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Diffusion tensor imaging differences relate to
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Abstract

Background: Memory is one of the most impaired functions after traumatic brain injury (TBI). We used diffusion
tensor imaging (DTI) to determine the structural basis of memory deficit. We correlated fractional anisotropy (FA) of
the fasciculi connecting the main cerebral regions that are involved in declarative and working memory functions.

Methods: Fifteen patients with severe and diffuse TBI and sixteen healthy controls matched by age and years of
education were scanned. The neuropsychological assessment included: Letter-number sequencing test (LNS), 2-
back task, digit span (forwards and backwards) and the Rivermead profilet. DTI was analyzed by a tract-based
spatial statics (TBSS) approach.

Results: Whole brain DTI analysis showed a global decrease in FA values that correlated with the 2-back d-prime
index, but not with the Rivermead profile. ROI analysis revealed positive correlations between working memory
performance assessed by 2-back d-prime and superior longitudinal fasciculi, corpus callosum, arcuate fasciculi and
fornix. Declarative memory assessed by the Rivermead profile scores correlated with the fornix and the corpus
callosum.

Conclusions: Diffuse TBI is associated with a general decrease of white matter integrity. Nevertheless deficits in
specific memory domains are related to different patterns of white matter damage.

Background
Diffuse axonal injury (DAI) was initially defined as wide-
spread damage to axons throughout the white matter,
evoked by intense shear and strain forces resulting from
rapid acceleration and deceleration of the brain with or
without impact after traumatic brain injury (TBI) [1,2].
More recently, traumatic axonal injury (TAI) has been
suggested as a more appropriate term for describing
axonal damage because it encompasses not only the pri-
mary axonal damage specifically caused by shear/strain
injury, but also secondary alterations of white matter
such as metabolic, hypoxic and microvascular damage
or excitotoxicity [3,4].
Although TAI has been described in neuropathologi-

cal terms, magnetic resonance imaging (MRI) allows the
detection of microhemorrhages and other indirect signs
in regions commonly affected by this injury such as the

subcortical white matter, the corpus callosum and the
dorsolateral quadrant of the rostral brain-stem. It has
recently been demonstrated that T2*-weighted MRI at
high field strength is a useful tool for the identification
of traumatic microbleeds even in the chronic stage of
TBI [5]. However, diffusion tensor imaging (DTI) has
been suggested as the best technique for the detection
of subtle white matter changes [6] given that it can
reveal significant abnormalities in white matter in
patients with normal findings in conventional MRI [7,8].
DTI is a non-invasive MRI technique that identifies

the microscopic physical properties of tissues directly
through the observation of translational molecular
movement of water [9]. Water diffusion in cerebral
white matter tends to be anisotropic, because the highly
linear organization of white matter fibers restricts move-
ment in other directions [10,11]. Fractional anisotropy
(FA), one of the main DTI-derived indices, provides
information of the degree of directionality of water dif-
fusion and on microstructural white matter changes.
DTI has been shown to be an efficient technique for
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determining white-matter integrity in several pathologies
[12]. It has also been proposed as the most feasible bio-
marker of TAI and one of the best indicators of TBI
severity [13,14]. Reductions in FA have been detected
not only in moderate and severe TBI patients [15-18]
but also in cases of mild TBI [19-24]. Moreover, DTI
has proved to be an excellent tool for evaluating struc-
tural changes after TBI in longitudinal studies [16-18].
The advantages of DTI have resulted in a growing

body of scientific evidence regarding the relationship
between white matter damage and neuropsychological
deficits in TBI. Studies conducted with pediatric samples
have identified correlations between FA values and var-
ious cognitive functions, including cognitive processing
speed and interference, executive functioning, IQ, verbal
working memory, reading comprehension and letter
naming speed [25-27]. Recently, Wu et al., [28] reported
correlations between immediate recall and left cingulum
bundles in adolescents after mild TBI. Some studies
have related FA measurements with neuropsychological
deficits in adults. Nakayama et al. [29] identified a posi-
tive correlation between the Mini-Mental State Exami-
nation (MMSE) and FA in the splenium of the corpus
callosum. Salmond et al. [30] found a significant correla-
tion between diffusivity and the impairment of learning
and memory in the posterior cingulate, hippocampal
formation and cortical areas. Kraus et al. [31] in a sam-
ple including all grade severities, found reduced FA in
the ROIs analyzed and obtained a measure of the total
regions of reduced FA that negatively correlated with
the three cognitive domains evaluated. Furthermore, in
a mild TBI sample, Niogi et al. [32] found a significant
correlation between attentional control and FA within a
ROI in the corona radiata and between memory perfor-
mance and FA in the ROI placed in the uncinate both
in the group of mild TBI patients and the control
group. Kumar et al. [18] found correlations between the
corpus callosum and neuropsychological tests involving
processing speed as well as visuospatial and visupercep-
tive tasks. Finally, Lipton et al., [33] and Miles et al. [34]
found that reductions in FA in dorsolateral prefrontal
cortex correlated significantly with tests of executive
functions. In summary, DTI technique, in special FA
measures, has been found sensitive to reflect cognitive
deficits associate with TBI.
Memory is one of the functions that is most frequently

impaired by TBI [35-37]. The concept of multiple mem-
ory systems and their different neuroanatomical sub-
strates is currently accepted [38,39]. Declarative and
working memory systems are significantly impaired after
traumatic brain injury (TBI). Deficits in declarative
memory - the capacity for conscious recollection of facts
and events - are a common consequence of head trauma
that are disproportionately suffered in comparison with

other cognitive functions [35,40]. These memory difficul-
ties improve slowly and although progress is made over
the first and second year following injury, they remain
apparent over time [40-42]. Neuroanatomically, declara-
tive memory depends on the integrity of the hippocam-
pus and its connections with the neocortex [43,44]. In
neuroimaging studies with TBI patients, declarative
memory has been found to correlate negatively with hip-
pocampal [45,46] and fornix damage [47]. Working
memory is defined as the ability to maintain and manipu-
late information temporarily [48]. Impairment of this
memory is frequent in TBI patients given that implicated
neural substrates, particularly the frontal cortex, are
highly vulnerable in this type of injury. There is consider-
able evidence that working memory depends on network
activity including the frontal and parietal regions and its
connections. A meta-analysis of functional neuroimaging
studies conducted by Owen et al. [49] provided strong
evidence for the activation of frontal and parietal cortical
regions by various versions of the n-back paradigm. The
main fasciculus linking the parietal and frontal lobes is
the superior longitudinal fasciculus (SLF) and hence it is
likely that this has a role in working memory. Relations
between the SLF and working memory deficits have been
reported in multiple sclerosis [50] but not in TBI
patients. To our knowledge there is no study investigat-
ing the impairment of white matter damage related to
declarative and working memory deficits in a sample of
severe and diffuse TBI.
The aim of this study was to investigate the role of

white matter damage in declarative and working mem-
ory deficits after diffuse TBI, focusing on the main asso-
ciative fasciculi [51] including those connecting the
cerebral regions involved in the declarative memory and
working memory networks.
Our study had two main hypotheses: firstly, that a

decreased FA in the superior longitudinal fasciculi
(SLF), which is presumably involved in working memory
function since it links the parietal and prefrontal
regions, would correlate with working memory deficits,
and, secondly, that a decreased FA in the fornix, the
main fasciculus interconnecting the hippocampus with
the frontal lobe, would correlate with declarative mem-
ory impairment.

Methods
Subjects
A cross-sectional study of thirty-one subjects was per-
formed. Fifteen patients (eleven male) with severe TBI
were recruited from the Head Injury Unit of the Institut
de Neurorehabilitació Guttmann. Inclusion criteria were:
a) age < 40 years, b) diffuse axonal injury according to
clinical MRI without focal cortical lesions or larger than
1.5 cm3, c) severe TBI: defined as a minimal Glasgow

Palacios et al. BMC Neurology 2011, 11:24
http://www.biomedcentral.com/1471-2377/11/24

Page 2 of 11



Coma Scale (GCS) score ≤ 8 assessed at the first contact
with the emergency services, d) emergence from post-
traumatic amnesia (PTA) phase at the moment of the
enrollment according to the Galveston Orientation and
Attention Test (GOAT) [52], defined as two consecutive
scores > 65, and f) no previous history of TBI, drug
intake, neurological, or psychiatric disorders.
The etiology of TBI was a traffic accident in all cases.

Fourteen patients were involved in car collisions, and
one was a pedestrian hit by a motor vehicle. All patients
had closed head injury and had not received surgery for
extra- or subdural hematoma; all structural MRI scans
were suggestive of TAI. The neuroradiologist (NB) took
into account T1-weighted, FLAIR, and T2* GE
sequences. The T2* GE sequences, which have a high
level of sensitivity for detecting chronic hemosiderin,
indicated evidence of TAI-related neuropathology. The
method proposed by Gennarelli et al. [2] was used to
classify the patients’ TAI type. The grading system used
was: type I, TAI only involving convexity gray-white
matter junction; type II, also involving the corpus callo-
sum in addition to the gray-white junction; and, type III,
involving the rostral brainstem as well as the two pre-
vious criteria. Cases in which the midbrain was involved,
but no corpus callosum lesions were apparent, were
classified as type III (see Table 1).
A control group of sixteen healthy subjects (nine

male) were recruited from relatives and friends of the
TBI group. This control group was matched by age,
years of education and premorbid intellectual function
estimated using the Vocabulary subtest of the Wechsler
Adult Intelligence Scale (WAIS-III) [53], recognized as
an efficient method for estimating general intelligence
[54] (see Table 2). All subjects were right-handed,
Caucasian-Mediterranean, and none had a previous
history of neurological or psychiatric diseases.
The study was approved by the Ethical and Research

Committee of the Institut Universitari de Neurorehabil-
itacio Guttmann and all participants gave written
informed consent.

Memory assessment
Working memory was evaluated by the Digit span and
Letter-Number Sequencing (LNS) subtests of the WAIS-
III [53] and a visual 2-back task [55]. Digit span was
measured as the series length correctly reproduced at
least once in the same order (forwards) and in reverse
order (backwards). In the LNS, subjects heard lists of
randomized numbers and letters (in alternating order)
of increasing lengths, and were asked to reproduce the
numbers and letters beginning with the lowest in each
series, always with numbers first. The scores from the
LNS were calculated by adding all correct items. In the
2-back task, numbers appeared on the screen for

500 ms against a black background, followed by a fixa-
tion cross for 1500 ms. The subjects were asked to
decide whether the number they were looking at
matched the one that they had seen two numbers earlier
in the sequence. The numbers of correct responses as
well as the reaction time were recorded. The d-prime
index, a bias-free measure that takes both correct
answers and errors into account, was also calculated to
determine the accuracy of performance.
The Rivermead Behavioural Memory Test (RBMT)

[56] was selected for its ability to explore declarative
memory, and its ecological validity in assessing TBI
patients. This test consists of 11 subtests including the
following: remembering a name, a hidden belonging and
an appointment; recognizing pictures and faces; recalling
a prose passage; remembering a short route; remember-
ing to deliver a message; and knowledge of some basic
information such as the date, place and time. Those are
designed as analogs of everyday tasks, reflecting the
kinds of situations with which patients typically experi-
ence difficulty on a day-to-day basis. Two methods of
standardizing scores across subtests allow for derivation
of either a screening score, with subtest raw scores cate-
gorized on a scale of 0 ± 1 (maximum score 12 points),
or a standardized profile score, with subtest raw scores
categorized on a scale of 0 ± 2 (maximum score
24 points). The slightly more fine-grained standardized
profile score provides a more sensitive analysis of per-
formance [57] thus we use this score for our correlation
analysis.

Image acquisition and analysis
MRI data sets were acquired on a 1.5 T Signa GE (Gen-
eral Electric, Milwaukee, WI) at the Centre de Diagnos-
tic per la Imatge of the Hospital Clínic (CDIC),
Barcelona. Diffusion weighted images were sensitized in
25 non-collinear directions with a b-value = 1000 sec/
mm2, using an echo-planar (EPI) sequence (TR =
9999.996 ms, TE = 85 ms, 20 axial slices with a resolu-
tion of 0.9375 × 0.9375 mm, slice thickness = 5 mm,
gap = 2 mm matrix size = 128 × 128, FOV = 100).
Data preprocessing and analysis was performed using

FMRIB’s software library [FSL version 4.1; Oxford
Centre for Functional MRI of the Brain (FMRIB), UK;
http://www.fmrib.ox.ac.uk/fsl/]. Image artefacts due to
eddy current distortions were minimized by registering
the diffusion images to the b0 images. The registered
images were skull-stripped using the Brain Extraction
Tool (BET) [58]. Fractional anisotropy maps were cal-
culated using the FMRIB’s Diffusion Toolbox v.2.0
[FDT, [59]]. After calculation of the FA map for each
subject, we implemented a voxel-wise statistical analy-
sis of the FA data using Tract-Based Spatial Statistics
v1.2 (TBSS) which aims to overcome the limitations of
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the standard VBM-style analyses [60], particularly
those regarding to its dependence on the goodness of
the registration algorithm and on the choice of the
spatial smoothing [61]. FA data were aligned into a
common space using a non-linear registration algo-
rithm (FNIRT) to register the images to the standard
FMRIB58 FA template, which is in MNI152 standard
space. Aligned FA maps were visually inspected after

registration and we confirmed that the result of the
previous step was correct. Next, a mean FA image was
created from the images from all the subjects in this
common space and narrowed to generate a mean FA
skeleton that represented the center of all tracts com-
mon to the entire group. This was thresholded to FA
0.2 to include the major white matter pathways but to
exclude peripheral tracts where there was significant
inter-subject variability and partial volume effects with
gray matter. This ensured that each subject’s skeleton
was in the group space while also representing the
center of the subject’s unique white matter bundles.
The aligned FA image for each subject was then pro-
jected onto the skeleton by filling the skeleton with FA
values from the nearest relevant tract centre. This is
achieved for each skeleton voxel by searching perpen-
dicular to the local skeleton structure for the maxi-
mum value in the FA image of the subject. The
resulting skeletonised data was then fed into voxelwise
cross-subject statistics.

Table 1 Clinical and neuroimaging characteristics of the TBI group

PT GCS PTA Initial CT MRI findings (T2*/FLAIR-Hemosiderin deposits) tevol TAI

1 8 150 SAH. Small hemorrhage in L thalamus Microbleeds in L thalamus, R caudate, midbrain, frontal lobe, and CC 207 III

2 7 60 SAH. Small hemorrhagic lesion at the uncus Microbleeds in R caudate, thalamus, pons, frontoparietal lobes and
CC

285 III

3 3 125 Small frontobasal contusion and bilateral
hemorrhagic foci in R frontal lobe and R
thalamus

Microbleeds in R thalamus, R fronto-temporo parietal lobes,
hippocampus and CC. Frontobasal contusion (< 1.5 cm)

315 II

4 5 45 No evidence of lesions Microbleeds in dorsal midbrain and L frontal lobe 429 III

5 4 40 SAH. Hemorrhagic focus in L frontal white
matter

Microbleeds in midbrain, R/L hippocampus, frontal and temporal
lobes, and CC

550 III

6 7 51 SAH. Hemorrhagic focus in the R frontal white
matter, and R intraventricular hemorrhage

Microbleeds in R/L hippocampus and R prefrontal region 146 I

7 4 45 Hyperdense lesion in the L medial temporal lobe Microbleeds in L caudate, R/L hippocampus, midbrain, L parietal, R
frontal lobes and CC

165 III

8 4 75 Multiple small bilateral subcortical hemorrhagic
foci

Microbleeds in L thalamus, R midbrain, cerebellar peduncle, R/L
frontal parietal and occipital lobes, R temporal and CC. Fonto-
temporal deep white matter hyperintensities due to demyelination

86 III

9 3 70 Small hemorrhagic foci at R internal capsular and
temporal region, and L CC. Intraventricular
hemorrhage

Microbleeds in midbrain, cerebellum, R hippocampus, R internal
capsule and thalamus, L fronto-parietal, and CC

443 III

10 3 60 SAH. Diffuse white matter alterations Microbleeds in R thalamus, R midbrain, cerebellum, R/L frontal and
CC. Parietal deep white matter hyperintensities due to
demyelination.

114 III

11 7 120 Multiple puntiform hemorrhagic foci in both
hemispheres

Microbleeds in L thalamus, R globus pallidus, R/L insula, R midbrain
R/L frontal, parietal and temporal lobes and CC

306 III

12 4 171 Puntiform temporal contusion. L temporal
subdural hematoma

Multiple subcortical microbleeds in pyramidal tract, centrum
semiovale, pons, and CC. Deep white matter lesions. L temporal
contusion (< 1 cm)

213 III

13 8 20 No evidence of lesions Microbleeds in L insula, R frontal lobe and CC. Deep white matter
lesions predominantly in the parietal lobe

115 II

14 4 105 Multiple hemorrhagic foci Microbleeds in midbrain, fronto-parieto-occipital lobes and CC. Deep
frontal white matter hyperintensities due to demyelination

143 III

15 6 120 Microhemorrhages in the L cerebellar
hemisphere and R frontal lobe

Microbleeds in R thalamus, R temporal lobe and in fronto-parietal
lobes. Contusion in R frontal gyrus and frontobasal (< 1.2 cm)

660 II

PT: Patient; GCS: Glasgow coma scale; PTA: posttraumatic amnesia; CT: computer tomography; MRI: magnetic resonance imaging; tevol: time of evolution since
accident to the MRI evaluation; TAI: diffuse axonal injury; R/L: right/left; CC: corpus callosum; SHA: subarachnoidal hemorrhage.

Table 2 Demographic and clinical characteristics of TBI
and control groups

TBI
group

(n = 15) Control
group

(n = 16)

Mean SD
(Range)

Mean SD
(Range)

Age 23.6 4.79 (18-32) 23.7 4.8 (18-32)

Education (years) 11.3 2.7 (8-16) 11.9 2.8 (8-16)

Vocabulary (WAIS-
III)

9.9 2.0 (8-14) 10.3 1.9 (8-14)

TBI = traumatic brain injury.
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Statistical analysis
Group comparisons and correlations with neuropsycho-
logical measures were performed using Randomise v2.1
from FSL [62,63]. As seen in table one, the time of evo-
lution since injury was very heterogeneous. In order to
control possible effects of this variable in the correlation
results, time of evolution was entered as a non-interest
variable in the matrix. The statistical threshold was set
at p < 0.05 Family Wise Error (FWE) corrected, which
is a conservative procedure that allows a high control of
Type I error, being the probability of one or more false
positives the same as the significance level. The Thresh-
old-Free Cluster Enhancement (TFCE) method was used
to define the clusters [64]. Correlation analyses were
performed with the 2-back d-prime index and the River-
mead profile score using a region of interest (ROI)
approach in the following associative fasciculi: corpus
callosum, superior and inferior longitudinal, inferior
fronto-occipital, uncinate, and cingulate as well as the
fornix and arcuate fasciculi as the major pathways that
connect associative cortical regions involved in working
and declarative memory. ROI masks were obtained from
the Jülich histological atlas [65,66] and the JHU white-
matter tractography atlas [67-69]. Areas corresponding
to significant clusters were identified using the JHU
white-matter tractography atlas. Mean FA values were
obtained from each subject’s FA skeleton map and ske-
letonised SLF and fornix ROIs. Mean FA values were
obtained from each subject’s FA skeleton map and ske-
letonized for all the fasciculi ROIs mentioned above.
Statistical tests on non-imaging data were performed

using SPSS (Statistical Package for the Social Sciences)
v.16 (SPSS Inc., Chicago Illinois). Group differences
were examined using the Student t-test, since the data
were normally distributed using a significance level of
p < 0.05.
Partial correlation coefficients, controlling for the time

of evolution, were used to explore the association
between mean FA values and clinical variables and neu-
ropsychological measures. Statistical significance was set
at a two-tailed p ≤ 0.05.

Results
Comparison between TBI patients and controls
Performance on the memory tests is described in Table 3.
Statistical significance was obtained for the difference in
scores in the LNS subtest (WAIS-III), d-prime index for
the 2-back, and the RBMT profile. Forward and back-
ward digits did not reach statistical significance.
Group comparison for FA skeleton maps revealed

multiple areas of significant FA reductions in TBI
patients as compared to controls. All the long associa-
tive fibers were affected, including the corpus callosum,

the superior and inferior longitudinal fasciculi, and the
inferior fronto-occipital fasciculi. Decreased FA was also
observed in shorter fibers such as the uncinate fascicu-
lus, cingulum, fornix and anterior thalamic radiation
(Figure 1, Table 4). FA was not increased in the TBI
group in any cerebral region.
We obtained mean FA values of the whole skeleto-

nized brain and all of the selected ROIs. Group compar-
isons for all these values reached statistical significance
in all cases with p < 0.001 (Table 4).

Correlation analysis
Correlation with clinical variables
We observed significant negative correlations between FA
and posttraumatic amnesia (PTA) in almost all the regions
that showed significant FA decreases in the group analysis.
Quantitative global mean FA values also showed a high
correlation with this variable (r = -0.903 p <0.001). How-
ever, no significant correlations were found in the FA
maps analysis for the GCS (r= 0.206, p = 0.499).
Correlation with declarative and working memory
performance
The mean global FA measure correlated significantly
with 2-back d-prime index (r = 0.584, p = 0.028). The
correlation of global FA with the RBMT profile score
did not reach statistical significance.
The ROI procedure revealed a positive correlation

between working memory performance assessed by the
2-back d- index and the FA skeletonized SLF, fornix,
and corpus callosum ROIs (Figure 2, Table 5). 2-back d-
prime index also correlated with the arcuate fascicle
(Table 5). Declarative memory performance, assessed by
RBMT, correlated with the fornix and the posterior part
of the corpus callosum ROIs (Figure 3, Table 5).
No other correlation reached statistical significance in the

TBI group. There were no significant correlations between
FA and neuropsychological measures in the control group.

Table 3 Neuropsychological performance for TBI and
control groups

TBI group Control group t (p values)

Mean SD Mean SD

Digit forwards 6.1 1.0 6.6 1.1 -1.1 (ns)

Digit backwards 4.3 1.1 4.9 0.9 -1.6 (ns)

LNS 8.6 2.7 11.0 2.8 -2.4 (0.02)

2- back (d-prime) 2.7 1.0 3.4 0.4 -2.6 (0.01)

Goals 2-back 81.4 18.3 95.2 4.8 -2.7 (0.01)

Reaction time 2-back
(ms)

693.4 200.0 475.7 88.9 3.7 (0.002)

RBMT (profile) 18.1 3.4 22.6 1.3 -4.85 (0.001)

TBI: traumatic brain injury; Letter-Number Sequencing (WAIS-III); Goals:
number of targets correctly identified; RBMT: Rivermead Behavioral Memory
Test; ns: not significant.

Palacios et al. BMC Neurology 2011, 11:24
http://www.biomedcentral.com/1471-2377/11/24

Page 5 of 11



Discussion
The present study provides evidence of the implications
of TAI in declarative and working memory deficits in
TBI. DTI group comparison revealed global whole brain
reductions in mean FA values for patients and FA maps
confirmed that almost all the major fibers were involved.
Although our patients suffered global white matter
integrity impairment, we found two different and
restricted patterns of correlations with the FA and neu-
ropsychological assessment. Whole brain DTI analysis
showed that decreased FA throughout the brain corre-
lated with 2-back measures but not with the Rivermead
Test. Results from the ROI analyses of the main associa-
tion fibers showed, as predicted, that working memory
specifically correlated with the superior longitudinal fas-
ciculi. However, it was also found to correlate with the
corpus callosum, the arcuate fasciculi and with the for-
nix. On the other hand, declarative memory deficits
only correlated with the fornix, as we had expected, and
the corpus callosum. These results suggest that there
are two different patterns of FA reduction related with
two types of memory dysfunctions.

We found that superior longitudinal fasciculi damage
is related with working memory but not with declarative
memory deficits. These correlations were expectable
since the longitudinal fasciculi connect the associative
frontal and parietal regions involved in working memory
functions [70-72,49]. The correlation between working
memory deficit and the superior longitudinal was also
described in multiple sclerosis, pathology that also
involves white matter damage [50].
In our sample, FA reductions of corpus callosum cor-

related with both working and declarative memory
impairments. In declarative memory the correlations
were seen in the posterior region whereas in working
memory the correlations involved anterior and posterior
regions, thus again these results point to differential pat-
terns of correlations for both types of memory
impairment.
According our results, declarative memory impairment

did not depend on diffuse white matter damage since no
correlations between FA maps or mean values and
declarative memory values were seen. However, the ROI
analysis revealed that the fornix FA impairment corre-
lated with the Rivermead test. This result is in agree-
ment with the role of the damage of the hippocampus
and its connections in declarative memory deficits in
TBI [45,46].
Our declarative memory results partially agree with

those obtained by Salmond et al. [30]. Using a voxel-
based analysis with SPM tools, these authors found a
significant positive correlation between declarative
memory and diffusivity in the left hippocampal forma-
tion, the left posterior cingulate, and the left frontal,
temporal and occipital regions. The more widespread
pattern of correlations observed in their study can be
explained by the use of FDR correction, which is more
liberal than the FWE correction used in ours [73]. Cor-
relations between FA values in the fornix and declara-
tive memory impairment have been also observed in
patients with multiple sclerosis [74]. Other studies
investigating FA correlations with declarative memory

Figure 1 Results from TBSS analysis of FA maps showing the clusters of significantly reduced FA in TBI patients compared to controls
in red (TFCE, p < 0.05 FWE-corrected). Widespread white matter affectation is observed.

Table 4 Differences between groups in mean FA from the
whole skeletonised brain and the ROIs

TBI group Control group t (p values)

Mean SD Mean SD

FA global 0.360 0.280 0.423 0.018 -7.43 (< 0.001)

FA CC 0.410 0.460 0.510 0.024 -7.04 (< 0.001)

FA SLF 0.364 0.026 0.421 0.018 -7.02 (< 0.001)

FA ILF 0.045 0.003 0.052 0.002 -7.23 (< 0.001)

FA IFO 0.390 0.031 0.456 0.018 -7.45 (< 0.001)

FA fornix 0.316 0.030 0.396 0.022 -8.05 (< 0.001)

FA cingulum 0.401 0.048 0.493 0.032 -6.16 (< 0.001)

FA arcuate 0.373 0.027 0.430 0.018 -6.05 (< 0.001)

FA uncinate 0.351 0.032 0.403 0.019 -5.34 (< 0.001)

TBI: Traumatic Brain Injury; FA: fractional anisotropy; CC: corpus callosum; SLF:
superior longitudinal fasciculi; ILF: inferior longitudinal fasciculi; IFO: inferior
fronto-occipital fasciculi.
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functions in mild TBI samples have reported significant
correlations with the uncinate fasciculi [30,32] and the
cingulum [28]. Although we found decreased FA in
these fasciculi, correlations did not reach statistical sig-
nificance. These discrepancies may be explained by the

varying grade of severity of the samples, the difference
in the memory tests used, and DTI methodological
differences.
In the present study, working memory deficits also

correlated with the fornix in both the whole brain

Figure 2 ROI correlations with d-prime 2-back index in the TBI group for the SLF, fornix, and corpus callosum ROIs (TFCE, p < 0.05
FWE-corrected). Correlation coefficient (r) was directly converted from t values of the TBSS output. The t and r values correspond to the most
statistically significant voxel for each cluster.
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analysis and the ROI analyses. There is some evidence
from fMRI studies that the hippocampus is involved in
working memory functions in healthy subjects [75-78].
Moreover, several animal studies also suggest a role for
the hippocampus in working memory [79-81]. Anatomi-
cally, prefrontal regions involved in working memory
tasks receive projections from the hippocampus [82,83]
and are connected directly to the ventral hippocampus
and indirectly to the dorsal hippocampus via the thala-
mus [84-86]. This structural connectivity supports the
idea that the hippocampus has a role in working mem-
ory functioning as suggested by our findings.
Finally, significant correlations were observed between

the PTA variable and white matter integrity. Whole brain
map analysis showed that PTA is an excellent index pre-
dictor of the degree of impairment of the major white
matter tracts and association fibers. These results suggest
that the recovery of memory functions is dependent on
the integrity of the complex neocortical regions. Unlike
previous studies [13,14,17], no correlations were found
between GCS and FA maps or mean FA values. This
result was to be expected as the fact that all our patients
had severe TBI meant that GCS variability would not be
sufficient to reach statistical significance.

Our study has certain limitations and our results
should be regarded as preliminary. The small sample
size and its specific diffuse characteristics may preclude
the generalization of the results. The presence of mixed
focal and diffuse pathology frequently observed in severe
TBI may confound the mapping of neural and beha-
vioral changes in these patients. As our study sample
excluded significant cortical pathology, the cognitive
impairment observed is more likely to be due to the dif-
fuse pathology alone. Nevertheless, we cannot exclude
the possibility that reductions in gray matter in several
subcortical structures are also influencing memory defi-
cits in TBI.

Conclusions
This DTI study suggests that declarative and working
memory deficits in diffuse TBI patients are related to
differential patterns of FA reduction. Working memory
impairment reflects the diffuse white matter damage
affecting large scale networks such as the superior longi-
tudinal fasciculi, whereas declarative memory deficits
seem to be the result of more local disruption of the
cerebral circuitry.
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