loss,
and this aspect remains to be addressed. Poly (ADP-ribose)
polymerase-1 (PARP-1) is activated under oxidative stress
in marginal cells of the stria vascularis, particularly the
epithelium-derived cells lining the endolymphatic surface,
and subsequently induces PARP-1-dependent cell death
(parthanatos). Synchronously, autophagy has been observed in
these marginal cells, and autophagy suppression by 3-MA has
led to aggravated parthanatos, demonstrating a prosurvival role
played by autophagy in marginal cells (Jiang et al., 2018). Outer
sulcus cells (OSCs) are non-sensory cells in the cochlear lateral
wall, and abnormal protein aggregations in OSCs are caused
by a genetic disorder with hearing loss (Pendred syndrome). It
has been reported that, even at low doses, rapamycin activates
autophagy in OSCs in vivo, thereby ameliorating anomalous
protein aggregation and reducing the susceptibility of cells
to disease (Saegusa et al., 2020). Additionally, as previously
described (Lee et al., 2017), clusterin (CLU) has been found
to be expressed in basal cells of the stria vascularis, pillar cells
and Deiters’ cells in developing and mature mouse cochlea,
and it has been identified as a stress-activated signaling
chaperone molecule that exerts a cytoprotective effects by
clearing misfolded or aggregated proteins. Studies have proven
that high CLU expression in tumor cells promotes autophagy,
thereby regulating the prosurvival pathway in cancer (Zhang
et al., 2014; Fu et al., 2020); therefore, determination of
whether CLU-related autophagy has a potential effect on
the stria vascularis and supporting cells is a valid research
consideration.

Autophagy protects spiral ganglion
neurons

Due to the elaborate organization of components and
movements of stereocilia that protrude from the apical domain
of HCs, sound impulses are transduced to the auditory nerve.
There are two types of auditory nerves that arise from the
differentiation of SGNs (Petitpré et al., 2018; Liu W. et al.,
2019), and their peripheral processes contact HCs. Type I
SGNs receive 95% afferent innervation with IHCs through
ribbon synapsis development (Coate et al., 2019), and OHCs

make synaptic connections with Type II SGNs. Interestingly,
OHCs receive a major efferent innervation, which contributes
to an efferent feedback loop with medial olivocochlear system
(Guinan, 2018). With the intervention of primary sensory
neurons of SGN, acoustic information is transmitted from the
cochlea to the central nervous system. SGN lesions lead to SNHL
due to impaired neurotrophic signaling, neurotransmitter
excitotoxicity, gene deficiency and oxidative imbalances caused
by aging, noise and ototoxic drugs (Nayagam et al., 2011; Liu W.
et al., 2019). Herein, we explain the involvement of autophagy in
SGN physiology and injury-associated hearing loss.

SGNs gradually deteriorate with HC loss. In a recently
published study (Ye et al., 2019), impaired autophagic flux
was found during the incipient stage of SGN degeneration.
Lipofuscin and autophagic vacuoles accumulated in the
cytoplasm of the degenerated SGNs in mice, and the
nuclear translocation of TFEB, a transcription factor that
regulates lysosomal and autophagic function, was disrupted.
After intervention to promote TFEB nuclear translocation,
autophagy-lysosomal function was restored, attenuating SGN
degeneration. It has been demonstrated in latest reports on
TFEB-mediated autophagy against aging or cisplatin-induced
HC damage as well (Li et al., 2022; Xiong et al., 2022). As
mentioned above, rapamycin, a specific mTORC1 inhibitor,
also enhances autophagy in SGNs and ameliorates AHL in
C57BL/6J mice (Liu et al., 2022). In SAMP8 mice, which are
used in gerontological research, the organ of Corti and SGNs
were observed to exhibit abnormalities similar to those in AHL.
Specifically, a high level of LC3-II expression in SGNs was
sustained from the first to the twelfth month. Notably, triggered
autophagy is widely considered to play a dual role in the survival
of young individuals and the death of old individuals due to cell
stress (Menardo et al., 2012).

SGNs are also the targets of ototoxic drug injury. For
instance, treatment with 30 µM cisplatin caused ROS activation
and apoptosis of SGNs from C57BL/6 murine cochlea in vitro
and, moreover, activation of PINK, which elicits autophagy
generally. Furthermore, PINK1 silencing resulted in weakened
autophagy but intensified mortality, implying that PINK1-
induced autophagy might confer a protective effect in cells
stimulated by cisplatin (Yang et al., 2018a). Peroxiredoxin 1
(PRDX1) is a multifunctional antioxidant and is universally
expressed in the cochlea as well as in SGNs (Le et al., 2017).
A recent study investigated autophagy involvement in SGN
apoptosis and hearing loss induced by cisplatin and showed that
PRDX1 regulated PTEN-AKT signaling to activate autophagy,
thus promoting SGN survival (Liu W. et al., 2021). Another
study identified prominent downregulated expression of a
gene in the SGNs of rat cochlear organotypic cultures after
gentamicin treatment. Ubiquitin carboxyl-terminal hydrolase
isozyme L1 (Uchl1), the deficit of which leads to SGN loss
and impaired autophagic flux, showed the potential to salvage
autophagy in SGNs dying because of gentamicin ototoxicity
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(Kim et al., 2019). Furthermore, hyperactivation of the mTORC1
signaling pathway was found to be involved in the drastic
gentamicin-induced reduction of SGN density and neurite
outgrowth, which was restrained by rapamycin, the well-known
autophagy activator (Guo et al., 2019). In addition to medicines,
industrial pollution is thought to cause auditory dysfunction
in humans and animals. Zhang et al. (2019) demonstrated that
adult guinea pigs subjected to 60 days of chronic exposure to the
heavy metal lead showed SGN loss and corresponding hearing
impairment, and increased expression of ATG5, ATG6, and
LC3B was found in the guinea pig brainstem after 30 days of
lead exposure. Therefore, it has been suggested that autophagy
possibly confers a protective effect in the early stage of lead
exposure.

Autophagy in House Ear
Institute-organ of Corti 1 cells

House Ear Institute-organ of Corti 1 (HEI-OC1) is one
of the rare mouse auditory cell lines. An epithelial cell
line derived from a conditionally immortalized organ of
Corti, the HEI-OC1 cell line expresses markers of HCs,
including prestin, myosin-VIIa (MYOSIN 7a), BDNF, Atoh1,
calbindin, and calmodulin (Kalinec et al., 2003). HEI-OC1 cells
were originally used to investigate the potential ototoxicity
or otoprotective properties of drugs in systems in vitro
(Kalinec et al., 2016), and they are now widely used to
study evaluate apoptotic pathways, inflammatory responses,
gene regulation, autophagy and senescence, and oxidative
and endoplasmic reticulum (ER) stress in various types
of SNHL.

Autophagy correlated with AMPK has been demonstrated
to regulate oxidative stress-induced premature senescence of
HEI-OC1 cells, and knockdown of Atg7 has been shown
to induce premature senescence by impairing autophagy
(Tsuchihashi et al., 2015). Based on in vivo findings (Pang
et al., 2017, 2019), further exploration of HEI-OC1 cells has
validated that overexpression of miR-34a impairs autophagic
flux by repressing ATG9A expression, whereas SIRT1 activation
deacetylates ATG9A to protect against HC loss and delay
AHL through autophagy recovery. As a selective autophagy
subtype, mitophagy has been observed to be decreased in aged
cochlea of C57BL/6 mice, which might be a result of cell
damage (Oh et al., 2020; Yu et al., 2021). In other words,
activation of SIRT1 or inhibition of miR-34a equally protects
HEI-OC1 cells against oxidative stress and delays AHL by
maintaining a balance between mitophagy and mitochondrial
biogenesis (Xiong et al., 2019). Urolithin A is reported as
a mitophagy activator in various mammalian cells, as well
as in auditory cells. Declined mitophagy is counteracted
upon Urolithin A pre-treatment in H2O2-induced senescent
HEI-OC1 cells, thus maintaining mitochondrial function and

preventing age-related damage (Cho et al., 2022). Dynamin-
related protein-1 (DRP-1) is a GTPase that contributes to
mitochondrial fission and plays a core role in mitophagy
(Reddy et al., 2011; Breitzig et al., 2018). Oxidative damage
induces mitochondrial dysfunction in senescent HEI-OC1
cells, while DRP-1 overexpression rescues aged cochlea from
AHL by initiating mitophagy (Lin et al., 2019). Similarly,
BNIP3L/NIX, a member of the BCL2 family, has been suggested
to regulate mitophagy against premature senescence (Kim et al.,
2021). Forkhead box (FOX) family transcription factors are
influential in mammalian development and disease and are
molecular sensors that regulate the interactions between the
genome and signaling responses to internal or external cues
(Lam et al., 2013; Tia et al., 2018; Herman et al., 2021).
FoxG1 has been implicated in promoted HC survival and
development in postnatal cochlea of mice (He et al., 2019).
Recently, a study has demonstrated reduced autophagy levels
after downregulation of FoxG1 expression in aging HEI-OC1
cells. We now have a better understanding of the role of
FoxG1 in activating autophagy, which may contribute to aging
cell survival (He et al., 2020, 2021). Similarly, mutation of
FoxO3 (a member of a FOX family subgroup) has been
reported to cause adult-onset auditory neuropathy in mice
(Gilels et al., 2013). When observing external damage to
cells, Liang et al. (2021) found that the FoxO3 pathway-
mediated autophagy machinery possibly exerted antagonistic
effects against ototoxicity. Under ER stress-induced cell damage
induced by tunicamycin, a FoxO family member mediated
increased autophagic levels, reducing the HEI-OC1 cell death
rate (Kishino et al., 2017).

Autophagy clearly acts as a survival mechanism that
protects against HEI-OC1 cell death under oxidative stress
(Hayashi et al., 2015; Tsuchihashi et al., 2015); similarly, this
protective effect has been effectively shown against hearing
loss induced by ototoxic drugs, while impaired mitophagy
aggravates cytotoxicity (Cho et al., 2021). As models used for
screening the pharmacological effects of ototoxicity, studies
of autophagy mechanism in HEI-OC1 cells treated with
drugs have proceed apace recently (Zhao et al., 2021). It has
been reported that induction of autophagy and inhibition
of the p53 signaling pathway by PINK can protect HEI-
OC1 cells against gentamicin-induced damage (Yang et al.,
2018b), although dissention among scholars remains (Setz
et al., 2018). Similar to the results with HCs, the results
of in vitro experiments with HEI-OC1 cells have shown
beneficial (Pang et al., 2018; Yang et al., 2018a; Liu T.
et al., 2019) and harmful (Youn et al., 2015; Li et al., 2018;
Yin et al., 2018) impacts of autophagy on cisplatin-induced
ototoxicity. The latest research has indicated that autophagy-
dependent ferroptosis contributes to the ototoxicity induced
by cisplatin. In this study, autophagic flux was blocked by
chloroquine, attenuating cisplatin injury (Jian et al., 2021).
Ferroptosis is a ROS- and iron-dependent cell death. Excessive
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TABLE 1 Researches on the mechanism and function of autophagy in various cells of auditory system.

Cells Mechanism (gene and
molecule)

Development/diseases
model

Protective/
degradative

References

HCs ATG5 deficient Congenital hearing loss Protective Fujimoto et al., 2017

ATG7 deficient OHC degeneration and hearing loss Protective Zhou et al., 2020

Activate and inhibit autophagy,
respectively by rapamycin or 3-MA

Development and maturation of
cochlear ribbon synapses between
IHC and SGNs

Protective Xiong et al., 2020

SIRT1 deacetylate ATG9A to alleviate HC
loss, while MiR-34a represses it

AHL Protective Pang et al., 2017, 2019

Activate and inhibit autophagy,
respectively by rapamycin or 3-MA

Noise-induced hearing loss Protective Yuan et al., 2015

Autophagy is activated by rapamycin Cisplatin induced hearing loss Protective Fang and Xiao, 2014

Autophagy is promoted by SIRT1
activation

Cisplatin induced hearing loss Protective Pang et al., 2018

Enhanced autophagy in response to
GSK3β inhibition

Cisplatin induced hearing loss Protective Liu T. et al., 2019

Activation of autophagy by Pou4f3 gene
mutation or knockout could induce
apoptosis.

Cisplatin induced hearing loss Degradative Xu et al., 2020

Autophagy is activated by rapamycin Neomycin induced hearing loss Protective He et al., 2017

Delayed onset ototoxicity caused by
impaired autophagic flux

Gentamicin induced hearing loss Protective Kim et al., 2017, 2019

MCs Autophagy inhibition by 3-MA
exacerbates parthanatos

AHL Protective Jiang et al., 2018

OSCs Autophagy is activated by rapamycin Genetic hearing loss disorder Protective Saegusa et al., 2020

SGNs Gradually upregulated autophagic activity
during postnatal development

SGNs development Protective Hou et al., 2020

LC3B expression is intense in adult SGNs SGNs functional maturity Protective de Iriarte Rodríguez
et al., 2015

Restoring autophagic flux attenuates SGNs
degeneration by promoting TFEB nuclear
translocation via inhibiting mTOR

SGNs degeneration model Protective Ye et al., 2019

Rapamycin enhanced autophagy by
inhibiting mTOR activation

AHL Protective Liu et al., 2022

autophagic stress and accumulated
lipofuscin in SGNs of SAMP8 mice

AHL Protective/degradative
bidirectional

Menardo et al., 2012

Autophagy is induced by PINK1 Cisplatin induced hearing loss Protective Yang et al., 2018a

PRDX1 activate autophagy to attenuate
cisplatin damage through activation of
PTEN-AKT signaling pathways

Cisplatin induced hearing loss Protective Liu W. et al., 2021

Hyperactivation of mTORC1 is restrained
by rapamycin

Gentamicin induced hearing loss Protective Guo et al., 2019

HEI-OC1 Autophagy is activated by enhanced
nuclear translocation of TFEB

Cisplatin induced hearing loss Protective Li et al., 2022

Atg7 silencing resulted in premature
senescence after H2O2 treatment

Premature senescence of auditory
cells induced by oxidative stress

Protective Tsuchihashi et al., 2015

Rapamycin rescues the inhibition of TFEB
nuclear translocation regulated by
miR-34a/ATG9A signal, restores
autophagic flux and consequently
prevents cell death.

AHL Protective Xiong et al., 2022

Impaired mitophagy is observed in aged
cochlea

AHL Protective Oh et al., 2020

Activation of SIRT1 or inhibition of
miR-34a modulates autophagy

AHL Protective Pang et al., 2017, 2019;
Xiong et al., 2019

(Continued)
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TABLE 1 (Continued)

Cells Mechanism (gene and
molecule)

Development/diseases
model

Protective/
degradative

References

Mitophagy is restored upon Urolithin A
pre-treatment of H2O2-induced senescent
cells to exert anti-aging effects

AHL Protective Cho et al., 2022

Activated DRP-1 initiate mitophagy to
rescue aged cochlea

AHL Protective Lin et al., 2019

BNIP3L/NIX-mediated mitophagy
protects against premature senescence

AHL Protective Kim et al., 2021

Activated FoxG1 expression and following
autophagy upregulation helps aging cells
survival

AHL Protective He et al., 2021

Impaired mitophagy aggravates
cytotoxicity

Cisplatin induced hearing loss Protective Cho et al., 2021

FoxO3 pathway mediated autophagy acts
against ototoxicity

Cisplatin induced hearing loss Protective Liang et al., 2021

XBP1-FoxO1 interaction regulates
autophagy within ER stress

Tunicamycin induced hearing loss Protective Kishino et al., 2017

Autophagy impaired by Atg7 knockdown
demolishes Keap1–Nrf2 signaling
crosstalk through p62

H2O2 induced ATP depletion and
oxidative stress in auditory cells

Protective Hayashi et al., 2015

Impaired autophagy by acetaminophen
induced cell death

Acetaminophen-induced ototoxicity Protective Zhao et al., 2021

Promoted autophagy and inhibited p53 by
PINK1 could protect against cell damage

Gentamicin induced hearing loss Protective Yang et al., 2018b

Activated autophagy in HEI-OC1 cell Cisplatin induced hearing loss Protective Pang et al., 2018; Yang
et al., 2018a; Liu W.
et al., 2019

Upregulation of autophagy accelerates cell
death

Cisplatin induced hearing loss Degradative Youn et al., 2015; Li
et al., 2018; Yin et al.,
2018

Ferroptosis-related autophagy contributes
to cell death

Cisplatin induced hearing loss Degradative Jian et al., 2021

Central Increased autophagy by hyperglycemia
that damages the cochlear nucleus
neurons.

Hearing loss in rats with diabetes Degradative Xueqin et al., 2017

Autophagy is promoted after kanamycin
treatment via JNK1-p-Bcl-2-Beclin-1
signaling pathway in dorsal cochlear
nucleus

Impairment auditory function by
kanamycin

Protective (potential) Fan et al., 2013

Mitophagy appears to be damaged in
auditory cortex with aging

AHL Protective Youn et al., 2020

LC3, BECN1, BCL-2 and BCL-xL increase
at 3 months while decrease at 15 months
in the auditory cortex

AHL Protective Yuan et al., 2018

release of redox-active iron has been hypothesized to result
in ferroptosis, which depends on a specific form of autophagy
called ferritinophagy (Biasiotto et al., 2016; Latunde-Dada, 2017;
Tang et al., 2018). After cisplatin treatment, ferritinophagy
was activated and augmented iron availability, which led to
ferroptotic HEI-OC1 cell death. We analyzed and discussed
autophagy duality in the previous section. Remarkably, HEI-
OC1 cells were used to verify the results found with in
HCs in vivo and to explain the specific mechanism of
action. Consistent with the results obtained with in vivo and

organotypic cochlear cultures, autophagy activity, including
autophagosome-lysosome fusion, was activated in HEI-OC1
cells in response to neomycin or gentamicin treatment (He
et al., 2017); however, a difference was observed in other studies
showing increased autophagosome formation but not lysosome
fusion (Kim et al., 2017, 2019). Surprisingly, administration of
the autophagic flux activator rapamycin has been universally
shown to reduce ROS levels and HC death, while treatment with
the autophagy inhibitor 3-MA or deletion of an autophagy gene
leads to cell apoptosis.
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Autophagy in central auditory
system cells

Sound information is converted from mechanical to
bioelectrical signals by cochlear HCs, and then neural processing
is initiated with nerve fibers consisting of SGNs. The central
auditory system analyzes and deciphers sonic information,
which proceeds sequentially through the cochlear nuclei,
trapezoid body, superior olivary complex, lateral lemniscus,
inferior colliculus, medial geniculate nucleus, and finally the
auditory cortex. Due to the complexity of acoustic perception,
pathological changes in the central auditory pathway, as shown
in Figure 2 are worth examining. In particular, we focus on the
few studies on autophagy.

Mammalian cochlear nuclei integrate acoustic and
somatosensory information to localize sound sources. A study
on hearing impairment in rats with diabetes reported that
cochlear nucleus neurons were damaged by hyperglycemia and
that the level of autophagy stimulus was increased (Xueqin
et al., 2017). Another study (Fan et al., 2013) investigated the
neurotoxic course of kanamycin (an aminoglycoside) in the rat
dorsal cochlear nucleus, revealing aggravated injury to neurons
while gradually recovered with early increases in autophagy.
From the reversible damage process, we can deduce the
potential protective role of promoted autophagy in kanamycin-
induced neurotoxicity, but further elucidation is needed to
determine the exact effect of promoted autophagy. The primary
auditory cortex is the first integrative cortical area, where
an elaborate network through which conscious perception
and comprehension of sound and utterances are performed,
and its degeneration is the major contributor to hearing
loss, especially presbycusis (equally AHL). Mitophagy aids in
removing ROS and maintaining mitochondrial homeostasis;
however, these processes appear to be disrupted in the auditory
cortex with aging. This finding indicated that mitochondrial
autophagy is a promising mechanism for protecting the central
auditory system against AHL (Youn et al., 2020). Using a
D-galactose-induced rat model of aging, a study found that
LC3 and Beclin1 were increased from young to adult in the
auditory cortex because of AMPK-mTOR-ULK1 signaling,
which maintained neuronal ultrastructural morphology. In
contrast, these proteins were reduced at old, and the apoptosis
rate and substantial neuron degeneration were increased. These
results suggested antiapoptotic and antiaging functions of
autophagy in the degeneration of the auditory cortex (Yuan
et al., 2018). Additionally, SIRT1 has been found to play a
protective role in initiating autophagy in the peripheral auditory
system. A decrease in SIRT1 expression in the auditory cortex
with aging has been reported, and this decrease may contribute
to presbycusis (Xiong et al., 2014). Since research data have
revealed that SIRT1 induces autophagy in response to survival
stress, this result suggests the possibility of autophagy function

in the auditory cortex. Altogether, evidence indicates that
autophagy plays a role in the central auditory system, but
more studies need to be performed to discern the relationship
between autophagy and hearing loss in this field.

Conclusion and outlook

Hearing loss is a major cause of disability that continues
to be invisible and is therefore, a silent epidemic. As shown
in Table 1, we mainly reviewed the pathological factors,
genesis, and molecular mechanism of hearing loss to shed
light on the effects of autophagy in specific cells of the
auditory system. Notably, an increasing number of studies have
been published on aural impairment; nonetheless, studies on
the autophagic role have been rare to date. Mitochondrion
is vital for cellular function and mitophagy has gained
increasing importance in response to stress. Studies on
mitophagy in SNHL are promising, note also that there is
no literature reported regarding other forms of autophagy
including microautophagy and chaperone-mediated autophagy,
which need more exploration in auditory system. Research on
hearing loss therapy is flourishing and focuses on the cell biology
of the auditory system (Nishio et al., 2017; Takeda et al., 2018;
Furness, 2019; Ranum et al., 2019; Hoa et al., 2020). To better
understand the function of autophagy in different cell-enriched
regions of the cochlea, we collated and summarized advances
in autophagic knowledge from the perspective of different cells.
Regardless of the disease model, research should be directed
to specific cellular targets. Moreover, researchers and clinical
practitioners are showing considerable interest in cellular targets
of SNHL that are modulated by autophagy. Autophagy might
perform diverse biological functions in different SNHL cells,
even those derived from the same etiological factor. Certainly,
taking a cell perspective rather than an etiological view can
improve our understanding of the exact position of SNHL and
development of appropriate treatments.

Unsurprisingly, autophagy-related studies mainly focus on
auditory sensory cells, and greater attention needs to be directed
to non-sensory cells. Of these cells, autophagy in HCs has
been the most widely researched in various forms of SNHL,
and HEI-OC1 cells have been concurrently used for in vitro
confirmation and supplementation of experimental results
(Figure 2). Unexpectedly, we found less concrete evidence
linking autophagy with hearing loss in stria vascularis and
supporting cells, that is, in non-sensory cells; however, hints of
a connection were found. Moreover, to fully understand hearing
loss caused by aberrations in the auditory pathway (Figure 2),
we briefly reviewed the function of autophagy in the central
auditory system. Recognizing interrelations among unexplored
systems may provide a comprehensive view of autophagy and
hearing loss, and possibly other neurodegenerative diseases.
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The literature has confirmed the importance of intact
autophagy in the development of cells in the inner ear (Fujimoto
et al., 2017; Magariños et al., 2017). In addition, autophagy may
not have been given attention in studies on hearing in healthy
adult mice, but under abnormal conditions caused by aging or
exposure to noise or ototoxic drugs, appropriate autophagy has
been shown to be particularly important in hearing conservation
(Fujimoto et al., 2017; Magariños et al., 2017; Fu and Chai,
2019). For each cell type studied, including HCs, SGNs, non-
sensory cells and central auditory cells, activated autophagy
signaling through common or similar regulatory pathways
has been shown to be beneficial under most conditions. The
antioxidant effect seems to be a major role played by autophagy
to protect against hearing impairment, as indicated by ROS
clearance and cell survival observed in autophagy-activated
cells. In addition, ameliorating organelle degradation, relieving
the inflammatory response and attenuating aberrant molecular
aggregation contribute to the cytoprotective effect conferred by
autophagy. Given the favorable role of autophagy in most cases,
many researchers agree that autophagy promotes the survival
of auditory cells under stress. However, autophagy-related
apoptosis remains disputed territory. Pou4f3 mutation and
NLRX1-mediated autophagy or ferritinophagy can accelerate
the damage to HCs treated with ototoxic drugs. Overactivation
of autophagy may be associated with apoptotic effects; however,
the complex relationship between autophagy and apoptosis
remains unclear (Gordy and He, 2012; Doherty and Baehrecke,
2018; Yan et al., 2019). Therefore, several topics worth exploring
for subsequent studies include (1) How does autophagy affect
the developing auditory system? (2) Is the role of autophagy
related to prosurvival or proapoptosis in pathological auditory
cells? (3) Is autophagy consistent in different cells and regions of
the auditory system? (4) How can we detect and modulate the
dual roles of autophagy?

Overall, research on the role played by autophagy in hearing
loss is in an emergent phase (He et al., 2018; Ye et al., 2018; Fu
and Chai, 2019; Guo et al., 2021; Liu C. et al., 2021). Certainly,
more investigation into various auditory cells, including non-
sensory cells, is needed to determine the autophagic function

in specific cells involved hearing loss. In summary, our review
suggests cellular autophagy as a promising target and strategy
for future research and clinical therapeutics in hearing loss.
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