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Gut bacteria consists of 150 times more genes than humans that are vital for health.
Several studies revealed that gut bacteria are associated with disease status and influence
human behavior and mentality. Whether human brain injury alters the gut bacteria is yet
unclear, we tested 20 fecal samples from patients with cerebral intraparenchymal
hemorrhage and corresponding healthy controls through metagenomic shotgun
sequencing. The composition of patients’ gut bacteria changed significantly at the
phylum level; Verrucomicrobiota was the specific phylum colonized in the patients’ gut.
The functional alteration was observed in the patients’ gut bacteria, including high
metabolic activity for nutrients or neuroactive compounds, strong antibiotic resistance,
and less virulence factor diversity. The changes in the transcription and metabolism of
differential species were more evident than those of the non-differential species between
groups, which is the primary factor contributing to the functional alteration of patients with
cerebral intraparenchymal hemorrhage.

Keywords: gut bacteria, cerebral intraparenchymal hemorrhage, metagenomic shot sequencing, function
annotation, single-species analysis
INTRODUCTION

The gut microbiota stability plays a pivotal role in maintaining the host’s homeostasis and brain
development (Carlson et al., 2018; Bolte et al., 2022). Through Influencing the balance between
bacterial anti-inflammatory and pro-inflammatory properties, dysbiosis contributes to
inflammation and various disease severity, leading to a worse clinical outcome. (Tilg et al., 2020;
Zuo et al., 2020; Gou et al., 2021; Szychowiak et al., 2022). The composition of the gut microbiota is
influenced by various factors, including environment, host disease state, host immune response and
genetic background (Wu et al., 2020; Gou et al., 2021), among which the environment is a critical
factor in gut bacterial property transformation. Since the communication between the gut and the
brain is bi-directional, the fecal microbiome from patients with chronic traumatic brain injury
changed differently (Urban et al., 2020) and the changed gut microbiota will subsequently have
profound impacts in influencing the host’s neurological function and behaviors, simultaneously
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affecting neurodegeneration and the repair process post-
neurological trauma (Cryan and Dinan, 2012; Sampson and
Mazmanian, 2015). For example, several studies reported that
the gut microbiota affects the outcome of acute brain injury in
mice by regulating the immune system (Denes et al., 2015;
Benakis et al., 2016). In addition to the immune system that
connects the gut and the brain, the vagus nerve provides a direct
connection between the central nervous system and the enteric
nervous system during gut bacteria-brain interaction, allowing
the gut microbiota to send microbial signals from the
gastrointestinal tract directly to the brain (Forsythe et al.,
2014). Metabolism is a leading mechanism for the gut
microbiota to influence brain function as it is involved in
numerous aspects of the metabolism process: from producing
metabolic precursors for the hormones and neurotransmitter
metabolism to directly producing the active metabolites, such as
acetate, a short-chain fatty acid that can cross the blood-brain
barrier and reduce appetite (Frost et al., 2014; Lyte, 2014; Sharon
et al., 2014; Jameson et al., 2020; Chen et al., 2021).

Cerebral intraparenchymal hemorrhage (IPH) has a higher
incidence in the Asian and older populations than the others. It
also exerts the highest mortality and substantial morbidity
among all forms of stroke (Gross et al., 2019). Houlden et al.
revealed that acute brain injury induces gut microbiota dysbiosis
in mice due to increased noradrenaline release from the
autonomic nervous system into the gut (Houlden et al., 2016).
However, whether brain injury, especially the IPH, will change
the human gut microbiota composition or function is yet
unknown, and taxonomic and functional profiling is required
to elucidate the gut microbiota (Schmidt et al., 2018). Nowadays,
metagenomic shotgun sequencing provides a powerful tool to
accurately detect microbiota and predict microbial biological
features compared to 16S amplicon sequencing (Weinstock,
2012). Herein, we performed metagenomic shotgun sequencing
on 20 human fecal samples (10 cases and 10 controls) at the same
region and the same period to explore the gut microbiota
composition changes associated with IPH. The functional
changes characterizing the IPH patients’ gut microbiota were
determined by various databases. We also identified the group-
specific species that altered after IPH occurred and explored the
functional differences among these species.
MATERIALS AND METHODS

Study Cohort and Patient Characteristics
The 20 fecal samples, including stools from 10 operation-free
patients who suffer from cerebral intraparenchymal hemorrhage
within 7 days and 10 healthy individuals as the control group,
were collected from the First Affiliated Hospital of Jishou
University, Hunan, China (Table S1). Written informed
consent was obtained from all participants. Diagnosis was
established on the Guidelines for Multidisciplinary Diagnosis
and Treatment of Hypertensive Cerebral Hemorrhage in China
(2020) (Chinese Medical Association Neurosurgery Branch et al.,
2020). The patients with cerebral IPH caused by blood disease,
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aneurysm, vascular malformation, and liver disease were
excluded from the study. The healthy controls had no history
of hypertension or diabetes. Moreover, none of the participants
had any history of bowel disease, antibiotic use, or usage of drugs
affecting bowel function in the past 3 months. The study
conformed to the ethical guidelines of the 1975 Declaration of
Helsinki and was approved by the Institutional Review Board of
Jishou University.

Fecal Sample Collection and
DNA Extraction
Fecal samples were freshly collected from each participant and
frozen at −80°C. The DNA was extracted using Longseegen Mini
Stool DNA Isolation kit, according to the manufacturer’s
recommendation and quantified by agarose gel electrophoresis
and Qubit Fluorometer.

Metagenomic Sequencing and
Data Processing
The paired-end sequencing was performed on the Illumina
HiSeq platform (paired-end library 400 bp and read length 150
bp). After quality control, including removal of adaptors and
low-quality reads by Fastp (version 0.20.1, parameter: -n 3 -q 20 -
u 50 -l 30 -c) (Chen et al., 2018), the host DNA reads were
removed by Bowtie2 (version 2.4.2) (Langmead and Salzberg,
2012) using GRCh38 genome assembly as reference. On average,
14.9 (11–20) Gbp of high-quality non-host sequences were
obtained for each sample, and then the remaining microbial
reads were filtered by Khmer (Crusoe et al., 2015) and aligned to
the Unified Human Gastrointestinal Genome (UHGG) database
by Kraken2 (version 2.0.8) and Bracken for taxonomic
annotation with default parameters (Lu et al., 2017; Wood
et al., 2019; Almeida et al., 2021).

For each sample, we used megahit (version 1.2.9) with a series
of k-mer values (21–61, step=4) to assemble the reads into
contigs (Li et al., 2015) and choose the optimal k-mer (k=33)
with the most reads >1000 bp by quast evaluation (Gurevich
et al., 2013). Bacterial genes were predicted on contigs longer
than 500 bp using Prokka (version 1.14.6) (Seemann, 2014).

Diversity and Rarefaction Curve
To evaluate the richness and diversity of bacteria in each sample,
we calculated the within-sample a-diversity using Chao 1 and
Shannon indexes, respectively. The inter-sample b-diversity was
evaluated by the weighted unifrac distance and further processed
by PCoA in the ape R package (Lozupone and Knight, 2005;
Paradis and Schliep, 2019).

Rarefaction analysis was conducted to evaluate the species
richness. We performed random sampling 20 times with
step=20000 to estimate the total number of species from these
samples by the vegan R package.

Group-Specific Species Identification
Next, we performed linear discriminant analysis (LDA) effect
size (LEfSe) analysis to identify specific species between the
patient and healthy control groups based on Kruskal–Wallis
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rank-sum test, Wilcoxon rank-sum test, and linear discriminant
analysis (LDA) score (Segata et al., 2011). lgLDA >2 indicates the
specificity of the species.

On the other hand, MaAslin analysis was conducted to
calculate the correlation strength of each species with groups
(Morgan et al., 2012). The species with co-efficient >0 and false
discovery rate (FDR) <0.05 were selected as the group-
related species.

Functional Annotation
All genes were aligned to the Evolutionary Genealogy of Genes:
Non-supervised Orthologous Groups (eggNOG) 5.0 database
using eggnog-mapper v2 with default parameters (Huerta-
Cepas et al., 2017; Huerta-Cepas et al., 2019). The results of
eggnog-mapper also consisted of the Kyoto Encyclopedia of
Genes and Genomes (KEGG) orthologs, pathways, modules,
and Clusters of Orthologous Groups (COG) functional
catalogs. The annotation and hierarchical correlation within
the KEGG pathways were downloaded from the KEGG
database (https://www.genome.jp/kegg/). The statistics of
enrichment catalogs and pathways were calculated through
relative abundance (the catalog frequency in each sample/total
catalog frequency of each sample). The reference for
Carbohydrate-Active Enzymes (CAZy) was downloaded from
http://www.cazy.org/ (Lombard et al., 2014), and the CAZy reads
of each sample were identified by hmmer (version 3.1, e-value
cutoff=1e-05) (Mistry et al., 2013). The relative abundance of the
total CAZy reads was calculated in count per million (CPM,
(CAZy reads per sample×1e06)/total non-host reads per sample)
and compared using the Wilcoxon rank-sum test. Subsequently,
the enzymes with FDR <0.05 were selected and annotated into
specific KEGG pathways as shown in Figure S2. The virulence
factors secreted by bacteria were identified using Basic Local
Alignment Search Tool (BLAST) to align non-host reads to the
virulence factor sequence reference downloaded from the
Virulence Factor Database (VFDB) with e-value cutoff at 1e-05
(Liu et al., 2019). The identified virulence factor reads were also
used to analyze the relative abundance (CPM) further. The
different virulence factors between groups were selected by
the Wilcoxon rank-sum test (FDR <0.05), following which the
selected virulence factors in specific structures or species were
counted (Figure S2). The antibiotic resistance genes were
identified by ariba against the reference sequence downloaded
from the Comprehensive Antibiotic Resistance Database
(CARD) (assemble threshold =0.97) (McArthur et al., 2013;
Hunt et al., 2017). The antibiotic-resistant genes were
normalized in CPM and selected based on the Wilcoxon rank-
sum test with FDR <0.05. To explore the difference in bacterial
secondary metabolites between groups, we predicted the
secretion of such metabolites by Antismash (version 5.1.2)
based on non-host reads of each sample (Blin et al., 2019).

Functional Modules Predicted
From Metagenomics
All KEGG orthologs identified in metagenomic functional
annotation were enriched in the modules or pathways by
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Omixer-RPM (version 1.1, coverage=1) were based on the
previously published KEGG metabolic module and gut-brain
module (GBMs) sets (Darzi et al., 2016; Valles-Colomer et al.,
2019). The different modules between groups were compared
using the limma R package; those with logFC >2 and FDR <0.05
were considered as group-specific modules.

Hub Bacteria Identification by the
Weighted Network Analysis
A bacterial weighted correlation network was constructed using
WGCNA R package (Langfelder and Horvath, 2008). The signed
correlation network was constructed based on the relative
taxonomic abundance of the species obtained by Kraken2
analysis. The adjacency matrix was created by Pearson’s
correlation analysis on the species taxonomic table with 14 as
the soft threshold (Figure S5B). Then, a topological matrix was
built using the topological overlap measure (TOM), an advanced
co-expression measure that considered the correlation between
two species and the extent of their shared correlations across the
weighted network (Zhang and Horvath, 2005; Li and Horvath,
2007; Yip and Horvath, 2007). Finally, we chose the dynamic
hybrid cut method, a bottom-up algorithm, to identify the
correlation bacteria modules based on their topological overlap
matrix (Langfelder et al., 2008). The modules with <50 species
were filtered out. To identify the significance of each module,
species significance was calculated and the correlation between
the species and groups assessed. Module significance (MS) was
defined as the average species significance within modules and
calculated to measure the correlation between the modules and
groups (Ghazalpour et al., 2006). Statistical significance was
determined using the correlation P-value. The first component
of each module was obtained by singular value decomposition,
and the hub bacterium of each module was that with the highest
correlation strength with the first component.

Bacterial Gene Prediction and
Functional Annotation
The genome references of group-specific species and hub species
were downloaded from the UHGG database. The non-host
sequence of each sample was aligned to the bacterial genome
reference to filter the specific bacterial sequence using bowtie2.
The genome assembly and functional annotation of each
bacterial species in each sample were assessed as described
previously, except that the coverage of omixer-RPM was 0.66.
The bacterial genes were predicted by salmon (version 0.15.0)
(Patro et al., 2017) using de novo contigs as the reference, and the
gene count matrix of each bacterium in each sample was
transformed into transcripts per million (TPM). The
differential gene expression (DEG) of each species among the
groups was identified by the limma R package with logFC cutoff
1.5 and FDR <0.05.

Statistical Analysis
All statistical analyses were performed using R software, version
3.6.3 (The R Foundation for Statistical Computing, http://www.
rproject.org/). Continuous variables between groups were
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compared by Student’s t-test, one-way analysis of variance
(ANOVA) with post hoc pairwise Bonferroni tests, or the
Wilcoxon rank-sum test. The gender between patients and
controls was compared by the chi-square test, and the age was
compared using the student’s t-test. Normality and homogeneity
of variance were assessed by the Shapiro test and Bartlett test via
R function, respectively. The correlations between continuous
variables were evaluated by Pearson’s correlation analysis.
Volcano plots, box plots, dot plots, and bar plots were drawn
using ggplot2 or corrplot R packages.
RESULTS

Gut Microbiota Diversity and Composition
Alteration in Patients and Healthy Controls
No significant difference was detected in consciousness at
admission (Glasgow coma scale (GCS), P=0.210), gender
(P=0.648), or age (P=0.224) between patients and controls
(Table S1). After annotating the metagenomic sequence data
and removing non-bacterial species, we identified 25 phyla, 35
classes, 86 orders, 272 families, 1386 genera, and 4539 species
(Table S2). The richness of each sample reached the horizontal
asymptote that the data comprised almost all bacteria of each
sample, while few remained undetected (Figure S1A). The
comparison of the richness at each level did not reveal any
significant difference between patients and controls (Figure
S1B). However, when introducing the Shannon index that
considers both the number and abundance of species
simultaneously to estimate the intragroup alpha diversity, we
found additional phyla, classes, and orders in the patient group
(Figure 1A). This indicated that the gut bacterial transformation
in IPH patients could be attributed to the altered gut bacteria at
high taxonomic levels, and newly dominant bacterial phyla could
be propagated to complement the gut bacteria diversity such that
no significant difference was detected between the groups at low
taxonomic levels, including family, genus, and species. Although
the composition percentage of bacterial phyla varied among
samples, we found that the relative abundance of four bacterial
phyla, Actinobacteriota, Cyanobacteria, Spirochaetota, and
Verrucomicrobiota, differed between the groups obviously,
among which the difference in Actinobacteriota and
Verrucomicrobiota could be directly identified based on the
abundance distribution histogram (Figures 1B, C).

To evaluate the contribution of bacteria in these four bacterial
phyla to discriminate patients from healthy individuals, we first
calculated the LDA scores using LEfSe analysis. This score
assessed the impact of significantly different species at each
taxonomic level and evaluated the discrimination power at the
order level (Table S3). Except for no difference in the bacteria of
Spirochaetota phylum, as assessed by LEfSe analysis, the other
three phyla, formerly defined as differential bacterial phyla, had
group-specific bacteria with statistical significance at each
taxonomic level (Figure S1C). Herein, we obtained six
bacterial orders with statistical significance (FDR <0.05),
consisting of Actinomycetales (phylum Actinobacteriota),
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Coriobacteriales (phylum Actinobacteriota), Gastranaerophilales
(phylum Cyanobacteria), RF39 (phylum Firmicutes), TANB77
(phylum Firmicutes), and Verrucomivrobiales (phylum
Verrucomicrobiota). Among these, Verrucomivrobiales (phylum
Verrucomicrobiota) played a key role in IPH patient
discrimination (Figure 1C), which was consistent with the
bacterial phyla composition of the patient group (Figure 1D).
To further evaluate the discrimination of the bacterial species in
IPH patients, we calculated the weighted unifrac distance that
considered the evolutionary correlation of bacteria between every
two samples, and 20 samples were clustered into two groups by
PCoA. The groups clustered through the weighted unifrac
distance were similar to those distinguished by disease
status (Figure 1E).

Functional Alteration in the Gut Microbiota
of IPH Patients
The functional annotation results could be divided into 24
categories based on sequence similarity by aligning the data to
the COG database designed for orthologous groups of proteins
(Figure 2A). According to the biological process, these 24
categories were summarized into four modules: metabolism,
cellular processes and signaling, information storage and
processing, and poor characterization. Among these,
metabolism was a diverse module since the comprising
categories varied significantly between the groups. The
comparison of the metabolic processes between groups
revealed that the capacity of energy production and conversion
is increased in the patients’ gut bacteria, consuming excess
carbohydrates and amino acids, while the lipid metabolism
capacity was decreased slightly. Simultaneously, due to the
increased taxonomic diversity and transcription activity of the
patients’ gut bacteria, the biosynthesis of the second metabolite
was active (Figures 1A, 2A and Table S4). In order to further
clarify the difference in the metabolic pathway between groups,
we introduced the KEGG database and subdivided the metabolic
module into 11 specific clusters (Figure 2B). We observed that
the two groups had significant differences in the overall
metabolic pathways (Figure S2A). The advantages of energy
metabolism of patients’ gut bacteria were manifested as carbon
fixation and methane metabolism. In addition to the biosynthesis
of aromatic amino acids, the metabolism of amino acids was
active in the patient group. Regarding lipid metabolism cluster,
the gut bacteria of patients degraded lipids, such as fatty acids,
ketone bodies, and glycerolipids, while the healthy people’s gut
bacteria were more active in biosynthesis. Moreover, all the
identified differential carbohydrate metabolic pathways were
active in patients, which explains the capability of increased
short-chain fatty acid production, including acetate, propionate,
and butyrate, in patients’ gut bacteria (Figures 2C, D)
(Sonnenburg and Bäckhed, 2016). Conversely, the metabolism
of cofactors, vitamins, and nucleotides, including pyrimidines
and purines, was more active in the controls. Next, we used the
CAZy database to identify the bacterial carbohydrate
metabolism-related enzymes that contributed to the
carbohydrate metabolic difference between groups and found
March 2022 | Volume 12 | Article 829491
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that the carbohydrate biosynthesis-related enzymes were
enriched at healthy controls’ gut bacteria (Figure S2B). On the
other hand, after KEGG annotation, we found that the antibiotic
resistance-related pathways, especially the resistance to b-lactam,
were enriched in the patients’ gut bacteria despite no previous
antibiotic exposure for at least 3 months, which was consistent
with the antibiotic resistance gene upregulation annotated by the
CARD database (Figure 2E and Figure S2C). To evaluate the
adverse impact of gut bacteria, we aligned two groups’ non-host
data to the VFDB. The virulence factors secreted by the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
dominant genus, such as Klebsiella (expansion induces colitis
in mice) (Garrett et al., 2007), Escherichia, and Clostridium, were
elevated in the patients’ gut bacteria, indicating a high taxonomic
diversity of the corresponding dominant genus in the patients’
gut (Figure S2D). The virulence factors were enriched explicitly
in the type VI secretion system (Figure S2E). Due to the function
of the microbial complex of mediating interstrain killing
(Chatzidaki-Livanis et al., 2016), the bacteria transformation
from the non-dominant genus to the dominant genus occurred
in patients’ gut as indicated by the altered bacterial secretion
A

B

D

E

C

FIGURE 1 | (A) Comparison of diversity of each taxonomic level between patient and control groups. The taxonomic indexes and the Shannon Wiener indexes were
compared by the Wilcoxon rank-sum test. (B) Differential phyla between groups identified by the Wilcoxon rank-sum test based on the relative abundance of
bacterial phyla. ** means FDR < 0.01, *** means FDR < 0.001. (C) Principal component analysis (PCA) based on the relative abundance of differential orders
between groups. The arrow direction represents the correlation between the phyla relative abundance and the principal component, and the arrow length indicates
the contribution of corresponding taxonomic order in discriminating patients and controls. (D) Phyla composition of each sample. The bar length indicates the relative
abundance of each phyla composition, and the total bacterial composition is 1. (E) Principal coordinate analysis between two groups based on the weighted unifrac
distance. The ellipse represents the core area added by the group according to the default confidence interval. ns means no statistical significance.
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A

B

C

E

D

FIGURE 2 | (A) Comparison of proteins annotated by the COG database between groups. The relative abundance of protein orthologs in each catalog was
compared by the Wilcoxon rank-sum test. * means FDR < 0.05, ** means FDR < 0.01, *** means FDR < 0.001, **** means FDR < 0.0001. (B) Bacterial
metabolic activity comparison between groups based on the relative abundance of protein orthologs annotated by the KEGG database. All FDRs of metabolic
pathways were < 0.05. (C, D). Volcano plot of the KEGG modules or the GBM modules enriched by KEGG protein orthologs, modules with FDR < 0.05 and
|log2FC| > 1.5 were identified as the differential modules. The blue and red represent the patient group and controls, respectively. (E) Comparison of antibiotic
resistance-related pathways between patients and controls. The relative abundance of protein orthologs that participated in the pathways was compared using
Wilcoxon rank-sum test. *** means FDR < 0.001, **** means FDR < 0.0001. ns means no statistical significance.
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diversity in virulence factors between the two groups
(Figure S2D).

Functional Alteration of Group-specific
Species Contributes to the Functional
Difference Between Groups
A significant positive correlation was established with the
environment, which indicates a solid environmental selection
(Lozupone et al., 2012). To identify the bacterial species selected
by disease state, we associated 4539 bacterial species with the
groups and defined the species with positive coefficients and FDR
<0.05 as the group-associated species (Table S5). The
intersection of the differential species obtained from the LEfSe
analysis on the group-associated species retrieved the group-
specific species (26 for controls and 24 for patients) (Table S6).
The metabolic activity of group-specific species was much higher
in the related group, especially the patient group, and the
differential expressed gene (DEG) characteristics of these
species were consistent with the metabolic alteration trends
(Figure 3A and Figures S3, S4). GBMs were designed to
characterize the neuroactive potential of gut microbiota
corresponding to a single neuroactive compound production
or degradation process. Then, we determined whether the GBMs,
present in each group-specific species, varied significantly
between patients and controls. The patients’ group-specific
species produced neuroactive compounds and biosynthesized
short-chain fatty acids, especially propionate and butyrate, in the
patients’ group-specific species (Figure 3B, Figure S5A). The
comparison among the GBMs’ metabolic activity of all the 50
group-specific species between groups revealed a high
neuroactive compounds’ metabolic capability of each group-
specific species in the associated group, consistent with the
KEGG metabolic pathways and DEG characteristics of each
species (Figure 3A and Figures S6, S7). The phylum
Verrucomicrobiota was identified specific bacterial phylum of
the patient group, and we selected all species in this phylum and
estimated their metabolic feature. The species of phylum
Verrucomicrobiota were specialized in acetate synthesis and the
degradation of carbohydrates and mucin, which might elevate
higher carbohydrate metabolism in the patient group
(Figure S8).

Next, we assessed whether the non-differential bacterial
species had the same metabolism and transcription features as
the group-specific species. Firstly, we constructed a bacterial
weighted correlation network and obtained 22 bacterial
interaction modules (Figure 4A). Then, we correlated these
bacterial modules with groups and obtained module
significance and hub bacteria of each module (Figure 4C,
Table S7). Former identified group-specific bacteria gathered
in the modules were significantly associated with the
corresponding group (Figure 4B). The hub bacteria of
the light-yellow module, Gemmiger formicilis, was selected for
the least correlation coefficient of either group. However, no
significant difference was observed in the KEGG and GBM
metabolic modules between the two groups, while only some
differentially expressed genes were detected (Figure 4D).
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Simultaneously, we compared the metabolic modules of other
hub bacteria but did not find any significant differences between
the groups (Figure S9). The missing hub bacteria metabolic
comparison did not identify any meaningful metabolic pathways.
DISCUSSION

The gut-brain axis enables the communication between the central
nervous system (CNS) and enteric nervous system (ENS) sponsored
by gut bacteria change (Hanscom et al., 2021). The gastrointestinal
dysfunction occurs in patients after cerebrovascular accidents
(Iftikhar et al., 2020), which might be partially caused by gut
microbiota imbalance. Meanwhile, hypothalamic-pituitary-adrenal
(HPA) axis and its associated hormones, like noradrenaline
increased after brain trauma, influence the gut bacterial
proliferative ability and pathogenicity (Sudo, 2014; Houlden et al.,
2016). Gut microbiome composition and diversity could be affected
by intestinal motility, transit, barrier integrity, and different factors’
secretion modulating by ENS activity, mediated by CNS input. The
neural signal-mediated gut activity, together with the activated
immune system and endocrine change after IPH, could be the
potential mechanism of IPH patients’ gut bacteria alteration.
(Kashyap et al., 2013; Gensollen et al., 2016; Zhu et al., 2018;
Hanscom et al., 2021). Previous studies have proved that acute brain
injury induces specific changes in the mice gut microbiota that
affects the outcome in mice (Benakis et al., 2016; Houlden et al.,
2016; Mazarati et al., 2021). However, whether gut microbiota
dysbiosis occurs in patients with acute cerebrovascular events
remains unknown. Herein, we performed metagenomic shotgun
sequencing on fecal samples of 10 IPH patients and 10 healthy
controls with corresponding characteristics. The gut bacteria
composition of patients with IPH significantly changed within 7
days, among which the phylum Verrucomicrobiota accumulated in
the patients’ gut. Acute brain injury, such as IPH induces gut
microbiota transformation from the up taxonomic levels and forms
a new bacterial interaction network to compensate the bacterial
alpha diversity at the low taxonomic levels in the gut. Phylum
Verrucomicrobiota enrichment can specifically distinguish IPH
patients from healthy people, similar to the finding that family
Verrucomicrobiaceae is enriched in the gut of mice suffering
traumatic brain injury (Opeyemi et al., 2021). This phylum,
Akkermansia muciniphila, a next-generation probiotic (O'Toole
et al., 2017), is the main differential species (Table S3). Previous
studies have shown that its high relative abundance is associated
with a healthy metabolic status by improving the intestinal barrier
and alleviating gut inflammation (Dao et al., 2016; Plovier et al.,
2017; Tang et al., 2019; Wang et al., 2020). In the current study, the
increased relative abundance of Akkermansia muciniphila in the
patient group indicated that the gut microbiota could adjust its
composition, increasing probiotic abundance and producing
beneficial neuroactive compounds, such as short-chain fatty acids
(Figure S8) to decrease the adverse impact of acute cerebrovascular
events. Next, we proposed that bacterial composition
transformation is the gut microbiota feedback to the adverse
events, which also involves functional alteration of gut microbiota.
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The high metabolic state is the primary functional feature of the
patients after IPH, consuming excessive carbohydrates, lipids, and
amino acids for energy production and producing beneficial
neuroactive compounds to alleviate the damage, accompanied by
low activity in the cellular processes as cellular structure biogenesis.
Otherwise, accompanied by high abundance, the dominant
pathogenic bacteria, including Klebsiella, Escherichia, and
Clostridium, cause disease by secreting virulence factors in
patients’ gut, although the total virulence factor diversity was less
than that in the controls’ gut bacteria. The increased relative
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
abundance and virulence factor diversity of these three dominant
pathogenic bacteria indicated the bacterial selection of the patients’
disease state, suppressing other pathogenic genera and specifically
allowing the selected pathogenic bacteria,Klebsiella, Escherichia, and
Clostridium, to gain abundance in order to secrete various virulence
factors and unselected pathogenic bacteria to lose diversity,
succumbing to the dominant bacteria colonization. IPH also
increases the antibiotic resistance of the gut bacteria, especially to
beta-lactam, which deserves further exploration. Recent studies
reported that antibiotic therapy was associated with gut bacterial
A

B

FIGURE 3 | (A) Volcano plots of DEGs, the KEGG modules, and the GBM modules of one specific species of patient group, Clostridium bolteae. DEGs with FDR
< 0.05 and |log2FC| > 1.5 and modules with FDR < 0.05 were identified as differential genes or modules. The modules with |log2FC| > 1 are marked in the figure.
The blue and red represent the patient group and the control group, respectively. MGYG-HGUT-01493 is the ID of this species in the UHGG database. (B) Dot plot
of neuroactive compound metabolism (GBM) of patient group-specific species. The dots mean that species have the metabolic pathway and the bars next to the dot
plot mean the relative abundance of this species in each group. The color and size of the dots mean the relative abundance of the metabolic pathway. Each row
represents the species, and the column represents the GBM pathways.
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diversity absence andmight be potentially harmful (Ravi et al., 2019;
Arulkumaran et al., 2020; Celorrio et al., 2021). Combined with our
findings, the alteration of gut bacteria antibiotic resistance after IPH
needs to be considered when selecting the drugs for preventive
antibiotic therapy (Simon et al., 2020).

The metabolic and transcriptional activity alteration of the gut
bacteria might be inconsistent with the composition change
(McNulty et al., 2011). To decipher whether the metabolism
difference in IPH patients is associated with the modification in
the bacterial composition, we recruited representative bacteria for
further analysis from enterotype, a stable bacterial interaction
network identified in the human gut whose alteration is
associated with a long-term diet intervention (Arumugam et al.,
2011; Wu et al., 2011). Next, we identified the group-specific species
of each group and the non-differential species. Owing to the bacteria
influencing the human body by the network (Mac Aogáin et al.,
2021), we introducedWGCNA to construct the bacterial interaction
network during non-differential species selection that has an
indirect influence while measuring the inter-species interactions.
Then, we chose the hub bacteria as the representative due to their
central position in the interaction network. In our cohort, not only
the gut bacteria composition ratio changed significantly, the
metabolic activity of the corresponding group-specific species
varied between groups contrary to the WGCNA module hub
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
bacteria even when the module significantly correlated with one
of the groups. Additionally, the transcription activity of the group-
specific species boosted in the corresponding group, suggesting that
metabolism alteration was due to active gene transcription. This
difference between patients and healthy people is attributed to
group-specific species activity change, including transcription,
rather than that of the non-differential species in IPH patients.
Furthermore, the neuroactive compounds were diversified in the
patients’ specific-group species. In addition to the common
compounds synthesized by each species, such as glutamate and
quinolinic acid, the patient’s group-specific species produce
additional beneficial molecules, such as butyrate and propionate,
which alleviate deteriorate factors, like inflammation state and
metabolic disorders, thereby improving the functional outcomes
(Vipperla and O'Keefe, 2012; Opeyemi et al., 2021). Therefore, we
hypothesized that the altered gut bacterial composition and function
is another mechanism after suffering IPH through which the gut
microbiota transformation might alleviate the adverse effects and
promote neural recovery, thereby improving the outcomes in
patients. However, the prognostic value of gut bacteria is yet to
be explored.

Nevertheless, one of the limitations that affect the results of
metagenomics is the resolution. Previous studies on the gut
microbiota selected 16S amplicon sequencing. This sequencing
A

D

B C

FIGURE 4 | (A) Bacteria interaction modules identified by WGCNA. (B) Percentage of each WGCNA module bacteria in the group-specific species. (C) Pearson’s
correlation between bacterial WGCNA modules and groups. Each cell contains the coefficient, from -1 to 1 and the P-value. (D) Volcano plots of DEGs, the KEGG
modules, and the GBM modules of one WGCNA module hub bacterium, Gemmiger formicilis. DEGs with FDR < 0.05 and |log2FC| > 1.5 and modules with FDR <
0.05 were identified as differential genes or modules. The blue and red represent the patient group and the control group, respectively. MGYG-HGUT-00084 is the ID
of this species in the UHGG database.
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strategy that analyzed the bacterial V3-V4 region of the 16S RNA
gene has a limited resolution in bacterial species identification,
capturing reliable taxonomic classification only at the genus level
(Matias Rodrigues et al., 2017). However, several studies
suggested that many taxonomic and functional associations are
present only at the species level (Costea et al., 2017; Lloyd-Price
et al., 2017). Thus, we conducted the metagenomics shotgun
sequencing of the whole genome of the fecal microbiota, even if
the species were inaccessible by cultivation, to improve
taxonomic resolution and annotate the gut bacterial function
in each group. We also introduced the UHGG database, the most
comprehensive microbial public collection comprising 204,938
non-redundant genomes from 4,644 gut prokaryotes (Almeida
et al., 2021), to conduct the taxonomic annotation. By matching
with this database, we obtained an accurate characterization of
the taxonomic and functional repertoire of the gut microbial
ecosystem. The gut microbiota mainly was composed of two
dominant bacterial phyla, Firmicutes and Bacteroidota, with
other subdominant phyla including Proteobacteria,
Actinobacteriota, and Verrucomicrobiota, which was similar to
previous results (Qin et al., 2010). Nonetheless, the present study
still has some limitations. Since it is difficult to predict the
occurrence of IPH, we collected fecal samples from the
corresponding healthy controls instead of the patients’ sample
before the disease occurs. Inevitably, we missed the potential
species that altered before the hemorrhage and some
confounding factors, such as the genetic background, diet, and
living habits, between groups. In clinical practice, patients
suffering from IPH were recommended a fast or liquid diet,
which differs from healthy control. The diet difference between
groups is a potential confounder to bacterial composition.
However, some studies pointed out that short-term diet
intervention is less likely to affect bacterial composition (Wu
et al., 2011; O'Keefe et al., 2015). The participants selected in the
study were native residents from the same region, and the
samples collected were at the same season, thereby reducing
the impact of time and space. To obtain a valid group-specific
species list and reduce the impact caused by sample size
limitation, we conducted a parallel maaslin correlation analysis
apart from the LEfSe analysis. The species selected by both
analyses were identified as group-specific species. Due to the
extremely low relative abundance of the phylum Verrucomicrobiota
in controls and the limited sample number, which led to an
insignificant FDR of corresponding species, we did not obtain any
species in this phylum identified as group-specific species of patients
even though the relative abundance of phylum Verrucomicrobiota
altered between groups. Similarly, we filtered out some of the
differential species between groups by this correlation analysis,
which may be the potential group-specific species, such as that in
phylum Verrucomicrobiota, or the false positive specific species
caused by the random extreme abundance disparity due to the
sample size limitation, thereby necessitating a valid group-specific
species list for further analysis. Subsequently, we found an obvious
alteration in the group-specific species than the non-differential
species, indicating the pivotal function of these group-specific
species in the patients’ gut.
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CONCLUSION

In conclusion, gut bacteria transformation is a potential
mechanism influencing the outcome of patients. The current
findings showed taxonomic composition and functional changes
in gut bacteria in patients after IPH. The taxonomic composition
of patients’ gut bacteria (phylum Verrucomicrobiota) altered
significantly after suffering from IPH. Moreover, the bacterial
functional alterations, including metabolism, antibiotic
resistance, and virulence, are attributed to the group-specific
species and need to be considered when targeting the gut bacteria
during IPH treatment.
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